
INTERMEDIATE
STATISTICAL
METHODOLOGY

Anthony Almudevar, PhD

© 2014 – 2020

A Second Course in Statistics

Contents

1 Introduction 10

1.1 Course Material . 11

1.2 A Reference Library of Statistical Methodology . 13

I Statistical Methodology 16

2 ANOVA 17

2.1 Methodology . 18

2.2 ANOVA Table . 20

2.3 Bonferroni Correction for Multiple Comparisons . 22

2.4 Post hoc Analysis in ANOVA . 23

2.5 Nonparametric ANOVA . 24

2.6 Assumptions . 25

2.7 ANOVA in R . 25

2.8 Equality of Variances . 28

2.9 The Kruskal-Wallis Test for Nonparametric ANOVA 29

2.10 Postscript . 31

3 Linear Regression - Introduction 33

3.1 Residuals . 36

3.2 ANOVA approach . 38

3.3 The Relationship Between Linear Regression and Correlation 39

3.4 The Derivation of the Least Squares Coefficients . 40

3.5 Assumptions . 41

4 Linear Regression - Inference 42

4.1 Inference of Regression Parameters . 42

4.1.1 Confidence intervals for simple linear regression 44

4.1.2 Hypothesis tests for simple linear regression 44

4.1.3 Prediction intervals for simple linear regression 44

4.1.4 Calculations based on sums of squares . 45

4.2 Multiple Linear Regression . 48

4.2.1 ANOVA tables for multiple linear regression 50

4.2.2 Full and reduced models . 50

2

CONTENTS 3

4.2.3 Example . 51

5 Linear Regression - Modeling in R 54

5.1 Statistical Models . 54

5.2 The Formula Object in R . 54

5.3 Linear Regression in R . 58

5.4 ANOVA and Linear Regression . 61

5.5 Residuals and lm() . 63

5.6 Interaction Terms . 64

5.7 Polynomial Regression . 69

6 Linear Regression - Formulation Using Matrix Algebra 72

6.1 Regression Coefficients βββ . 72

6.2 Linear Combinations of βββ . 73

6.3 Fitted Values ŷyy . 73

6.4 Residuals eee . 73

7 Least Squares Regression and Vector Spaces 75

7.1 Vector Spaces and Prediction Spaces . 75

7.2 Linear Transformations of Prediction Spaces . 79

7.2.1 Evaluation of transformation matrix A . 80

7.3 General Transformation Equivalence . 80

7.4 Orthogonalization of Predictor Matrices . 82

7.4.1 Orthogonalization of simple linear regression 82

7.4.2 QR decomposition . 83

7.4.3 Orthogonalization of multiple linear regression 83

8 Linear Regression Diagnostics - Outliers, Influential Observations and Collinear-
ity 85

8.1 Leverage . 85

8.2 Cook’s Distance . 86

8.3 Studentized Residuals . 86

8.4 Influence Measures . 87

8.5 Covariance Ratio . 87

8.6 Collinearity . 88

8.7 Postscript . 89

9 Maximum Likelihood Estimation 90

9.1 Fisher Information . 90

9.2 Inference Methods . 92

9.3 The Likelihood Ratio Test and Deviance . 93

9.4 Postscript . 94

4 CONTENTS

10 Logistic Regression 95

10.1 The Odds Ratio in Logistic Regression . 96

10.2 Likelihood Method for Logistic Regression . 96

10.3 Postscript . 99

11 Survival Analysis 100

11.1 Memoryless Distributions . 100

11.2 The Failure Rate . 101

11.3 Estimation of the Survival Function . 104

11.3.1 Censoring . 104

11.3.2 Kaplan-Meier estimate of the survival function 105

11.3.3 Cox proportional hazards regression . 108

11.4 Postscript . 112

12 Bayesian Inference 114

12.1 The Bayes Estimator . 115

12.2 Bayesian Inference for the Binomial Distribution . 116

12.2.1 The gamma and beta functions . 116

12.2.2 The beta distribution . 116

12.2.3 Posterior distributions . 117

12.3 Postscript . 118

13 Simulation Methods 120

13.1 Permutation Test . 120

13.2 The Bootstrap Procedure . 123

13.3 General Principles of Computer Simulation . 125

13.3.1 Pseudorandom number generation . 125

13.3.2 Linear congruential generators . 126

13.3.3 Uniform random number generation . 128

13.3.4 The inverse transformation method . 129

13.3.5 Simulation of discrete random variables . 131

13.3.6 Computer simulation and reproducibility in R 132

13.3.7 Simulating dependent random variables in R 132

13.4 Postscript . 132

14 Markov Chains, MCMC and Computational Bayesian Methods 135

14.1 Markov Chains . 135

14.1.1 Maze example . 138

14.1.2 Distributional properties of Markov chains . 140

14.1.3 Balance equations and steady states . 143

14.2 The Hastings-Metropolis algorithm . 145

14.3 Simulated annealing . 146

14.4 Postscript . 147

CONTENTS 5

II Supervised and Unsupervised Learning 149

15 Machine Learning and Statistical Learning - General Concepts 150

15.1 Some Notational Conventions . 151

15.2 Structure of Data . 151

15.2.1 Features . 151

15.2.2 Response . 152

15.3 Feature Distances . 152

15.3.1 Metrics . 152

15.3.2 Lp norms . 153

15.3.3 Distance functions . 154

15.4 Supervised and Unsupervised Learning . 155

15.5 Loss and Risk . 155

15.6 Cross-Validation . 158

15.7 Bias and Variance . 159

15.8 Model Selection for Classifiers . 160

15.9 Postscript . 160

16 Bayes Theorem and Classification 162

16.1 Odds . 164

16.2 The Bayesian Model . 165

16.3 The Fallacy of the Transposed Conditional . 167

16.4 Diagnostic Testing - Basic Definitions . 167

16.4.1 Diagnostic tests and contingency tables . 168

16.4.2 The use of odds in the evaluation of diagnostic tests 169

16.5 The Odds Ratio . 171

16.6 Bayes Classifiers . 172

16.6.1 Prior probabilities . 173

16.6.2 Naive Bayes classifiers . 173

16.7 K Nearest Neighbor (KNN) Classifiers and Regression 174

16.8 Linear and Quadratic Discriminant Analysis . 174

16.8.1 Estimation for LDA/QDA . 176

16.9 Classification and the Receiver Operator Characteristic (ROC) Curve 176

16.9.1 Classifiers based on a numerical risk score . 177

16.9.2 ROC curves . 182

16.10Artificial Neural Networks . 185

16.11Postscript . 185

17 Unsupervised Learning 187

17.1 Hierarchical Clustering . 188

17.2 K-Means Cluster Analysis . 189

17.3 Principal Components Analysis . 190

17.3.1 Calculation of principal components . 191

17.3.2 Principal components and spectral decomposition 192

17.4 Postscript . 196

6 CONTENTS

18 Score Based Model Selection 197
18.1 AIC and BIC for Multiple Linear Regression . 198

18.1.1 Model selection algorithms based on predictor subsets 198
18.2 Shrinkage Methods . 200
18.3 Postscript . 201

19 Basis Functions and Predictor Spaces 203
19.1 Transformation Equivalence of Basis Functions . 204
19.2 Polynomial Regression . 208

19.2.1 Polynomial regression in R . 209
19.2.2 Demonstration of R function poly() . 210

19.3 Splines . 214
19.3.1 Degrees of freedom of a spline . 217
19.3.2 Basis function representation of a spline . 219
19.3.3 Splines of degree d . 225
19.3.4 Natural cubic splines and smoothing splines 225
19.3.5 B-splines . 227
19.3.6 Using B-splines in R . 229

19.4 Postscript . 231

20 Bayesian Network Models 233
20.1 Basic Graph Theory . 233

20.1.1 Mathematical definition of a graph . 234
20.1.2 Sequential structure and causality - The directed acyclic graph (DAG) 236

20.2 Conditional Independence . 238
20.2.1 The Markov chain model . 238
20.2.2 Formal definition of conditional independence 239
20.2.3 Conditional independence and the Bayesian network model 241
20.2.4 Markov blankets . 242
20.2.5 D-separation . 243

20.3 Formal Definition of the Bayesian Network Model . 246
20.3.1 Factorization and the local and global Markov properties 248
20.3.2 Parametric models and estimation . 251
20.3.3 Model identifiability . 253

20.4 Equivalence Classes . 254
20.4.1 Equivalence classes and v-structures . 258

20.5 Two Examples . 259
20.5.1 A simple gene regulatory network . 259
20.5.2 Mid-Atlantic wage data . 261

III Practice Problems 264

21 Practice Problems - ANOVA 265
21.1 Exercises . 265
21.2 Data Analysis . 268

CONTENTS 7

22 Practice Problems - Linear Regression 273

22.1 Exercises . 273

22.2 Data Analysis . 277

22.3 Theoretical Complements . 293

23 Practice Problems - Logistic Regression 301

23.1 Exercises . 301

23.2 Data Analysis . 309

24 Practice Problems - Survival Analysis 322

24.1 Exercises . 322

24.2 Data Analysis . 325

24.3 Theoretical Complements . 330

25 Practice Problems - Bayesian Inference 335

25.1 Exercises . 335

25.2 Data Analysis . 337

25.3 Theoretical Complements . 343

26 Practice Problems - Simulation Methods 350

26.1 Exercises . 350

27 Practice Problems - Markov Chains, MCMC and Computational Bayesian Meth-
ods 358

27.1 Exercises . 358

27.2 Simulation Projects . 385

28 Practice Problems - Classification 394

28.1 Exercises . 394

28.2 Data Analysis . 401

28.3 Theoretical Complements . 426

29 Practice Problems - Unsupervised Learning 437

29.1 Exercises . 437

29.2 Data Analysis . 445

29.3 Theoretical Complements . 450

30 Practice Problems - Model Selection and Splines 460

30.1 Exercises . 460

30.2 Data Analysis . 475

30.3 Theoretical Complements . 497

31 Practice Problems - Bayesian Networks 509

31.1 Exercises . 509

31.2 Data Analysis . 516

Appendices 522

8 CONTENTS

A Linear Algebra 523

A.1 Numbers and Sets . 523

A.2 Fields and Vector Spaces . 524

A.3 Equivalence Relationships . 524

A.4 Matrices . 525

A.5 Eigenvalues and Spectral Decomposition . 527

A.5.1 Right and left eigenvectors . 528

A.6 Symmetric, Hermitian and Positive Definite Matrices 529

B Multivariate Distributions 531

B.1 Matrix Algebra and Multivariate Distributions . 532

B.2 Multivariate Normal Distribution . 533

C An R Tutorial 534

C.1 Mathematical Operations on Scalars and Vectors . 534

C.1.1 Vectors in R . 536

C.1.2 Global options . 539

C.1.3 Modes (or types) . 541

C.1.4 Index referencing . 545

C.1.5 More vector operations . 546

C.1.6 Pattern matching . 547

C.1.7 Managing objects . 548

C.2 Data Structures in R . 549

C.2.1 Matrices . 549

C.2.2 More on index subsets . 553

C.2.3 Lists . 555

C.2.4 Data frames . 557

C.2.5 Factors . 558

C.2.6 Arrays . 558

C.3 Labels for Data Structures . 559

C.3.1 Vector labels . 560

C.3.2 Matrix and array labels . 561

C.3.3 Labels for lists and data frames . 562

C.4 Programming and Functions . 564

C.4.1 Program control . 564

C.4.2 User defined functions . 566

C.4.3 Functions and environments . 567

C.4.4 User defined binary operators . 568

C.5 Vectorized Calculations . 568

C.6 File Input and Output . 569

C.7 Packages . 569

C.8 Objects and Classes in R . 572

C.8.1 Object modes . 572

C.8.2 Object classes . 573

C.8.3 Generic functions . 574

CONTENTS 9

C.8.4 User defined methods . 576
C.8.5 S4 (formal) classes . 577
C.8.6 Testing and coercion of object types . 578

C.9 Random Variables in R . 578

D Distribution Tables 580

Bibliography 596

Index 602

Chapter 1

Introduction

Preamble

The material presented here is intended for a single term course in what might be called Intermediate
Statistics, or a second course in statistical methodology. It is assumed that the reader is familiar
with the definition of confidence intervals and hypothesis tests, basic probability and distribution
theory, as well as a good sense of the role played in statistical inference by the t-, F - and χ2

distributions. A course in calculus is also assumed as a prerequisite, and a good knowledge of
linear algebra is highly recommended. Appendix A contains a review of basic linear algebra theory,
and Appendix B contains a review of multivariate distributions. A tutorial in R programming is
offered in Appendix C, while statistical probability tables are given in Appendix D. The course
begins with a comprehensive introduction to ANOVA and linear regression. It is anticipated that
a student will be familiar with these topics, but a thorough introduction is included.

Data science and statistical methodology

The material in this course is especially suitable for the training of data science professionals. It
may be a good idea at this point to discuss a few general terms associated with this field. The
term machine learning refers to the computerized automation of decision making, classification or
quantitative prediction. The term “learning” signifies the reliance of the underlying algorithms on
data, or the ability to use data (or prior experience) to optimize the performance of these tasks.
Therefore, machine learning is the application of methods from various fields, including control
theory, statistical inference and optimization, to the development of computer algorithms special-
ized to the exploitation of data. Then statistical learning refers to the application of statistical
methodology to these tasks, especially as concerns classification or quantitative prediction.

Another term which enters this field is big data. This type of data is usually high-dimensional
(bioinformatic data, image data), or complex in the sense that a single data set contains many
distinct forms of information (computerized marketing data, often). It is this aspect that usually
drives the need to reduce computational burden, hence algorithm design is an important component
of this field.

There is no doubt that the advent of big data in many forms has significantly changed the
emphasis placed on statistical methodology both in research and in college level instruction. But it
has not significantly changed the statistical methodological canon itself, and for very good reasons.

10

1.1. COURSE MATERIAL 11

Most students are introduced to statistical modeling via simple, then multiple, least squares
regression (LSR). Without reference to any particular method, the model looks something like this:

y = g(x1, . . . , xp) + ε. (1.1)

Here, y is the response variable. The object is to build a predictor for y. This is to be done using p
predictor variables x1, . . . , xp. Finally, ε represents the error variable. The meaning of this is that
we do not expect that the target of prediction y can be predicted exactly, even if we have perfect
knowledge of its behavior. But there are more than one possible reasons for this. The first is that
we cannot capture in p predictors all information about y. The second is there is an inescapable
random component of y which is impervious to prediction (as in a casino, for example). Probably,
both factors are in play in any given application. Whatever the case, the essence of Equation (1.1)
is that it decomposes response y into predictable and unpredictable components.

Clearly, any body of methodology which deals with a prediction problem generated by (1.1)
has two objectives. The first is to build the best possible predictor, and the second is to esti-
mate the limits on the accuracy of any predictor (in other words, to recognize the existence of
ε, and to say something about its size). This, in fact, is one of the central problems of classical
statistical methodology, and a true mastery of prediction methodology is not possible without an
understanding of the underlying theory.

No reference has yet been made to LSR models. This is because that class of models is merely
a special case of Equation (1.1), obtained by setting

g(x1, . . . , xp) = β0 + β1x1 + . . .+ βpxp, and

ε ∼ N(0, σ2). (1.2)

As we will see, there are other possible choices for both g(x1, . . . , xp) and ε. The range of models
expands further if we allow a certain flexibility regarding what type of object the response variable
y is. The point to be made is that a theory of statistical learning would be quite limited if it
confined itself to components of the type given in Equations (1.2).

Of course, this imperative has long been recognized in classical statistical methodology, and
specialized models are available for a large variety of response types (discrete count data, binary
data, survival times, and so on). So we need to ask at this point what the relationship is between
classical statistical methodology and “big data”, “data science”, “machine learning” or “statistical
learning”. The point of view of this author is that this relationship is essentially the same type
of relationship that exists between the fields of statistics and statistical genetics. Or statistics and
quality control. Or statistics and psychometrics. All of these disciplines place considerable emphasis
on the transformation of data into information or knowledge. Statistical theory provides a language
and framework, and a supporting probability theory, of sufficient generality to permit such analyses
of data which are both correct and efficient (or, sometimes, provably optimal). Whether applied to
big or small data, this relationship is essentially the same. It is hoped, therefore, that this volume is
able to identify and explain those aspects of the statistical canon most relevant to the applications
likely to be encountered by the data scientist.

1.1 Course Material

Given the purpose of these notes, the training of professional data analysts, there is a certain
balance which needs to be achieved, and to this end there are two objectives. The first is to provide

12 CHAPTER 1. INTRODUCTION

instruction in a sufficiently comprehensive range of methodologies, and the second is to train the
reader in the application of these methods to data analysis applications likely to resemble those
that will eventually be encountered.

Using R

All computing is done in the R statistical computing environment. This is available at www.

r-project.org as free software under the terms of the Free Software Foundation’s GNU Gen-
eral Public License in source code form. Precompiled binary distributions are also available for
Windows, MAC OS, and Linux OS (versions of archived precompiled distributions vary). An ex-
cellent introductory manual An Introduction to R is available at www.r-project.org (follow the
Manuals link). These notes also contain a tutorial in R (Appendix C).

Course software

There is a series of R demonstration software files that accompany these notes, and which are
intended to provide demonstrations and further instruction in the covered methodologies. They
are thoroughly commented with this in mind, and may be used by an instructor during a lecture
or tutorial. Another objective is to provide the data science professional with a software library
for use in their practice. These files are listed by topic in Table 1. An additional software file
introduces parallel computing within the R environment.

Practice problems

Part III of these notes (Chapters 21-31) contains an extensive list of practice problems created by
the author. All have solutions, which are given in blue text immediately following the questions.
Some include extensive R code.

Each of these chapters is devoted to a specific topic, or set of topics. However, there is not a
one-to-one mapping of these chapters to those of the main body of the notes. This is partly due
to dependence of some topics on previously covered topics. A good example of this is principal
components analysis (Section 17.3), which can be a useful component of a larger analysis (see,
for example, Problem 30.17). Also, Chapter 30 combines a number of separate topics which are
perhaps more usefully examined together than separately.

Most practice problem chapters are divided into sections. Practice problems in an Exercises
section emphasize mastery of the technical details of a method, and tend to be shorter in length.
Most do not rely on data sets, but often begin with the computer output of various R modeling
functions. Practice problems in a Data Analysis section are usually more extensive, and make
use of a data set. Most make use of data from one of two R packages, MASS (which comes with the R

distribution) and ISLR (which accompanies James et al. (2013), and is freely available (along with
the textbook itself) at www-bcf.usc.edu/~gareth/ISL/). Problem 28.9 serves as an introduction
to a quite rich source of bioinformatic data, the Gene Expression Omnibus at http://www.ncbi.

nlm.nih.gov/geo maintained by the National Center for Biotechnology Information of the National
Institutes of Health.

Finally, some chapters in Part III have a Theoretical Complements section. These are
practice problems intended to address, or extend, the more theoretical aspects of the methodology.

1.2. A REFERENCE LIBRARY OF STATISTICAL METHODOLOGY 13

Postcripts

Most chapters end with a Postscript. The postscripts have several purposes. Where appropriate,
they point the reader to specific practice problems and demonstration software files, as well as
additional topics and supporting literature. Specific R packages and functions are cited. They
usually include a brief summary of the main topics covered in the chapter.

When needed, important subjects which cannot for practical reasons be covered in detail here
are singled out, and the reader is directed to suitable sources.

Chapters 9 (Maximum Likelihood Estimation), 12 (Bayesian Inference) and 15 (Machine Learn-
ing and Statistical Learning - General Concepts) are more foundational in character. Further read-
ing is more appropriately done in the context of a general theory of statistical inference (Section
1.2).

Linear regression is covered in Chapters 3 - 8, for which a single postscript is offered in the final
chapter.

1.2 A Reference Library of Statistical Methodology

These notes aim to prepare the reader for actual data analysis in a professional setting, and the
hope is that the background presented here will suffice for many, perhaps even most, applications.
The methodology will be comprehensive enough for this, and the practice problems should prepare
the analyst for the many subtle issues that will arise. To pick just one example, if the units of some
variable are changed from pounds to grams, will the conclusion change? This issue is a surprisingly
complex one, and is explored in Problem 28.14. Or another: suppose some learning algorithm
makes use of the simple linear regression model:

yi = β0 + β1xi + εi, i = 1, . . . , n,

to estimate a crucial parameter, but that we may choose the predictor values x1, . . . , xn. How do
we select these values to minimize the estimation error? This question has a quite definitive answer
(Problem 22.12).

However, there is clearly a great deal of theory and method which cannot be compressed into
a resource like this, so we will give a brief literature review to guide further reading.

There are a number of highly recommended textbooks on intermediate to advanced statistical
theory. Two more accessible volumes would be Hogg et al. (2018) (undergraduate level) or Casella
and Berger (2002) (graduate level). Bickel and Doksum (2015a) and Bickel and Doksum (2015b) are
more advanced mathematically, but also offers much more comprehensive treatments of statistical
computing methods, from a theoretical point of view.

For more advanced treatments of the theory of statistical inference see Cox and Hinkley (1979),
Welsh (2011) or the volumes Lehmann and Casella (1998) and Lehmann and Romano (2006).

A number of reference books for mathematical background can be mentioned here. First, Horn
and Johnson (1985) is an excellent reference for matrix analysis. Good references for analysis
are Spivak (1967) (introductory) or Royden (1968) (intermediate). Ross (2014) and Ross (1996)
provide excellent introductions to probability theory which do not rely on measure theory. The
reader who wishes to study measure theory on the context of probability theory can consult Ash
and Dolacutuseans-Dade (2000), Billingsley (1995), Durrett (2010), Feller (1968) and Feller (1971).
An interesting approach to probability theory can be found in Whittle (2000).

14 CHAPTER 1. INTRODUCTION

Of textbooks familiar to this author, James et al. (2013) is perhaps closest in scope to these
notes, and can be used in tandem. As it happens, James et al. (2013) serves as a more accessible
version of Friedman et al. (2001). Both volumes can be highly recommended to the data analyist.

If there is one more text which a data analyst should own, it is Venables and Ripley (2013).
The title of this book is “Modern applied statistics with S-PLUS”. It must be pointed out that
S-PLUS is nothing more than the proprietary predecessor of R, so that the two statistical computing
environments are interchangeable, for our purposes. It is a more advanced survey of statistical
computing in R or (S-PLUS, if available) than the present lecture notes, but necessarily briefer in
explanations, so some experience in R computing is highly recommended to make the most of this
book. A considerable amount of supplementary material can be found at www.stats.ox.ac.uk/

pub/MASS4/

We may also recommend Hastie (2017) as a text which concentrates on statistical modeling in
R at a level closer to the design of software.

It is, of course, difficult to do justice to the literature on R computing. Springer Publishers has
an extensive series of monographs on statistical computing in R, under the name “Use R!” www.

springer.com/series/6991. Topics in this impressively extensive series include market analysis,
psychometrics, numerical ecology or network models. They tend to be quite focused, and of course
concentrate on the application of methodology in the R environment.

We finally note that machine learning algorithms are commonly used in computational biol-
ogy, and many good overviews in this context have been published. Hahne et al. (2010) is just
one, published in the Spring “Use R!” series. It gives excellent tutorials in advanced statisti-
cal methods, and is imbedded throughout by quite extensive R code, which can be downloaded
from a dedicated website, and which would likely be quite useful for the practicing data ana-
lysts. Much of the science will be somewhat out of date by now, but this does not affect the
volume’s utility to the analyst. See https://master.bioconductor.org/help/publications/

books/bioconductor-case-studies/.
It is difficult to single out a subset of these texts. However, a good reference library for the

data scientist (which is important to have) might include Devore (2011) for introductory statistics;
Neter et al. (1996) for regression models and ANOVA; Ross (2014) for probability theory; and
James et al. (2013), Venables and Ripley (2013) for intermediate statistical methodology in R. For
more advanced statistical theory, Casella and Berger (2002) or possibly Hogg et al. (2018) could be
recommended. For readers intending to study statistical theory at a graduate level the Feller and
Lehmann volumes are especially recommended. Note that it need not be crucial to have the latest
edition of a textbook intended for a reference library.

1.2. A REFERENCE LIBRARY OF STATISTICAL METHODOLOGY 15

Table 1: Organization of demonstration software files by topic.

ANOVA ANOVA.R

Linear Regression REGRESSION-A.R
REGRESSION-B.R
REGRESSION-C.R
REGRESSION-D.R

Bayesian Inference BAYESIAN-INFERENCE.R

Survival Analysis SURVIVAL.R

Simulation Methods SIMULATIONS.R
SIMULATED-ANNEALING.R

Computational Bayesian Methods COMPUTATIONAL-BAYESIAN.R

Machine Learning Foundations CROSS-VALIDATION.R

Classification, Logistic Regression CLASSIFICATION-A.R
CLASSIFICATION-B.R

Unsupervised Learning UNSUPERVISED-LEARNING.R

Model Selection MODEL-SELECTION-AIC.R
MODEL-SELECTION-LASSO.R

Nonlinear Models NONLINEAR-MODELS-POLYNOMIAL.R
NONLINEAR-MODELS-SPLINES.R

Bayesian Networks BAYESIAN-NETWORKS.R

Parallel Computing in R PARALLEL-COMPUTING.R

Part I

Statistical Methodology

16

Chapter 2

ANOVA

A good starting point to understanding the ANOVA model is to reconsider the standard two sample
t-test. To briefly review, we are given two independent iid samples X1, . . . , Xn1 and Y1, . . . , Yn2

from normal distributions N(µ1, σ
2) and N(µ2, σ

2), respectively. Note that sample sizes n1, n2 need
not be equal, nor do we expect µ1 = µ2. On the other hand, we assume that both distributions
have common variance σ2 (other procedures are available when this cannot be assumed). Then
consider the following hypotheses:

Ho : µ1 = µ2

Ha : µi 6= µj .

As is well known, the two-sampled t-test may be used to resolve these hypotheses. We let X̄, Ȳ
be the respective sample means, and let S2

X , S2
Y be the respective sample variances. Since the two

population variances are equal, it makes sense to combine the two sample variances into a single
pooled estimate, in particular:

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

We then use the t-statistic:

T =
X̄ − Ȳ

Sp

√
1
n1

+ 1
n2

, (2.1)

which has a t-distribution with n1 +n2− 2 degrees of freedom under the null hypothesis Ho, which
can be used to develop a precise rejection region:

Reject Ho at level α if, |T | > tα/2,

for an appropriate critical value tα/2.

Testing for inequality among more than two means

What if we wish to compare more than two means? We sometimes have situations in which we
have k random samples from k ≥ 2 distinct populations with population means µ1, . . . , µk. Interest

17

18 CHAPTER 2. ANOVA

is then in testing the hypothesis

Ho : µ1 = µ2 = . . . = µk

Ha : µi 6= µj for some i,j. (2.2)

In other words, are there some differences between the means (Ha) or are they all the same (Ho).
The standard statistical procedure for this is the ANOVA method. This covers a wide variety of
models, and we discuss only the simplest here (see Section 2.10 for more on this). However, it is
also useful to recognize the basic ANOVA model as a generalization of the pooled two-sample t-test
for the purpose of comparing k ≥ 2 samples.

2.1 Methodology

The most frequently used method for testing the hypotheses on Equation (2.2) is referred to as
analysis of variance, or ANOVA. The data then has the following structure:

Pop’n Sample Sample Sum of
Pop’n Mean Size Sample Mean Squares

1 µ1 n1 y11, y12, . . . , y1n1 ȳ1
∑n1

i=1(y1i − ȳ1)2

2 µ2 n2 y21, y22, . . . , y2n2 ȳ2
∑n2

i=1(y2i − ȳ2)2

...
...

...
...

...
...

k µk nk yk1, yk2, . . . , yknk ȳk
∑nk

i=1(yki − ȳk)2

The groups may be referred to as treatments. Sometimes it is convenient to refer to a treatment
as a factor or factor variable. The observations yij are then responses, and µi is a mean response.
Here, we only have one factor, so the procedure is referred to as one-way ANOVA. If the sample
sizes ni are equal, we refer to this as a balanced design.

We also have the total mean

ȳ =
sum of all observations

n1 + n2 + . . .+ nk

=
n1ȳ1 + n2ȳ2 + . . .+ nkȳk

n1 + n2 + . . .+ nk
.

In order to develop a test statistic for the hypothesis, we define the treatment sum of squares

SST =
k∑
i=1

ni(ȳi − ȳ)2

and the error sum of squares

SSE =
k∑
i=1

ni∑
j=1

(yij − ȳi)2.

2.1. METHODOLOGY 19

It can be shown that if we define the total sum of squares to be

SSTO =
k∑
i=1

ni∑
j=1

(yij − ȳ)2,

then

SSTO = SST + SSE.

The test statistic we use is then

Fobs =
SST/(k − 1)

SSE/(n− k)
(2.3)

where

n = n1 + n2 + . . .+ nk.

Given the form of SST we can see that if there are large differences among the sample means, Fobs
will tend to be larger. To reject the null hypothesis we use the observed significance level defined
by

αobs = P (Fk−1,n−k > Fobs)

where Fν1,ν2 is a random variable with an F distribution with ν1 numerator degrees of freedom and
ν2 denominator degrees of freedom. Most statistical software packages will calculate this significance
level.

Example 2.1. It is left as an exercise for the reader to show that for k = 2, the statistic T 2,
where T is used for a two-sampled pooled t-test (Equation (2.1)), is equivalent to Fobs as defined
in Equation (2.3). Therefore, the two-sampled pooled t-test is simply a special case of the ANOVA
model.

Example 2.2. This example is due to Johnson and Bhattacharya (Statistics: Principles and
Methods, Wiley, 3rd edition).

In an effort to improve the quality of recording tapes, the effects of four kinds of coatings A, B,
C and D on reproduction quality are assessed by applying each to a separate sample of tape and
measuring the resulting distortion. The results are given in the following table.

Coating Sample Sample Mean Sum of Squares

A 10, 15, 8, 12, 15 ȳ1 = 12
∑5

i=1(y1i − ȳ1)2 = 38

B 14, 18, 21, 15 ȳ2 = 17
∑4

i=1(y2i − ȳ2)2 = 30

C 17, 16, 14, 15, 17, 15, 18 ȳ3 = 16
∑7

i=1(y3i − ȳ3)2 = 12

D 12, 15, 17, 15, 16, 15 ȳ4 = 15
∑6

i=1(y4i − ȳ4)2 = 14

20 CHAPTER 2. ANOVA

We therefore have

k = 4

n = n1 + n2 + n3 + n4

= 5 + 4 + 7 + 6

= 22

ŷ =
n1ȳ1 + n2ȳ2 + n2ȳ2 + n4ȳ4

n1 + n2 + . . .+ nk

=
5× 12 + 4× 17 + 7× 16 + 6× 15

22
= 15.

The sums of squares are given by

SSE =
5∑
i=1

(y1i − ȳ1)2 +
4∑
i=1

(y2i − ȳ2)2 +
7∑
i=1

(y3i − ȳ3)2 +
6∑
i=1

(y4i − ȳ4)2

= 38 + 30 + 12 + 14

= 94

and

SST = n1(ȳ1 − ȳ)2 + n2(ȳ2 − ȳ)2 + n3(ȳ3 − ȳ)2 + n4(ȳ4 − ȳ)2

= 5(−3)2 + 4(2)2 + 7(1)2 + 6(0)2

= 68

giving test statistic

Fobs =
SST/(k − 1)

SSE/(n− k)

=
68/3

94/18

= 4.34

The observed significance level can be calculated using the appropriate table or with a computer
program, and can be found to be

αobs = .018

meaning that there is evidence that the four means are not identical.

2.2 ANOVA Table

For our purposes, the ANOV A model serves two purposes. First, it is an important statistical pro-
cedure. But it also provides a canonical description of the essential structure of much of statistical
inference. In particular, this is the decomposition of the total variation of a set of observations
into that explainable by a model, and that which cannot be predicted (at least not with the data

2.2. ANOVA TABLE 21

currently available). This idea is summarized in the ANOVA table. It is important to note that,
apart from its application to the one-way ANOV A model, this type of table is commonly used to
summarize the decomposition of variation for a wide variety of models, which will be seen later in
these notes. For the current application the table takes the following form:

Source SS df MS

Between Treatment SST k − 1 MST = SST
k−1 F = MST

MSE

(or Treatment)

Within Treatment SSE n− k MSE = SSE
n−k

(or Error)
Total SSTO n− 1

Where

k Number of groups
ni Sample size of group i
n Total sample size n1 + . . .+ nk
ȳi Sample mean of group i

ȳ Total sample mean n1ȳ1+...+nkȳk
n1+...+nk

SSE Error sum of squares
∑k

i=1(nk − 1)s2
k

or Within Treatment SS

SST Treatment sum of Squares
∑k

i=1 nk(ȳk − ȳ)2

or Between Treatment SS
SSTO Total sum of squares SST + SSE

MSE Mean error sum of squares SSE
n−k

or Mean within Treatment SS

MST Mean treatment sum of squares SST
k−1

or Mean between Treatment SS

F F-ratio MST
MSE

Example 2.3. To construct and ANOVA table for the tape coating problem of Example 2.2 we
need the following:

n = 22

k = 4

SSE = 94

MSE = 94/(n− k)

= 5.22

SST = 68

MST = 68/(k − 1)

= 22.67

F = 4.34

22 CHAPTER 2. ANOVA

The ANOVA table is then

Source SS df MS

Between Treatment 68 3 22.67 4.34
Within Treatment 94 18 5.22
Total 162 21

Recall that is it assumed that each sample comes from a population with possibly differing
means, but with one common variance σ2. It can be shown that MSE is an estimator of σ2. In
fact, if there are k = 2 groups then the MSE is identical to the pooled sample variance S2

p and
plays the same role when k > 2.

2.3 Bonferroni Correction for Multiple Comparisons

We often encounter a situation in which we wish to report several confidence intervals or hypothesis
tests. If we use a confidence level (1 − α) for each confidence interval, or a significance level of α
for each hypothesis test, we must consider the fact that the probability of at least one error among
all inference statements will be greater than α.

A number of procedures exist with which to control familywise error rate (FWE), that is, the
probability that among a set of m inference statements there is at least one error (the term group
is sometimes used in place of ‘familywise’). The commonly used convention is that an error rate
suitable for a single inference procedure should also be applied to multiple inferences, so that the
FWE is commonly set to αFWE = 0.05. We can also refer to familywise (or group) confidence level
1− αFWE .

A large number of multiple comparison procedures exist, some specialized and others general.
Probably the most commonly encountered method is known as the Bonferroni correction proce-
dure (BCP), which is applicable, in principle, to any multiple comparison model. Recall Booles’s
inequality:

P (∪mi=1Ei) ≤
m∑
i=1

P (Ei) .

Suppose we are given m level (1− α) confidence intervals

Ei = { the ith CI is incorrect }.

Then P (Ei) = α and

P (∪mi=1Ei) ≤ mα. (2.4)

This means that all m confidence intervals are correct with a probability of at least 1 − mα.
Therefore, in order to achieve a FWE of αFWE , we would need to use a confidence level of (1 −
αFWE/m).

2.4. POST HOC ANALYSIS IN ANOVA 23

Example 2.4. Normally, to achieve a confidence level of 95% for a confidence interval

X̄ ± zα/2 σ/
√
n (2.5)

we would set α = 0.05 and therefore use critical value z0.025 ≈ 1.96. If we wanted to simultaneously
report m = 4 confidence intervals with FWE αFWE = 0.05, we would build separate level (1−α/m)
confidence intervals. From (2.4), this would give

αFWE ≤ mα/m = α,

so that it would be appropriate to set α = αFWE . Therefore, in (2.5) we would use the critical
value

zαFWE/(2m) = z.05/8 = z.00625 ≈ 2.5

for αFWE = 0.05. However, construction of the confidence intervals uses the same methodology
once the Bonferroni correction has been applied.

The sample principle applies to hypothesis tests. If we want to report m hypothesis tests with
a familywise Type I error of αFWE (that is, at least one Type I error among the m tests), then
each test must be carried out with a significance level of αFWE/m.

2.4 Post hoc Analysis in ANOVA

If we conclude that there is some difference between means using the F -test, then we may wish to
further explore how the means differ. A common way to achieve this is through the use of pairwise
multiple comparisons.

Using the BCP we have

ȳi − ȳj ± tα/(m2),n−k

√
MSE

(
1

ni
+

1

nj

)
where m is the number of comparisons we wish to make (we need not be interested in all available
comparisons).

If µi and µj are two group means, then a confidence interval for µi − µj is given by

ȳi − ȳj ± qα

√
MSE

2

(
1

ni
+

1

nj

)
where qα is the critical value from the studentized range distribution with k − 1 treatment degrees
of freedom and n−k error degrees of freedom (these have the same interpretation as the numerator
and denominator degrees of freedom for the F -distribution). Tables for these critical values are
available in most textbooks. This is known as Tukey’s pairwise procedure or sometimes the Tukey-
Kramer pairwise procedure. It should be noted that the procedure is approximate, unless the design
is balanced.

Note that there will be k(k−1)/2 comparisons. It needs to be stressed that the confidence level
1 − α represents the probability that all k(k − 1)/2 confidence intervals are correct, and not just
each one taken individually.

24 CHAPTER 2. ANOVA

To continue with the tape coating problem, we have 18 error degrees of freedom and 3 treatment
degrees of freedom so if we want a 95% confidence interval for all pairwise comparisons simultane-
ously we set

q0.05 = 4.00

and we also have
MSE = 5.22

with

Coating ni Sample mean

A n1 = 5 ȳ1 = 12
B n2 = 4 ȳ2 = 17
C n3 = 7 ȳ3 = 16
D n4 = 6 ȳ4 = 15

giving pairwise confidence intervals

Pair Confidence Interval

µ1 − µ2: −5± 4.33
µ1 − µ3: −4± 3.78
µ1 − µ4: −3± 3.91
µ2 − µ3: 1± 4.06
µ2 − µ4: 2± 4.17
µ3 − µ4: 1± 3.59

We may conclude that µ1 is significantly different from µ2 and µ3 but can make no other conclusions
based on this procedure.

Note that there are many pairwise procedures, most notably the Scheffe test which is very
conservative. This provides a FWE of αFWE of confidence intervals for all contrasts

C =
k∑
i=1

ciµi, where
k∑
i=1

ci = 0.

A pairwise comparison of the form µi − µj is a contrast of the form ci = 1, cj = −1, ci′ = 0 for
i′ 6= i, j.

2.5 Nonparametric ANOVA

Recall that ANOVA may be thought of as an extension of the two-sample t-test for differences in
mean to a K-sample test for differences in means, under the assumptions that variances are equal.
Similarly, the Kruskal-Wallis test is an extension of the Wilcoxon rank sum test to K samples, and
may be considered a nonparametric alternative to ANOVA. Under the null hypothesis, K samples
are taken from K identical distributions (not necessarily normally distributed). We won’t discuss
the details of this test, but will note that the Kruskal-Wallis test is implemented in most statistical
software packages. It would be appropriate to use whenever ANOVA might be used, but does not
assume that the data is normally distributed.

2.6. ASSUMPTIONS 25

2.6 Assumptions

The essential assumptions made for ANOVA are that population i has a N(µi, σ
2) distribution.

The means may differ between populations but variances do not. In addition, each sample is a true
random sample, and the samples are independent of each other.

Of course, ANOVA is a technique which has received a great deal of attention by statistical prac-
titioners, so that there are a wide variety of techniques which may be used when these assumptions
do not hold.

2.7 ANOVA in R

To fit an ANOVA model in R , we express the data as such a model. The variable Y is a single
vector which contains all the variable. X is a single vector of factors which define the treatments.
For example, to set up an ANOVA model in R , we can use the commands:

> y1 = rnorm(5,mean=10,sd=2.4)

> y2 = rnorm(6,mean=20,sd=2.4)

> y3 = rnorm(4,mean=20,sd=2.4)

>

> y = c(y1, y2, y3)

> x = c(rep(1,5), rep(2,6), rep(3, 4))

> x = as.factor(x)

> cbind(x,y)

x y

[1,] 1 6.526123

[2,] 1 10.639951

[3,] 1 8.128591

[4,] 1 10.922928

[5,] 1 13.934701

[6,] 2 20.502000

[7,] 2 22.109955

[8,] 2 22.575551

[9,] 2 23.177065

[10,] 2 19.509436

[11,] 2 19.890914

[12,] 3 15.414790

[13,] 3 18.572681

[14,] 3 20.668094

[15,] 3 15.777068

>

This simulates an ANOVA model with k = 3 treatments, identified in the factor variable x. The
sample sizes are n1 = 5, n2 = 6, n3 = 4, with means µ1 = 10, µ2 = µ3 = 20. The common variance
is σ2 = 2.42.

It is usually a good idea to plot the data, and this can be done using boxplots. The Rmodel
notation can be used to separate the groups:

26 CHAPTER 2. ANOVA

> boxplot(y ~ x)

The plot is shown in Figure 2.1.

1 2 3

10
15

20

Figure 2.1: Multiple boxplots for ANOVA example

There are several ways to fit an ANOVA model in R . One dedicated function is aov() used as
follows:

> fit = aov(y ~ x)

> summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)

x 2 352.0 176.0 33.85 1.17e-05 ***

Residuals 12 62.4 5.2

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that the fit itself can be stored as an object, which is generally good practice. Fit objects can
then be used as input for generic functions, which provide summaries for the appropriate type of
object. For example summary() gives for an aov() object the standard ANOVA table.

Tukey’s pairwise procedure is also available for an ANOVA fit using the TukeyHSD() function
(HSD refers to ‘Honest Significant Difference’):

> fit.Tukey = TukeyHSD(fit)

> fit.Tukey

2.7. ANOVA IN R 27

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = y ~ x)

$x

diff lwr upr p adj

2-1 11.263695 7.579838 14.9475516 0.0000085

3-1 7.577699 3.496636 11.6587623 0.0009009

3-2 -3.685995 -7.613000 0.2410094 0.0665423

>

Notice that a new R object was produced by the TukeyHSD() function. If we use the generic plot()

function we get the following plot (Figure 2.2):

> plot(fit.Tukey)

-5 0 5 10 15

3-
2

3-
1

2-
1

95% family-wise confidence level

Differences in mean levels of x

Figure 2.2: Graphical representation of Tukey’s pairwise procedure.

28 CHAPTER 2. ANOVA

2.8 Equality of Variances

We have seen how to test for the equality of two variances. Bartlett’s Test is a generalization to k
variances suitable for ANOVA. This is available using the bartlett.test(), using the same model
notation. This may use the same model notation:

> bartlett.test(y ~ x)

Bartlett test of homogeneity of variances

data: y by x

Bartlett’s K-squared = 1.5712, df = 2, p-value = 0.4558

The large p-value means that the hypothesis of equality or variances (also known as homoscedas-
ticity, as opposed to heteroscedasticity) was not rejected.

It is also possible to use bartlett.test() by input a list of samples:

> y.list = list(y1, y2, y3)

> y.list

[[1]]

[1] 6.526123 10.639951 8.128591 10.922928 13.934701

[[2]]

[1] 20.50200 22.10996 22.57555 23.17706 19.50944 19.89091

[[3]]

[1] 15.41479 18.57268 20.66809 15.77707

> bartlett.test(y.list)

Bartlett test of homogeneity of variances

data: y.list

Bartlett’s K-squared = 1.5712, df = 2, p-value = 0.4558

>

However, aov() cannot be used this way.

We finally note that a model can be converted to a list using the split() function:

> split(y,x)

$‘1‘

[1] 6.526123 10.639951 8.128591 10.922928 13.934701

$‘2‘

[1] 20.50200 22.10996 22.57555 23.17706 19.50944 19.89091

2.9. THE KRUSKAL-WALLIS TEST FOR NONPARAMETRIC ANOVA 29

$‘3‘

[1] 15.41479 18.57268 20.66809 15.77707

>

2.9 The Kruskal-Wallis Test for Nonparametric ANOVA

We have briefly introduced the Kruskal-Wallis test as an extention of the rank sum procedure to
more than 2 samples. This is implemented in R using the kruskal.test() function, which is similar
to aov(). For example, consider the simulated data:

> y1 = rnorm(5,mean=10,sd=2.4)

> y2 = rnorm(6,mean=20,sd=2.4)

> y3 = rnorm(4,mean=20,sd=2.4)

>

> y = c(y1, y2, y3)

> x = c(rep(1,5), rep(2,6), rep(3, 4))

> x = as.factor(x)

> cbind(x,y)

x y

[1,] 1 11.695035

[2,] 1 7.967687

[3,] 1 8.891760

[4,] 1 12.476237

[5,] 1 10.996793

[6,] 2 21.324256

[7,] 2 19.594350

[8,] 2 15.141688

[9,] 2 21.956811

[10,] 2 19.251928

[11,] 2 16.064112

[12,] 3 21.472492

[13,] 3 20.310484

[14,] 3 26.817237

[15,] 3 20.906802

>

> boxplot(y ~ x)

>

The boxplot is shown in Figure 2.3. The data may be input into the kruskal.test() function as
a model:

> fit = kruskal.test(y ~ x)

> summary(fit)

Length Class Mode

statistic 1 -none- numeric

30 CHAPTER 2. ANOVA

1 2 3

10
15

20
25

Figure 2.3: Multiple boxplots for Kruskal-Wallis test.

parameter 1 -none- numeric

p.value 1 -none- numeric

method 1 -none- character

data.name 1 -none- character

> fit

Kruskal-Wallis rank sum test

data: y by x

Kruskal-Wallis chi-squared = 10.3958, df = 2, p-value = 0.005528

> stat = fit$statistic

> df = fit$parameter

> 1-pchisq(stat,df)

Kruskal-Wallis chi-squared

0.005528069

>

However, in this case the summary() function only lists the labels which define the list elements of
the fit object. These labels provide access to the output quantities. For example, the significance
level is calculated from a χ2 statistic with 2 degrees of freedom. We can access the statistic and the

2.10. POSTSCRIPT 31

degrees of freedom by references to fit$statistic and fit$parameter. We have justy illustrated
this by recalculating the p-value from the output.

The function kruskal.test() also accepts multiple samples in list form. In addition, it has a
g option which defines groups, permitting the data to be entered as a single array”

> y.list = list(y1, y2, y3)

> y.list

[[1]]

[1] 11.695035 7.967687 8.891760 12.476237 10.996793

[[2]]

[1] 21.32426 19.59435 15.14169 21.95681 19.25193 16.06411

[[3]]

[1] 21.47249 20.31048 26.81724 20.90680

> kruskal.test(y.list)

Kruskal-Wallis rank sum test

data: y.list

Kruskal-Wallis chi-squared = 10.3958, df = 2, p-value = 0.005528

> kruskal.test(y, g = x)

Kruskal-Wallis rank sum test

data: y and x

Kruskal-Wallis chi-squared = 10.3958, df = 2, p-value = 0.005528

>

2.10 Postscript

ANOVA is an acronym for “(An)alysis (o)f (Va)riance”, which is the principle that the variation
of a response can be decomposed quantitatively into two sources. The conventional terms used for
these sources varies. If this author had to invent new names at a moments notice, they might be
“seen” and “unseen”. The source of “seen” variation would be any observed predictor variable,
or variables, capable of explaining a significant amount of the response variation. The “unseen”
variation is the portion of response variation which cannot be explained by any predictor. If
we define variation quantitatively by one possible method of evaluation, namely, sum of squares
(Section 2.1), we have the remarkable identity

SStotal = SSseen + SSunseen.

An important part of the transition from introductory to intermediate statistics is an understanding
of this identity, and the idea that variation is quantifiable and decomposable.

32 CHAPTER 2. ANOVA

Of course, SSseen is usually referred to as treatment sum of squares in ANOVA, or model sum
of squares in linear regression analysis (Section 3.2). Furthermore, this source of variation can
be further decomposed into sources attributable to multiple predictors when appropriate. Then
SSunseen is usually referred to as error sum of squares or residual sum of squares. The latter is
more often associated with regression analysis, although, as we point out below, both are formally
correct in either ANOVA or regression analysis. Like SSseen, SSunseen can sometimes be further
decomposed, in a manner which can be measured. For example, the term repeated measures refers to
multiple measurements observed from some set of subjects. In this case, SSunseen can, in principle,
be decomposed into within subject and between subject variation, the former attributable to innate
differences between subjects, the latter attributable to “whatever variation remains” (as suggested
by the term “residual”).

We must also note that the ANOVA model presented in this chapter is really one-way ANOVA,
which is essentially an extension of the two-sample t-test with pooled variance to two or more
samples (alternatively, the two-sample t-test is a special case of the one-way ANOVA model). The
question is simply whether or not there is a difference in means among two or more samples (or
treatments). It is possible to introduce multiple factors (m-way ANOVA) or blocking , resulting in
further decomposition of SSseen. For a good reference see Neter et al. (1996) or Box et al. (2018).

Apart from being a methodology of importance for its own sake, the idea of ANOVA is appli-
cable, and quite important, to most models we consider. It therefore appears repeatedly in these
notes (Sections 3.2, 9.3, 10.2, 17.2).

It should also be noted that the problem of multiple comparisons (Section 2.3) is an important
one in its own right, and has assumed more prominence with the onset of high-throughput, or “big
data”. The underlying theory is quite detailed, and a comprehensive treatment on the subject
can be found in Dudoit and van der Laan (2008). This author has contributed a somewhat more
compact overview of the subject (Almudevar, 2013).

Chapter 3

Linear Regression - Introduction

In statistical inference, the term model usually refers to an attempt to use any number of indepen-
dent variables X1, . . . , Xm to predict a response Y . By “predict”, we mean deduce a form of the
distribution of Y that is allowed to depend on X1, . . . , Xm. The roles played by the variables are
not symmetric. In most cases, the independent variables are not considered random, and do not
possess a distribution. If they do, a distinct class of statistical models is available, for example,
Deming regression (Deming, 1943).

The ANOVA model of Chapter 2 is the simplest type of model. The predictor variable was not
explicitly introduced, but can be taken to be the categorical variable which identifies the treatment
label of each observation. We next introduce, by example, a model in which the predictor variable
is quantitative.

Consider the scatter plot in Figure 3.1 representing 392 automobiles. The horizontal axis gives
the engine displacement in cubic inches and the vertical axis gives horsepower.

There seems to be a definite increasing trend in horsepower as engine displacement increases.
If we set

X = Engine Displacement

Y = Horsepower

then we should have approximately a linear relationship

Y = β0 + β1X

where β0 and β1 are coefficients to be determined from the data. Looking at the scatter plot we
see that the relationship will not be exact, so we introduce a random term ε (epsilon) into the
equation.

Y = β0 + β1X + ε.

The usual terminology is to refer to Y as the dependent variable and to X as the independent
variable or predictor . Here, there is only one predictor X, so the model is termed simple linear
regression. When more predictors are used, for example Y = β0 + β1X1 + β2X2 + ε, the model is
termed multiple linear regression.

If we have n pairs of dependent and independent observations

(X1, Y1), . . . , (Xn, Yn)

33

34 CHAPTER 3. LINEAR REGRESSION - INTRODUCTION

o

o

oo

o

o

o
o

o

o

o

o

o

o

o oo

o
o

o

o
o
o

o

o

o

o

o

o
o o

o
o

o
o

o

o

o

o

o
o

o

o
o

o

o

o

oo
o

o

o

o
o

o

o

o

o

o

o
o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo o

o
o

o

o

o

oo

o

o
o o

o
o
o

o

o o

o

o

o

o

o

o

o

o o

o

o
o

o

o

o

o

o
o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o

o

o

o o

o

oo

o

o

o

o

o

o

o

o

o

o
o

o

o
o o

o

oo

o
o

o

o

o

o

o

o

o o
o

o

o

o

oo
o
o

o

oo

o

o

o

o
o

oo o o

o

o

o

o

o

o

o

o

oo

o ooo
o

o

o

o

o

o o

o

o

o

o

o
o

oo
o

o
ooo

ooo

o

o

o
o

o
o

o
o

o
o

ooo
o o

oo

o

oo
o

o

o

o
o

ooo

o

o

o

o

o

o

o
o

o

o
o
o

Engine Displacement

H
P

0 100 200 300 400

50
10

0
15

0
20

0

Figure 3.1: Scatter plot of automobile data

then the regression equation can be written in terms of the sample

Yi = β0 + β1Xi + εi, i = 1, . . . , n. (3.1)

Here, we assume that the error terms ε1, . . . , εn form a random sample from N(0, σ2). We do not
observe the error terms (unlike Xi and Yi), but we can estimate σ2.

The linear least squares coefficients are given by

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2

β̂0 = Ȳ − β̂1X̄. (3.2)

The derivation of these coefficients will be discussed in Section 3.4, but we will simply note for now
that they seem to achieve the purpose at hand. In particular, with a large enough sample size we
have estimates

β̂0 ≈ β0 and β̂1 ≈ β1,

giving the estimated relationship between X and Y

Y = β̂0 + β̂1X.

We also have the predicted responses
Ŷi = β̂0 + β̂1Xi.

35

for each sample pair i = 1, . . . , n. Of course, we may construct a predicted response for a predictor
value not represented in the sample, that is,

Ŷx = β̂0 + β̂1x

is the predicted response for a predictor value X = x.

Example 3.1. For the data shown in Figure 3.1 we have least squares coefficients

β̂1 = 0.327

β̂0 = 41.002,

and this line is drawn in that plot.

A brief introduction to inference for least squares coefficients

Most statistical software implements linear regression, giving output in the following format (using
the data of Figure 3.1):

Unstandardized
Coefficients

Model B Std. Error t Sig.

1 (Constant) 41.002 1.792 22.884 .000
Engine
Displacement
(cu. inches) .327 .008 40.500 .000

Least squares coefficients can be taken directly from this table. If we wish to construct a level
(1− α)100% confidence interval for β0 and β1 we may use

β̂0 ± tn−2,α/2 × Std. Error for β̂0

β̂1 ± tn−2,α/2 × Std. Error for β̂1

where the standard error may be taken from the table. Note that the appropriate degrees of freedom
for the t-distribution critical values are n− 2. If n is very large, we may use the standard normal
critical value zα/2 instead. For the above example we have 95% confidence intervals

CI.95 = 41.002± 1.96× 1.792

= 41.002± 3.5

for β0 and

CI.95 = 0.327± 1.96× 0.008

= 0.327± 0.0157

for β1.

36 CHAPTER 3. LINEAR REGRESSION - INTRODUCTION

An important hypothesis test is

Ho : β1 = 0

Ha : β1 6= 0.

This tells us whether or not there is any relationship between the dependent and independent
variable. The observed significance level can be read directly from the table in the last column.
Here, the P -value is given as 0, which we should report as a P < 0.001, meaning that there is
strong evidence of a linear relationship between engine displacement and horsepower.

3.1 Residuals

An important assumption of the linear regression model is that the error terms ε1, ε2, . . . , εn defined
by

Yi = β0 + β1Xi + εi

are equivalent to a random sample from a normal distribution with mean 0 and variance σ2. Implicit
in this formulation is the assumption that there is a linear relationship between X and Y .

Of course, the εi’s cannot be directly observed, but they can be estimated by the residuals,
given by

ei = Yi − β̂0 − β̂1Xi = Yi − Ŷi

once the regression has been calculated. There are several ways to use the residuals to check the
assumptions.

(1) Draw a scatter plot of the points (ei, Ŷi) where Ŷi is the predicted value

Ŷi = β̂0 + β̂1Xi.

If the assumptions are satisfied there should be no pattern.

(a) Check to see if the variation of the residuals appears to increase or decrease systemati-
cally. If so, this means that the variance of the error terms is not constant.

(b) If large groups of residuals located next to each other appear to be all above or all below
zero, then the assumption that the error terms are independent of each other may be
incorrect. This is a frequent occurrence when the Xi’s represent sequential points in
time.

(c) If the residuals appear to suggest some functional form, then the assumption of a linear
relationship between X and Y may be incorrect.

(2) To check for the assumption of normality of the error terms, construct a normal probability
plot of the residuals. Departures from linearity indicate departures from normality of the
error terms.

As a final remark linear regression, like ANOVA, is a widely used tool, and many techniques
exist which may used when some of these assumptions are not valid.

3.1. RESIDUALS 37

Example 3.2. To continue with the automobile section we present a residual plot and a normal
probability plot (Figure 3.2).

The residual plot shows a somewhat different behavior below and above 100 horsepower, which
might be investigated. Other than that, no systematic departure from the assumption of no pattern
is indicated.

The normal probability plot is approximately linear, except for the two extreme regions. This
indicates that the normal distribution might not be accurate for very small tail probabilities, but
otherwise should suffice as an approximation.

o

o
o

o

o

o

oo
o

o

o
o

o

o

o

oo

o

o

o

o
o
o

o

o

oo
o

o

o

o

o

o
o

o

o

o

o
o

o
o

o

o
o

oo
o

o

o
o

oo
o
o

o

o

o

o

o

oo
o

oo
o

o

o

o
o

o

o

o

o

o
o

o

o

o

o
o

o o

o
o

o

o

o
o

o

o

o

oo

o
o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o o
o

o
o

o

o oo

o

o
o

o

o
o

o
o

oo

o
o

o
o

oo
o

oo

o

o o

oo

o
o

o

oo

oo
o

o

o
o

o
o

o
o

o

o

o

oo

o

o
o

o

o

o

o
o ooo

o
o

o

o

o o
o o

o
o

o

o o

o

o

o

oo o

o

o

oo
o

o o

oo

o

o
o

o

o

o o

o

o

oooo

o

o
o

o

o

o
o

o o

o

o

o

o o

o

o

o

o
o

o

o
o

o
o

oo

o

o

o

o

o

o

o o

o

o

o
oo

o
o

o

o o

o

o o

o
o

o

o
o o

o

o

o

o
oo

o
o

o

o

o
o

o
o

o
o

o
o

o

o

oooo o

oo

oo

o
oo

oo o

o

o o

o

o

oo

o

o

oo
o

o

ooo

oo

o

o o
o
o

o

o
o
oo oo
o
o

o
oo
ooo

o

o o
o

o

o

o

o

o

o

oooo
o o
o

ooo

o

o

o
o
oooo

o

o

o
o

o
o oo

o

ooo

Fitted values

R
e

si
d

u
a

ls

50 100 150

-4
0

-2
0

0
2

0
4

0
6

0

Residual Plot

o

o
o

o

o

o

oo
o

o

o
o

o

o

o

oo

o

o

o

o o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

oo

o

o

o

o

o
o

o
o

o

o

o

o

o

oo
o

oo

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

ooo

o
o

o

oo
o

o

o

o
o

o

o

o
o

oo

o
o

o
o

oo

o

oo

o

oo

oo

o

o

o

oo

o
o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o
o

o

o

o

o

o
oo o

o

o

o

o

o
o

oo

o
o

o

o
o

o

o

o

o
oo

o

o

o o
o

oo

oo

o

o

o

o

o

o o

o

o

o
ooo

o

o
o

o

o

o

o
oo

o

o

o

o o

o

o

o

o

o

o

o
o

o
o

oo

o

o

o

o

o

o

oo

o

o

o
oo

o
o

o

o o

o

oo
o

o
o

o

o
o

o

o

o

o
oo

o

o

o

o

o
o

o

o

o

o

o
o

o

o

oooo
o

oo

o
o

o

oo
o
o

o

o

oo

o

o

o
o

o

o

oo

o

o

o
oo

oo

o

o
o

o

o

o

o

o
ooo
o

o
o

o
oo

ooo

o

oo
o

o
o

o

o

o

o

ooo
o

oo

o

ooo

o

o

o

o
o

ooo

o

o

o

o

o

ooo

o

oo
o

Residuals

N
o

rm
a

l p
e

rc
e

n
til

e
s

-40 -20 0 20 40 60

-2
-1

0
1

2
3

Normal Probability Plot

Figure 3.2: Residual plot and normal probability plot of residuals for Example 3.2

Example 3.3. As a second example, a scatter plot is presented with a linear regression fit in Figure
3.3. From the scatter plot, we can see that although there is a strong relationship between miles
per gallon and horsepower, it is not a strictly linear one. Accordingly, the residual plot indicates a
systematic functional form, suggesting that a linear fit is not the appropriate one.

38 CHAPTER 3. LINEAR REGRESSION - INTRODUCTION

o

o

o
oo

o oo ooooo o

o
o

o

o

oo oo o o

o

oo o
o

oo

o

o

oo
o o

o ooo
oo o

o

o

oo

o

o
o oo

o

o o
oo

o

oo

o ooo

o

o
o o o

o

o
o o o

o

o o

o

o

o

o

o o

oooo o

oo oo o oo

o
o
oo

o

o

o oo o

o
oo o

oo
o

o

o o

o

o

o o

o

o

o

o

o o

o

o

o

o

o

o o
o

o

ooo o

o

o o

o o

o

o
o

o
o

o

o o

oo oo o
o

oo o

o

oo

o

o

o

o

o oo o

o

o

o

oo o

o

o

o

o ooo

o
oo o

o o
o o

o

o

o

o

o
o oo

o
o

oo

o

o

o o
o o

oo o

o
o

o

o

o

oo oo

o

o
oo

oo oo

o

oo o

o

o

o o

o oo

o

o

o

o

o

o ooo
oo

o

o
o

oo
o o o ooo

o
oo

o

o
oo o

o

o

o

o

o
o

o
o
o
o o

oo oo oo

o o

o
o

o

o
o

o

o

o

oo

o

o

o o
o

o

o

o

o

o

o
o
o

o

o

oo

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

oo o
o

o

o o

o

o

oo

ooo

o

ooo oo

o

o

oo
o

o

o
o

oo

o

o
o

o

o

oo

o

o
o oo
o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

Horsepower

M
ile

s
P

e
r

G
a

llo
n

50 100 150 200

1
0

2
0

3
0

4
0

Miles per gallon VS Horsepower

o
o o

o o

o
o o

o

o

o
o o

o

o
o

o
o

o

o

oo
o

o

o

o
o

o

o

o
o

o

o
o o oo

o
o

oo

o oo

o
o

o

o

o

o
oo o

o

oo
o

o

o

oo

o
o

oo
o

o

oo

o

o

o

o
o

o
o

oo
o

o

o

o
ooo

o
o o

o

o

o
o o

oo

o

o

o
o

o

o

o
o

o
oo

o o
o

o

o o

o
o

o

o

oo
o

o
o

o
oo

oo

o

o

o

o

o

o
o

o

o
oo o
o

o

o
o o

o
o

o
o

o
o o

oo

oo

o

o
o
o

o
oo o

oo

o

o

oo o

o

o

o

o

o

o

o
oo

o
oo

o
o o

ooo

o

o
oo

oo o

o

o
o

o

o

o

o

o
o

o
o

oo

o

oo

o

o
o

o

oo
o

o

o

o

o

o

o o
o

oo

o
o

o

o
o

o
o

o o

o

o

o

o
oo

o

o

o

o

o

o

oo

o o
o

o
o

o

o

o
oo

o
o

oo o
oo o

o

o
o

o

oo

o

o

o
oo

o
o

o

ooo
oo

o

o o

o o
o

o

o
o

o

oo

oo

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o oo

o

o

o

o

o

o

o

o

o

oooo
o

oo

o
o

oo

o oo

o

o
o
o

o

o

o
ooo

o

o

o
o

oo

o

o
o

o

o

o o

o

oo

o
o

o

o

o

o

o

o

oo

o
o

oo

o

o

o

o

Fitted values

R
e

si
d

u
a

ls

5 10 15 20 25 30

-1
0

0
1

0

Residual Plot

Figure 3.3: Scatter plot of MPG vs. Horsepower with linear regression fit, and residual plot for
Example 3.3

3.2 ANOVA approach

In linear regression, variation may be decomposed in a manner similar to that of ANOVA. We start
with the error sum of squares

SSE =

n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi)2,

and the mean error sum of squares

MSE =
SSE

n− 2
.

The MSE is analogous to the MSE encountered in ANOVA, with K = 2 treatments corresponding
to the 2 unknown parameters β0 and β1. In fact, the MSE functions as an estimate of the variance
σ2 encountered in the distribution εi ∼ N(0, σ2):

σ̂2 = MSE ≈ σ2.

3.3. THE RELATIONSHIP BETWEEN LINEAR REGRESSION AND CORRELATION 39

We then have, as for ANOVA, the total sum of squares

SSTO =
n∑
i=1

(Yi − Ȳ)2.

By convention, instead of the treatment sum of squares SST we define the regression sum of squares

SSR =
n∑
i=1

(Ŷi − Ȳ)2,

noting that the two quantities serve similar functions. It can be shown that

SSTO = SSR+ SSE.

This means that, as in ANOVA, the total variation SSTO can be decomposed into variation SSR
explained by the model and variation SSE attributable to the error terms εi. The ANOVA table
for simple linear regression therefore looks like:

Source SS df MS

Regression SSR 1 MSR = SSR
1 F = MSR

MSE

Error SSE n− 2 MSE = SSE
n−2

Total SSTO n− 1

As in ANOVA, F has an F -distribution with 1 numerator and n−2 denominator degrees of freedom
under the hypothesis

Ho : β1 = 0.

A quantity of considerable importance is the coefficient of determination

R2 = 1− SSE

SSTO
=

SSR

SSTO

which can be interpreted as the proportion of the total variation explainable by the model. We
always have 0 ≤ R2 ≤ 1, so that larger values (say, R2 ≥ 0.25) mean that the predictor X has
significant explanatory power.

3.3 The Relationship Between Linear Regression and Correlation

It is important to note the similarity between the definition of r and the estimate of the slope β1

for simple linear regression:

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2
.

40 CHAPTER 3. LINEAR REGRESSION - INTRODUCTION

This means r and β̂1 have a close relationship:

r = r

√∑n
i=1(Xi − X̄)2√∑n
i=1(Xi − X̄)2

=

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2
×

√∑n
i=1(Xi − X̄)2√∑n
i=1(Yi − Ȳ)2

= β̂1

√
S2
X

S2
Y

(3.3)

where S2
X and S2

Y are the samples variances of the Xi’s and Yi’s.

When deducing the distribution properties of r, it is usually assumed that X and Y together
possess a bivariate normal distribution. This means that X and Y are both normally distributed,
and also possess a linear relationship of the form

Y = β0 + β1X + ε (3.4)

where β0 and β1 are constants and ε ∼ N(0, σ2) is independent of both X and Y . It can be shown
that when (3.4) holds the correlation between X and Y is

ρ = ρXY = β1
σX
σY

,

which is directly comparable to (3.3) (when convenient, subscripts may be added to the symbols
r or ρ to identify the relevant random variables). Of course, one important difference remains
between (3.4) and the simple linear regression model, namely that for simple linear regression
X is interpreted as a nonrandom predictor variable, whereas in (3.4) X is a random variable.
Nonetheless, both models depend on the very specific notion of linear dependence between two
variables.

It is important to note that assuming only that X and Y are normally distributed does not
suffice to define the bivariate normal distribution. The assumption of a linear relationship is also
needed.

3.4 The Derivation of the Least Squares Coefficients

The least squares coefficients β̂0, β̂1 are those which minimize the error sum of squares SSE. It
is natural, therefore, to consider that quantity a function of two variables, say SSE[β0, β1]. The
main step is to identify the stationary points. So, write

SSE[β0, β1] =
n∑
i=1

(Yi − β0 − β1Xi)
2,

3.5. ASSUMPTIONS 41

then take the partial derivatives

∂SSE[β0, β1]

∂β0
=

n∑
i=1

−2(Yi − β0 − β1Xi),

∂SSE[β0, β1]

∂β1
=

n∑
i=1

−2Xi(Yi − β0 − β1Xi).

If each partial derivative is set to 0, the solution is obtained by substituting β̂0, β̂1 for β0, β1. This
can be expressed

n∑
i=1

Yi =
n∑
i=1

(β̂0 + β̂1Xi)

= nβ̂0 + β̂1

n∑
i=1

Xi

for the partial derivative with respect to β0, and

n∑
i=1

XiYi =
n∑
i=1

Xi(β̂0 + β̂1Xi)

= β̂0

n∑
i=1

Xi + β̂1

n∑
i=1

X2
i ,

for the partial derivative with respect to β1. These are refereed to as the normal equations, and
form a system of two linear equations in two unknowns, with solution

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2

β̂0 = Ȳ − β̂1X̄.

as given in Equation (3.2). What remains is the technical problem of verifying that the stationary
points identify the minimum of SSE[β0, β1], which follows from the strict convexity of this function.

3.5 Assumptions

The assumptions underlying simple linear regression are all implied in the model defined in (3.1):

Yi = β0 + β1Xi + εi, i = 1, . . . , n. (3.5)

Essentially, we assume Yi ∼ N(µi, σ
2) for some σ2 which does not vary with the index i, where the

means µi are given by
µi = β0 + β1Xi. (3.6)

Finally, the responses Yi are assumed to be independent. This is equivalent to assuming that
ε1, . . . , εn is a random sample from distribution N(0, σ2), and the response Yi is given by (3.1).

Chapter 4

Linear Regression - Inference

In this section we consider in more detail inference for linear regression. We will emphasize the
simple linear regression model:

Yi = β0 + β1Xi + εi, i = 1, . . . , n,

but the ideas can be generalized when additional predictors are added.
Usually, there is greater interest in β1, the slope of the regression line, than β0, the point on

the vertical response axis intercepted by the regression line at predictor value X = 0 (hence β0

is commonly known as the intercept). This is because the motivation for regression is usually to
determine a relationship between the dependent and independent variables, and a relationship can
be said to exist between them if and only if the slope β1 is not zero.

We may consider two estimation problems. The mean response for predictor value x is

µx = β0 + β1x.

In principle, we may consider µx for any value x, even if x does not equal the value of any predictor
in a given sample. However, it is usually not recommended that x be extrapolated beyond the range
of the observed predictors. If we have some reason to set x > maxiXi or x < miniXi, it should be
noted in any report that the resulting inference represents an extrapolation beyond the observed
range of the predictor variables. Of course, the intercept β0 is a special case of µx, in particular,

β0 = β0 + β1 × 0 = µ0,

however, β1 cannot be expressed as µx for some x in this way.

4.1 Inference of Regression Parameters

We may define a general parameter βi, and note that it’s inference assumes a general form (we
have, so far, encountered β0 and β1 for simple linear regression). We have seen estimates

β̂i ≈ βi, i = 0, 1

and we may add
µ̂x ≈ β̂0 + β̂1x.

42

4.1. INFERENCE OF REGRESSION PARAMETERS 43

Note that the predicted responses

Ŷi = β̂0 + β̂1Xi, i = 1, . . . , n,

are special cases Ŷi = µ̂Xi , and are commonly known as fitted values, since the estimated regression
line passes through the points (Xi, Ŷi).

Under the assumption that the error terms ε1, . . . , εn are an independent random sample from
N(0, σ2) for some fixed variance σ2, we have

β̂i ∼ N
(
βi, σ

2
β̂i

)
,

and
µ̂x ∼ N

(
µx, σ

2
µ̂x

)
.

It is worth noting at this point that β̂i and µ̂x are unbiased estimates of βi and µx, since

E[β̂i] = βi and E[µ̂x] = µx,

(not all commonly used estimators are unbiased).
For simple linear regression, the values of σ2

β̂i
and σ2

µ̂x
can be shown to be:

σ2
β̂1

=
σ2∑n

i=1(Xi − X̄)2
(4.1)

and

σ2
µ̂x = σ2

[
1

n
+

(x− X̄)2∑n
i=1(Xi − X̄)2

]
(4.2)

where we have mean value of the predictor:

X̄ =

∑n
i=1Xi

n
.

Since β0 = µ0 we can obtain directly from (4.2) the variance of β̂0 by substituting x = 0:

σ2
β̂0

= σ2

[
1

n
+

X̄2∑n
i=1(Xi − X̄)2

]
. (4.3)

As we might expect, the values of σ2
β̂i

and σ2
µ̂x

directly depend on error variance σ2, which is

usually unknown. Of course, we already have estimate

σ̂2 = MSE =

∑n
i=1(Yi − Ŷi)2

n− 2
≈ σ2,

so we replace σ2 in (4.1), (4.2) and (4.3) with σ̂2, to obtain the standard errors

Sβ̂1 =
σ̂√∑n

i=1(Xi − X̄)2
, (4.4)

Sµ̂x = σ̂

√
1

n
+

(x− X̄)2∑n
i=1(Xi − X̄)2

(4.5)

and

Sβ̂0 = σ̂

√
1

n
+

X̄2∑n
i=1(Xi − X̄)2

. (4.6)

44 CHAPTER 4. LINEAR REGRESSION - INFERENCE

4.1.1 Confidence intervals for simple linear regression

Given the standard errors for βi or µx a level (1− α) confidence interval for βi is given by

β̂i ± tn−2,α/2 × Sβ̂i ,

or for µx by
µ̂x ± tn−2,α/2 × Sµ̂x ,

where tn−2,α/2 is the α/2 critical value for a t-distribution with n− 2 degrees of freedom.

4.1.2 Hypothesis tests for simple linear regression

If we wish to test against a hypothesis
Ho : βi = β′i (4.7)

we use statistic

T =
β̂i − β′

Sβ̂i

which, under the hypothesis defined in Equation (4.7) has a t-distribution with n − 2 degrees of
freedom.

The most common hypothesis test in the context of simple linear regression is obtained by
setting hypothetical value β′1 = 0, that is, the two-sided test:

Ho : β1 = 0 against Ha : β1 6= 0,

which gives observed significance level

αobs = 2P (T ≤ −|Tobs|)

where

Tobs =
β̂1

Sβ̂1

and T has a t-distribution with n−2 degrees of freedom. When suitable, one-sided hypothesis tests
can be carried out.

4.1.3 Prediction intervals for simple linear regression

Let’s define a random variable
Yx ∼ N(µx, σ

2),

which can be interpreted as a future response from a linear model

Yx = β0 + β1x+ ε

for a given predictor value X = x, and ε ∼ N(0, σ2). We might with to place prediction bounds on
Yx, that is, values YL, YU for which

P (YL ≤ Yx ≤ YU) = 1− α.

4.1. INFERENCE OF REGRESSION PARAMETERS 45

We might set 1− α = 95%. If β0, β1, σ
2 are known, this is easy to do:

YL = µx − zα/2σ,
YU = µx + zα/2σ.

Otherwise, we estimate µx and σ2, and the prediction interval can be based on the deviation

D = Yx − µ̂x,

that is, the deviation of a future response Yx from it’s estimated mean µ̂x. At this point we note
that Yx, being some future response, is independent of the data used to estimate µ̂x. This means
Yx and µ̂x are independent, so that the variance of D is

var(D) = var(Yx) + var(µ̂x)

= σ2 + σ2
µ̂x

= σ2

[
1 +

1

n
+

(x− X̄)2∑n
i=1(Xi − X̄)2

]
making use of Equation (4.2). This leads to level (1− α) prediction interval

µ̂x ± tn−2,α/2 × σ̂
[
1 +

1

n
+

(x− X̄)2∑n
i=1(Xi − X̄)2

]1/2

.

4.1.4 Calculations based on sums of squares

Despite the apparent complexity of the computations associated with linear regression, they can
be organized around the 5 quantities

n∑
i=1

Xi,
n∑
i=1

Yi,
n∑
i=1

X2
i ,

n∑
i=1

Y 2
i ,

n∑
i=1

XiYi

from which we derive quantities

X̄ =

∑n
i=1Xi

n

Ȳ =

∑n
i=1 Yi
n

SSX =

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

X2
i − n−1

(
n∑
i=1

Xi

)2

SSY =
n∑
i=1

(Yi − Ȳ)2 =
n∑
i=1

Y 2
i − n−1

(
n∑
i=1

Yi

)2

SSXY =

n∑
i=1

(Xi − X̄)(Yi − Ȳ) =

n∑
i=1

XiYi − n−1

(
n∑
i=1

Xi

)(
n∑
i=1

Yi

)
.

46 CHAPTER 4. LINEAR REGRESSION - INFERENCE

The relevant quantities then become

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2
=
SSXY
SSX

,

β̂0 = Ȳ − β̂1X̄,

µ̂x = β̂0 + β̂1x.

This means estimates are most conveniently calculated in the order β̂1, β̂0 and µ̂x as required.

We next calculate SSE and SSTO, following which we may calculate any required standard
errors. First

SSTO = SSY .

Although the calculation of SSE is not, at first, as straightforward, it can be shown that

SSE =

n∑
i=1

Y 2
i − β̂0

n∑
i=1

Yi − β̂1

n∑
i=1

XiYi.

giving

σ̂2 = MSE =
SSE

n− 2

and coefficient of determination

R2 = 1− SSE

SSTO
.

At this point we may calcuate standard errors:

Sβ̂1 =
σ̂√
SSX

,

Sµ̂x = σ̂

√
1

n
+

(x− X̄)2

SSX

and

Sβ̂0 = σ̂

√
1

n
+

X̄2

SSX
,

with (1− α) prediction interval for Yx

µ̂x ± tn−2,α/2 × σ̂
[
1 +

1

n
+

(x− X̄)2

SSX

]1/2

.

Example 4.1. The following example is due to Devore, Probability and Statistics for Engineering
and the Sciences, 1995, (Example 12.10). Suppose we are given data (n = 11):

X = 16.1 31.5 21.5 22.4 20.5 28.4 30.3 25.6 32.7 29.2 34.7

Y = 4.41 6.81 5.26 5.99 5.92 6.14 6.84 5.87 7.03 6.89 7.87

4.1. INFERENCE OF REGRESSION PARAMETERS 47

We wish to construct a CI for β1. We have the summary

n∑
i=1

Xi = 292.90

n∑
i=1

Yi = 69.03

n∑
i=1

X2
i = 8141.75

n∑
i=1

Y 2
i = 442.1903

n∑
i=1

XiYi = 1890.200.

We then have

X̄ = 292.9/11 = 26.627

Ȳ = 69.03/11 = 6.275

SSX = 8141.75− (292.92)/11 = 342.622

SSY = 442.1903− (69.032)/11 = 8.996

SSXY = 1890.20− 292.9 ∗ 69.03/11 = 52.119,

Giving coefficient estimates:

β̂1 =
SSXY
SSX

=
52.119

342.622
= 0.152

β̂0 = Ȳ − β̂1X̄ = 6.275− 0.1520× 26.627 = 2.228.

The next step is to calculate SSE:

SSE =
n∑
i=1

Y 2
i − β̂0

n∑
i=1

Yi − β̂1

n∑
i=1

XiYi

= 442.1903− 2.228× 69.03− 0.152× 1890.200

= 1.08,

then
σ̂2 = SSE/(n− 2) = 1.08/9 = 0.12.

Then

Sβ̂1 =
σ̂√
SSX

=

√
0.12√

342.622
= 0.019.

A level 95% confidence interval is then

0.152± t9,α/2Sβ̂1 = 0.152± 2.262× 0.019 = 0.152± 0.042.

48 CHAPTER 4. LINEAR REGRESSION - INFERENCE

To calculate the coefficient of determination we set

SSTO = SSY = 8.992

so that
R2 = 1− SSE/SSTO = 1− 1.08/8.992 = 0.88.

The high value for R2 is evident in Figure 4.1.

20 25 30 35

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

X

Y

Figure 4.1: Scatter plot and regression fit for Example 4.1

4.2 Multiple Linear Regression

In contrast with simple regression, multiple regression permits q ≥ 1 predictors:

Yi = β0 + β1X1i + β1X2i + . . .+ βqXqi + εi, i = 1, . . . , n. (4.8)

The predictors Xji use a double subscript notation, where j refers to the predictor, and i refers to
the sample. So, instead of observations in pairs (Yi, Xi) for simple linear regression, observations
come in the form (Yi, X1i, X2i, . . . , Xqi) for i = 1, . . . , n. In the context of multiple regression, it
is usually the practice to refer to the jth predictor as Xj , on the understanding that a second
subscript is needed to refer to the actual data. As in simple linear regression, the error terms
ε1, . . . , εn are a random sample from N(0, σ2), so that

Yi ∼ N(µi, σ
2)

4.2. MULTIPLE LINEAR REGRESSION 49

where
µi = β0 + β1X1i + β1X2i + . . .+ βqXqi, i = 1, . . . , n

defines the linear regression function.
For each coefficient βi we may obtain a least squares estimate β̂i and standard error Sβ̂i . Their

calculation requires techniques from matrix algebra which are beyond the scope of this course, so
we rely on statistical computing. As in simple linear regression we have predicted, or fitted, values

Ŷi = β̂0 + β̂1X1i + β̂1X2i + . . .+ β̂qXqi, i = 1, . . . , n,

residuals
ei = Yi − Ŷi, i = 1, . . . , n,

error sum of squares

SSE =
n∑
i=1

e2
i ,

and total sum of squares

SSTO = SSY =

n∑
i=1

(Yi − Ȳ)2.

The regression sum of squares is similarly obtained from the equality

SSTO = SSR+ SSE.

We also have the various mean sums of squares. The degrees of freedom associated with SSTO
remains n− 1, but for SSE it is now n− (q + 1), and for SSR it is q, giving

MSE =
SSE

n− (q + 1)
,

MSR =
SSR

q
.

As in the simple linear regression case, and estimate of the error variance σ2 is given by

σ2 ≈ σ̂2 = MSE.

Confidence intervals for each coefficient βj are given by

β̂j ± tn−(q+1),α/2 × Sβ̂j .

A test against null hypothesis
Ho : βj = β′j

can be based on test statistic

T =
β̂j − β′

Sβ̂j
,

which under Ho has a t-distribution with n − (q + 1) degrees of freedom. If the null hypothesis
Ho : βj = 0 can be rejected, we may conclude that the response depends on the jth predictor Xj

(in addition, possibly, to other predictors). Otherwise, there is no relationship between Xj and the
response, and this predictor need not be included in the model (we usually include β0 in the model
without the need of any formal inference).

50 CHAPTER 4. LINEAR REGRESSION - INFERENCE

4.2.1 ANOVA tables for multiple linear regression

The ANOVA table extends naturally to the multple linear regression case:

Source SS df MS

Regression SSR q MSR = SSR
q F = MSR

MSE

Error SSE n− (q + 1) MSE = SSE
n−(q+1)

Total SSTO n− 1

Here F has an F -distribution with q numerator and n − (q + 1) denominator degrees of freedom
under the hypothesis

Ho : βi = 0, i = 1, . . . , q.

Note that this hypothesis does not specify that the intercept β0 is 0.

It the context of multiple regression the coefficient of multiple determination is

R2 = 1− SSE

SSTO
=

SSR

SSTO
.

This definition is equivalent to the coefficient of determination defined for simple linear regression,
but the alternative terminology emphasizes the influence on R2 of the number of parameters in the
model.

4.2.2 Full and reduced models

Before we consider an actual example, it is important to understand the concept of the full and
reduced models. Suppose we begin with the model (4.8) with q predictors. If any coefficient βi is
actually 0, there is no need to include it in the model. Of course, we don’t know the exact value of
βi, but we might conclude on a statistical basis that it is not significantly different from 0, and so
on that basis we can decide which predictors to keep in the model. It might seem that all we need
to do is test each coefficient separately, keeping only those for which the null hypothesis Ho : βi = 0
is rejected. There are two concerns with this approach. First, two predictors may be correlated
with each other. When this happens, the respective coefficients may become difficult to interpret
independently. In this case it is better to assess the predictive ability of the model as a whole. In
addition, separate inferences formally require multiple testing procedures, the application of which
can be cumbersome when used to select predictors for inclusion.

One basic tool for model selection (that is, the problem of deciding which predictors to retain
in a model) is the F -test for groups of predictors. We’ll refer to (4.8) as the full model (in a more
compact form)

Y = β0 + β1X1 + β1X2 + . . .+ βqXq + ε Full Model. (4.9)

For some p < q we have the reduced model

Y = β0 + β1X1 + β1X2 + . . .+ βpXp + ε Reduced Model, (4.10)

that is, the reduced model is obtained from the full model by removing the final q − p predictors
Xp+1, . . . , Xq. We say such models are nested models. The motivation here is to determine whether
or not the predictive ability of the reduced model can be improved by adding these final predictors

4.2. MULTIPLE LINEAR REGRESSION 51

(there may be more than one of these). Of course, we have assumed that the predictors have been
indexed appropriately.

Concluding that the full model is more predictive than the reduced model is equivalent to
rejecting the hypothesis

Ho : βp+1 = βp+2 = . . . = βq = 0

in favor of
Ha : at least one of βp+1, βp+2, . . . , βq is not zero.

The relevant F statistic is

F =
(SSEp − SSEq)/(q − p)
SSEq/(n− (q + 1))

Where SSEq and SSEp are the error sums of squares of the full and reduced model respectively.
Under Ho F has an F -distribution with q − p numerator degrees of freedom and n − (q + 1)
denominator degrees of freedom, and so can be rejected at significance level α if

Fobs ≥ Fq−p,n−(q+1),α.

It is important to note that we may set p = 0, in which case the reduce model is simply

Y = β0 + ε,

that is, responses are a random sample from N(β0, σ
2) and are not related to any of the predictors

(this is why β0 is usually retained in the model). In fact, the F -statistic F = MSR/MSE given in
the ANOVA table is the relevant test statistic, that is, it tests against the null hypothesis

Ho : β1 = β2 = . . . = βq = 0,

as we have already seen.
The coefficient of multiple determination R2 must always be interpreted carefully, since it may

be shown that its value is always larger for a full model than for a (nested) reduced model, even
when the relevant coefficients are truly zero. This gives the often false impression that appending a
new predictor to a model improves its predictive ability. Whether or not an increase in R2 is truly
significant can be resolved by the appropriate F -test.

For this reason, we often use instead the adjusted R2:

R2
adj = 1− SSE/(n− (q + 1))

SSTO/(n− 1)
.

This value, in a sense, is adjusted for the number of parameters, and permits a more accurate
comparison between models with differing numbers of parameters, which need not be nested.

4.2.3 Example

Consider the following output for two regression models involving independent variables

birthwt (weight of infant at birth)

headcirc (head circumference of infant at birth)

52 CHAPTER 4. LINEAR REGRESSION - INFERENCE

length (length of infant at birth)

toxemia (= 1 if toxins present in blood, = 0 otherwise)

The objective is to estimate an infants prenatal or neonatal weight based on various measurements,
which would be observable with a sonogram. The full model would be

birthwt = β0 + β1 × headcirc+ β2 × length+ β3 × toxemia+ ε,

which has SSE(full) = 1647237.79 with q = 3 predictors. There is also a reduced model

birthwt = β0 + β1 × headcirc+ ε,

with SSE(reduced) = 2611443.88 with p = 1 predictors. The sample size was n = 100. Model
summaries are given below.

To test hypothesis

Ho : β2 = β3 = 0

against

Ha : at least one of β2, β3 is not zero

we use F -statistic

F =
(SSE(reduced)− SSE(full))/2

SSE(full)/(100− 4)

=
(2611443.88− 1647237.79)/2

1647237.79/(100− 4)

= 28.097.

Under the null distribution Ho, F has an F distribution with numerator and denominator degrees
of freedom νnum = q− p = 2 and νden = n− (q+ 1) = 96. The p-value is very small, say P < 0.001,
since we have critical value F2,96,0.001 = 7.43. So, the full model is more predictive than the reduced
model.

Summary for reduced model:

Df Sum Sq Mean Sq F value Pr(>F)

headcirc 1 4605298.87 4605298.87 172.82 0.0000
Residuals 98 2611443.88 26647.39

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1154.1087 172.1523 -6.70 0.0000

headcirc 85.1780 6.4793 13.15 0.0000

Summary for full model:

4.2. MULTIPLE LINEAR REGRESSION 53

Df Sum Sq Mean Sq F value Pr(>F)

headcirc 1 4605298.87 4605298.87 268.39 0.0000
length 1 889039.76 889039.76 51.81 0.0000
toxemia 1 75166.33 75166.33 4.38 0.0390
Residuals 96 1647237.79 17158.73

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1567.6048 148.7759 -10.54 0.0000

headcirc 48.3632 7.4349 6.50 0.0000
length 38.0639 5.2565 7.24 0.0000

toxemia -67.9216 32.4518 -2.09 0.0390

Chapter 5

Linear Regression - Modeling in R

The chapter has two objectives. The first is to introduce R as a tool for statistical modeling. While
this is carried out using linear regression, many of the methods are equally applicable to most
other types of statistical models that one would encounter in an intermediate course on statistical
methodology. For this reason, this chapter also introduces, mainly by example, some new modeling
techniques which are of interest on their own.

5.1 Statistical Models

In a statistical model a random response Y is dependent on predictors X1, X2, . . . , Xm, in the sense
that the distribution of Y depends on X1, . . . Xk. In many frequently used models, the relationship
is given by

Y = µ(X1, X2, . . . , Xm) + ε, ε ∼ N(0, σ2), (5.1)

or equivalently,
Y ∼ N

(
µ(X1, X2, . . . , Xm), σ2

)
.

ANOVA is a simple example of this. There is a single predictor X, which is a factor, or categorical
variable, which assumes levels 1, . . . k (that is, there are k treatments, or groups). In this case,
there are k means µ1, . . . , µk, so that

Y = µ(X) + ε

= µX + ε

= µi + ε if X = i.

Linear regression is a somewhat more complex example, but also conforms to Equation (5.1):

Y = β0 + β1X1 + . . .+ βmXm + ε. (5.2)

5.2 The Formula Object in R

R supports a specialized notation for statistical models, based on the formula class. We have
already seen a number of examples. In the following script, a data set consisting of a numerical
vector color.value and a character vector color.type is created. There are 26 records, with

54

5.2. THE FORMULA OBJECT IN R 55

equal numbers of “Red” and “Green” color types. The intention is that “Green” types tend to
have higher values. The resulting plot is shown in Figure 5.1.

> par(mfrow=c(1,2),cex=1.0)

> color.value = rnorm(26,mean=rep(c(10,12),13))

> color.type = rep(c("Red","Green"),13)

> boxplot(color.value,ylab=’Color Value’)

> boxplot(color.value ~ color.type,ylab=’Color Value’)

The command boxplot(color.value, ylab=’Color Value’) creates a single boxplot of all the
data, while the command boxplot(color.value ∼ color.type,ylab=’Color Value’) creates
side-by-side boxplots for each color type.

8
9

10
11

12

C
ol

or
 V

al
ue

Green Red

8
9

10
11

12

C
ol

or
 V

al
ue

Figure 5.1: Example of the use of the formula class in the boxplot

The expression color.value ∼ color.type within the final boxplot command is an example
of a formula, which takes the general form

response ∼ predictor expression

It’s exact effect depends on the context. In it’s simplest form, as in the boxplot example of Figure
5.1, it separates a set of measurements by a group variable. However, it can also describe an
analytical relationship between the response and multiple predictors.

The following script demonstrates the creation of a formula object, with the symbol ∼ sepa-
rating the response from the predictors:

> f1 = y ~ x

> f1

y ~ x

56 CHAPTER 5. LINEAR REGRESSION - MODELING IN R

> class(f1)

[1] "formula"

The multiple regression model
Y = β0 + β1X1 + β2X2 (5.3)

would be represented

> f1 = y ~ x1 + x2

> f1

y ~ x1 + x2

We will make use later in the chapter of the interaction term, which is a predictor formed by taking
the product of two or more other predictor terms. When interactions are present in a model, the
predictors forming the interaction are referred to as main effects. In Equation (5.3) there is one
possible interaction term X1X2, leading to regression equation

Y = β0 + β1X1 + β2X2 + β3X1X2.

To specify all possible interactions and main effects involving two predictors the “*” operator can
be used:

> f2 = y ~ x1 * x2

> f2

y ~ x1 * x2

> terms(f2)

y ~ x1 * x2

attr(,"variables")

list(y, x1, x2)

attr(,"factors")

x1 x2 x1:x2

y 0 0 0

x1 1 0 1

x2 0 1 1

attr(,"term.labels")

[1] "x1" "x2" "x1:x2"

attr(,"order")

[1] 1 1 2

attr(,"intercept")

[1] 1

attr(,"response")

[1] 1

attr(,".Environment")

<environment: R_GlobalEnv>

Note that the function terms() is used to extract details of a formula.
If we wanted to include only the main effect for X1 and the interaction term, for example:

Y = β0 + β1X1 + β2X1X2

we could use the operator “:” to generate only the specified interactions.

5.2. THE FORMULA OBJECT IN R 57

> f3 = y ~ x1 + x1:x2

> f3

y ~ x1 + x1:x2

> terms(f3)

y ~ x1 + x1:x2

attr(,"variables")

list(y, x1, x2)

attr(,"factors")

x1 x1:x2

y 0 0

x1 1 2

x2 0 1

attr(,"term.labels")

[1] "x1" "x1:x2"

attr(,"order")

[1] 1 2

attr(,"intercept")

[1] 1

attr(,"response")

[1] 1

attr(,".Environment")

<environment: R_GlobalEnv>

The intercept term is implicitly included in a formula (but can be removed if needed). If we
want to model to include only the intercept (for example, for model comparisons), we use the
symbol 1:

> f4 = y ~ 1

> f4

y ~ 1

> terms(f4)

y ~ 1

attr(,"variables")

list(y)

attr(,"factors")

integer(0)

attr(,"term.labels")

character(0)

attr(,"order")

integer(0)

attr(,"intercept")

[1] 1

attr(,"response")

[1] 1

attr(,".Environment")

<environment: R_GlobalEnv>

58 CHAPTER 5. LINEAR REGRESSION - MODELING IN R

This is a fairly in-depth topic, so we will discuss just the basics at first (see help(formula) for
more detail).

5.3 Linear Regression in R

First, we note that R comes with a set of example datasets, in a package called ’MASS’

> library(MASS)

> help(package=MASS)

...

Functions and datasets to support Venables and Ripley,

’Modern Applied Statistics with S’ (4th edition, 2002).

...

One of these datasets is called nlschools:

> help(nlschools)

Description

Snijders and Bosker (1999) use as a running example a study of

2287 eighth-grade pupils (aged about 11) in 132 classes in 131

schools in the Netherlands. Only the variables used in our

examples are supplied.

Usage

nlschools{1.0\textwidth}

Format

This data frame contains 2287 rows and the following columns:

lang

language test score.

IQ

verbal IQ.

class

class ID.

GS

class size: number of eighth-grade pupils recorded in the class

(there may be others: see COMB, and some may have been omitted

with missing values).

5.3. LINEAR REGRESSION IN R 59

SES

social-economic status of pupil’s family.

COMB

were the pupils taught in a multi-grade class (0/1)? Classes

which contained pupils from grades 7 and 8 are coded 1,

but only eighth-graders were tested.

Source

Snijders, T. A. B. and Bosker, R. J. (1999) Multilevel Analysis.

An Introduction to Basic and Advanced Multilevel Modelling.

London: Sage.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied

Statistics with S. Fourth edition. Springer.

The object nlschools is a data frame. You can verify that it is a list (a data frame is a list) using
the is.list() function. The names of the variables is obtained using the names() command.

> is.list(nlschools)

[1] TRUE

> names(nlschools)

[1] "lang" "IQ" "class" "GS" "SES" "COMB"

> nlschools[1:5,]

lang IQ class GS SES COMB

1 46 15.0 180 29 23 0

2 45 14.5 180 29 10 0

3 33 9.5 180 29 15 0

4 46 11.0 180 29 23 0

5 20 8.0 180 29 10 0

> dim(nlschools)

[1] 2287 6

>

There are 2287 rows and 6 columns.
Note that in the dataset nlschols, COMB is an indicator variable, that is, a variable that assumes

only values 0, 1 (or, a factor with two levels). We can do a t-test to see if there is a significant
difference in language test scores between students in multigrade classes, and those not in multigrade
classes. We can use model notation, but we need to specify the data frame with the data option.

> t.test(lang ~ COMB, data=nlschools)

Welch Two Sample t-test

60 CHAPTER 5. LINEAR REGRESSION - MODELING IN R

data: lang by COMB

t = 5.3849, df = 991.978, p-value = 9.052e-08

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

1.540178 3.306355

sample estimates:

mean in group 0 mean in group 1

41.60133 39.17806

So, for COMB = 0 (not in multigrade class) the estimated mean score is µ̂0 = 41.6 ≈ µ0 and for
COMB = 1 (in multigrade class) the estimated mean score is µ̂1 = 39.2 ≈ µ1. There is a significant
detrimental effect (about 2.4 points) on language test scores attributable to presence in mutligrade
class.

Next, suppose we consider regression model

lang = β0 + β1 × COMB + ε

Since COMB is an indicator variable, we can match the regression coefficients directly to the two
group means:

µ0 = β0

µ1 = β0 + β1, with estimates

µ̂0 = β̂0

µ̂1 = β̂0 + β̂1.

In R, regression fits can be calculated using the lm() function, using the model notation:

> fit = lm(lang ~ COMB, data=nlschools)

> summary(fit)

Call:

lm(formula = lang ~ COMB, data = nlschools)

Residuals:

Min 1Q Median 3Q Max

-30.1781 -6.1781 0.8219 7.3987 18.8219

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.6013 0.2196 189.472 < 2e-16 ***

COMB1 -2.4233 0.4187 -5.788 8.1e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.94 on 2285 degrees of freedom

Multiple R-squared: 0.01445,Adjusted R-squared: 0.01402

F-statistic: 33.5 on 1 and 2285 DF, p-value: 8.1e-09

5.4. ANOVA AND LINEAR REGRESSION 61

We have coefficient estimates β̂0 = 41.6013 and β̂1 = −2.4233, giving

µ̂0 = 41.6013

µ̂1 = 41.6013− 2.4233 = 39.178,

which conform to the estimates we obtained above.

5.4 ANOVA and Linear Regression

This example is due to Johnson and Bhattacharya (Statistics: Principles and Methods, 3rd Edition).
In an effort to improve the quality of recording tapes, the effects of four kinds of coatings A, B,
C and D on reproduction quality are assessed by applying each to a separate sample of tape and
measuring the resulting distortion. The results are given in the following table.

Coating Sample Sample Mean Sum of Squares

A 10, 15, 8, 12, 15 ȳ1 = 12
∑5

i=1(y1i − ȳ1)2 = 38

B 14, 18, 21, 15 ȳ2 = 17
∑4

i=1(y2i − ȳ2)2 = 30

C 17, 16, 14, 15, 17, 15, 18 ȳ3 = 16
∑7

i=1(y3i − ȳ3)2 = 12

D 12, 15, 17, 15, 16, 15 ȳ4 = 15
∑6

i=1(y4i − ȳ4)2 = 14

We can create a data frame for the data in the following way:

> y1 = c(10, 15, 8, 12, 15)

> y2 = c(14, 18, 21, 15)

> y3 = c(17, 16, 14, 15, 17, 15, 18)

> y4 = c(12, 15, 17, 15, 16, 15)

> y = c(y1,y2,y3,y4)

> gr = c(rep("A",5), rep("B",4), rep("C",7), rep("D",6))

>

> tapes.data = data.frame(y,gr)

> tapes.data

y gr

1 10 A

2 15 A

3 8 A

4 12 A

5 15 A

6 14 B

7 18 B

8 21 B

9 15 B

10 17 C

11 16 C

12 14 C

13 15 C

62 CHAPTER 5. LINEAR REGRESSION - MODELING IN R

14 17 C

15 15 C

16 18 C

17 12 D

18 15 D

19 17 D

20 15 D

21 16 D

22 15 D

>

The variable y contains the responses, with treatment groups indicators by the factor variable gr.
As in the previous example, we can express the ANOVA model as a linear regression model using
indicator variables:

Y = β0 + β1 × IB + β2 × IC + β3 × ID + ε

where, for example, IB is the indicator variable for treatment B. Note that we don’t need (or want)
an indicator variable for treatment A. The coefficients can be related to the treatment means in
the following way:

µA = β0

µB = β0 + β1

µC = β0 + β2

µD = β0 + β3,

with estimates:

µ̂A = β̂0

µ̂B = β̂0 + β̂1

µ̂C = β̂0 + β̂2

µ̂D = β̂0 + β̂3.

As can be seen, we only need indicators variables for 3 of the 4 treatments. To implement this
using lm(), we could construct the indicator variables, but the same effect can be achieved using a
factor variable.

> fit = lm(y ~ gr, data=tapes.data)

> summary(fit)

Call:

lm(formula = y ~ gr, data = tapes.data)

Residuals:

Min 1Q Median 3Q Max

-4.00 -1.75 0.00 1.00 4.00

5.5. RESIDUALS AND LM() 63

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.000 1.022 11.742 7.16e-10 ***

grB 5.000 1.533 3.262 0.00433 **

grC 4.000 1.338 2.989 0.00787 **

grD 3.000 1.384 2.168 0.04381 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.285 on 18 degrees of freedom

Multiple R-squared: 0.4198,Adjusted R-squared: 0.323

F-statistic: 4.34 on 3 and 18 DF, p-value: 0.01814

>

The coefficients match the model with

β̂0 = 12.0

β̂1 = 5.0

β̂2 = 4.0

β̂3 = 3.0,

and we can recreate the treatment mean estimates

µ̂A = β̂0 = 12.0

µ̂B = β̂0 + β̂1 = 12.0 + 5.0 = 17.0

µ̂C = β̂0 + β̂2 = 12.0 + 4.0 = 16.0

µ̂D = β̂0 + β̂3 = 12.0 + 3.0 = 15.0.

In addition, the F statistic F = 4.34 is equivalent to that obtained by the ANOVA procedure, as
is the F test for difference in means itself.

5.5 Residuals and lm()

The output of lm() is a list:

> names(fit)

[1] "coefficients" "residuals" "effects" "rank"

"fitted.values" "assign" "qr"

"df.residual" "contrasts" "xlevels"

[11] "call" "terms" "model"

One of the components of this list is residuals, which is a vector of the residuals ei = Yi− Ŷi. We
can, for example, examine the normality of the residuals with a normal quantile plot (Figure 5.2):

> qqnorm(fit$residual)

> qqline(fit$residual)

64 CHAPTER 5. LINEAR REGRESSION - MODELING IN R

-2 -1 0 1 2

-4
-2

0
2

4

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 5.2: Normal quantile plot for Section 5.5.

The quantile plot suggests that the assumption of normality is reasonable.

5.6 Interaction Terms

We’ll return to the nlschools data, and fit the model

lang = β0 + β1 × IQ + ε

The following script will fit the model, store the coefficients in a vector cf, do a scatter-plot of the
independent against the dependent variable, then superimpose the actual regression line (Figure
5.3).

> fit = lm(lang ~ IQ, data = nlschools)

> summary(fit)

Call:

lm(formula = lang ~ IQ, data = nlschools)

Residuals:

Min 1Q Median 3Q Max

-28.7022 -4.3944 0.6056 5.2595 26.2212

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.52848 0.86682 10.99 <2e-16 ***

IQ 2.65390 0.07215 36.78 <2e-16 ***

5.6. INTERACTION TERMS 65

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.137 on 2285 degrees of freedom

Multiple R-squared: 0.3719,Adjusted R-squared: 0.3716

F-statistic: 1353 on 1 and 2285 DF, p-value: < 2.2e-16

> cf = fit$coefficients

> cf

(Intercept) IQ

9.528484 2.653896

> range(nlschools$IQ)

[1] 4 18

> plot(nlschools$IQ, nlschools$lang, pch=20)

> lines(range(nlschools$IQ),

cf[1] + cf[2]*range(nlschools$IQ), lwd=2)

>

4 6 8 10 12 14 16 18

10
20

30
40

50

nlschools$IQ

nls
ch
oo
ls$
lan
g

Figure 5.3: Regression fit for model lang = β0 + β1 × IQ + ε

The following script can be used to produce diagnostic plots. Note that par(mfrow=c(1,2))

permits two plots to appear on one window. The resulting residual plot and residual normal quantile
plot appear in Figure 5.4. Note that these plots may also be obtained using plot(fit). This type
of feature is generally available for models in R.

>

> par(mfrow=c(1,2))

66 CHAPTER 5. LINEAR REGRESSION - MODELING IN R

> plot(fit$fitted.values, fit$residuals, pch=20)

> lines(c(-100,100), c(0,0))

> qqnorm(fit$residuals)

> qqline(fit$residuals)

>

Next, recall that the variable COMB had a significant effect on the language scores, so we may
wish to introduce it into out model. First, remember to change the graphics window properties if
needed (here, we only want one plot, so use par(mfrow=c(1,1)). We now have model

lang = β0 + β1 × IQ + β2 × COMB + ε

where COMB is an indicator variable. However, we can consider this as two linear regression models,
one for multigrade classes, and one for single grade classes. We can then superimpose two fits on
one plot, in particular y = β0 +β1x for single grade classes, and y = (β0 +β2) +β1x for multigrade
classes.

> par(mfrow=c(1,1))

> fit2 = lm(lang ~ IQ + COMB, data = nlschools)

> summary(fit2)

Call:

lm(formula = lang ~ IQ + COMB, data = nlschools)

Residuals:

Min 1Q Median 3Q Max

-27.3890 -4.4989 0.5011 5.1841 25.6214

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.25824 0.87212 11.76 < 2e-16 ***

IQ 2.63390 0.07181 36.68 < 2e-16 ***

COMB1 -1.79296 0.33265 -5.39 7.77e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.094 on 2284 degrees of freedom

Multiple R-squared: 0.3798,Adjusted R-squared: 0.3792

F-statistic: 699.2 on 2 and 2284 DF, p-value: < 2.2e-16

> cf = fit2$coefficients

> cf

(Intercept) IQ COMB1

10.258240 2.633900 -1.792956

> plot(nlschools$IQ, nlschools$lang, pch=20)

> lines(range(nlschools$IQ),

5.6. INTERACTION TERMS 67

cf[1] + cf[2]*range(nlschools$IQ), lwd=2, col=2)

> lines(range(nlschools$IQ),

cf[1] + cf[3] + cf[2]*range(nlschools$IQ), lwd=2, col=3)

> legend(14,20,

legend=c("Multigrade class", "Single grade class"),

lty=c(1,1), col=c(3,2))

>

Note here the use of the col option in plot() to color lines, thus distinguishing the groups. Also,
the lwd option controls the width of the line, and pch defines the plotting symbol type. The
legend() function is then used to add a legend. Compare the magnitude of the COMB effect of
-1.79296, to the COMB effect obtained by the two sample mean comparison (also obtained by the
simple regression fit lang = β0 + β1 × COMB) of -2.4233. The resulting plot is shown in Figure 5.5.

20 30 40 50

-3
0

-2
0

-1
0

0
10

20

fit$fitted.values

fit$
re
sid
ua
ls

-3 -2 -1 0 1 2 3

-3
0

-2
0

-1
0

0
10

20

Normal Q-Q Plot

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

Figure 5.4: Residual plot and residual normal quantile plot for model lang = β0 + β1 × IQ + ε

4 6 8 10 12 14 16 18

10
20

30
40

50

nlschools$IQ

nl
sc
ho
ol
s$
la
ng

Multigrade class
Single grade class

Figure 5.5: Regression fit for model lang = β0 + β1 × IQ + β2 × COMB + ε.

68 CHAPTER 5. LINEAR REGRESSION - MODELING IN R

We may wonder, however, whether or not the slope of the regression line also differs by COMB

group. To test for this, we can use interaction terms, which are simply products of other predictors.
These are often very useful. When interactions are present, their components are refered to as main
effects.

For example, we might fit model:

lang = β0 + β1 × IQ + β2 × COMB + β3 × IQ× COMB + ε.

Here, both the intercept and slope can differ by COMB group:

lang = β0 + β1 × IQ + ε, for COMB = 0

and
lang = (β0 + β2) + (β1 + β3)× IQ + ε, for COMB = 1.

In other words, the intercepts and slopes differ between the two COMB groups by β2 and β3 re-
spectively, therefore such differences can be tested based on null hypotheses Ho : β2 = 0 and
Ho : β3 = 0.

We can fit this model using lm() (Figure 5.6). Interaction between two predictors are defined
in model notion using the operator “:”. Alternatively, the operator “*” will introduce interations
and main effects.

> par(mfrow=c(1,1))

> fit2 = lm(lang ~ IQ + COMB + IQ:COMB, data = nlschools)

> summary(fit2)

Call:

lm(formula = lang ~ IQ + COMB + IQ:COMB, data = nlschools)

Residuals:

Min 1Q Median 3Q Max

-27.768 -4.484 0.473 5.153 24.646

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.4068 1.0228 12.131 < 2e-16 ***

IQ 2.4533 0.0847 28.966 < 2e-16 ***

COMB1 -9.2019 1.8875 -4.875 1.16e-06 ***

IQ:COMB1 0.6317 0.1584 3.987 6.90e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.071 on 2283 degrees of freedom

Multiple R-squared: 0.3841,Adjusted R-squared: 0.3832

F-statistic: 474.5 on 3 and 2283 DF, p-value: < 2.2e-16

> cf = fit2$coefficients

5.7. POLYNOMIAL REGRESSION 69

> cf

(Intercept) IQ COMB1 IQ:COMB1

12.406772 2.453349 -9.201913 0.631680

> plot(nlschools$IQ, nlschools$\ttt{lang}, pch=20)

> lines(range(nlschools$IQ),

cf[1] + cf[2]*range(nlschools$IQ), lwd=2, col=2)

> lines(range(nlschools$IQ),

cf[1] + cf[3] + (cf[2]+cf[4])*range(nlschools$IQ), lwd=2, col=3)

> legend(14,20, legend=c("Multigrade class", "Single grade class"),

lty=c(1,1), col=c(3,2))

Here we see that language scores differ by COMB group, but also that this difference is larger
among students with lower IQs. We say that IQ interacts with the COMB factor. This suggests that
the performance of students with higher IQs may not be as influenced by external factors as other
students are.

4 6 8 10 12 14 16 18

10
20

30
40

50

nlschools$IQ

nl
sc
ho
ol
s$
la
ng

Multigrade class
Single grade class

Figure 5.6: Regression fit for model lang = β0 + β1 × IQ + β2 × COMB + β3 × IQ× COMB + ε.

5.7 Polynomial Regression

The terms linear in linear regression nominally refers to the relationship between the predictors
and the response. However, this has as much to do with the form of the inference as with any
functional relationship. Suppose we have a model of the form

Y = 10 + 2.3x− 0.2x2 + ε (5.4)

where ε is the familiar error term. If we regard x as a single predictor, than Equation (5.4) conforms
to (5.1) but not (5.2). On the other hand, we could also regard X1 = x and X2 = x2 as two distinct
predictors, in which case (5.4) conforms to both (5.1) and (5.2), with β0 = 10, β1 = 2.3 and
β2 = −0.2.

Fitting this type of model using multiple linear regression is referred to as polynomial regression.
The methodology and inference remain exactly the same, as long as the linear structure of the

70 CHAPTER 5. LINEAR REGRESSION - MODELING IN R

inference is understood. In fact, introducing quadratic terms into a regression equation is a common
method of both testing for nonlinear relationships between response and predictor, and for modeling
such relationships when appropriate. We might first compare the full and reduced models

Y = β0 + β1x+ β2x
2 + ε,

Y = β0 + β1x+ ε.

In this case, if a hypothesis test is able to reject the hypothesis Ho : β2 = 0, then the full model could
be accepted and summarized. For more complex problems of this type the methods of Section 4.2.2
are available. We should note that somewhat more mathematically sophisticated methods exist for
polynomial regression, which are implemented in R. One common practice is to use (x− x̄)2 instead
of x2 as the quadratic term, particularly when a large range in x leads to a much larger range in x2.
Although the fitted values Ŷ will be identical using either form, the actual coefficient values will
be different, and are usually more intuitively interpretable using the form (x− x̄)2. The quadratic
term can be introduced into an R formula object using the notation I(x2̂).

The following script simulates data from the model of Equation (5.4), using 19 equally spaced
values for x ranging from 0 to 5.4. The error terms have standard deviation σ = 0.5 (how can you
tell this?). The model formula is created in object lrform, and used directly in function lm(). In
general, elements of a formula can refer to columns in a data frame, which would then be explicitly
reference using the data option in the lm() function, as shown in the examples using the nlschools
data frame earlier in this chapter.

> f0 = function(x) {10 + 2.3*x - 0.2*x^2}

>

> x = seq(0,5.5,0.3)

> xsq = x^2

>

> plot(x,f0(x))

>

> mux = f0(x)

> y = mux + rnorm(length(x))/2

> plot(x,y,pch=20,cex=1)

> lrform = y~x + I(x^2)

> lrform

y ~ x + I(x^2)

> fit = lm(lrform)

> summary(fit)

Call:

lm(formula = lrform)

Residuals:

Min 1Q Median 3Q Max

-0.56569 -0.25812 -0.05227 0.24923 0.75776

Coefficients:

5.7. POLYNOMIAL REGRESSION 71

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.73262 0.24194 40.228 < 2e-16 ***

x 2.53668 0.20771 12.212 1.6e-09 ***

I(x^2) -0.25088 0.03713 -6.758 4.6e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3892 on 16 degrees of freedom

Multiple R-squared: 0.9701,Adjusted R-squared: 0.9663

F-statistic: 259.4 on 2 and 16 DF, p-value: 6.417e-13

> lines(x,mux,lty=2)

> lines(x,predict(fit),lty=1)

> legend(’bottomright’,legend=c(’True Mean Response’,’Estimated Mean Response’),

col=c(1,1),lty=c(2,1))

>

The resulting plot is shown in Figure 5.7. The fitted and true mean response curves are shown,
along with the data points. The estimates β̂0 = 9.73262, β̂1 = 2.53668 and β̂2 = −0.25088 are quite
close to the true values β0 = 10.0, β1 = 2.3 and β2 = −0.2.

0 1 2 3 4 5

1
0

1
2

1
4

1
6

x

y

True Mean Response
Estimated Mean Response

Figure 5.7: Data and linear model fit for polynomial regression example of Section 5.7.

There is, however, much more to be discussed regarding polynomial regression. We will do so
in Chapter 19 after a suitable mathematical foundation has been laid.

Chapter 6

Linear Regression - Formulation
Using Matrix Algebra

There will be considerable advantage to expressing linear regression in terms of linear algebra.
At this point we adopt the notation of Chapter 15. The responses are y and the predictors are
X = [x1 · · ·xq]. What was written before as model:

yi = β0 + β1xi1 + . . .+ βpxip + εi, i = 1, . . . , n, εi ∼ N(0, σ2),

now becomes
y = β1x1 + . . .+ βqxq + εεε = Xβββ + εεε

where εεε is the column vector of error terms εi. It is important to note that the intercept term has
not been removed. It is now column vector ~1 = [1 · · · 1]T in X. This means if we have p predictors
in the usual sense, then X will have q = p + 1 column vectors, assuming the intercept is to be
included.

We also note that the SSE can be expressed in matrix form as

SSE[βββ] = (y−Xβββ)T (y−Xβββ).

6.1 Regression Coefficients βββ

The least squares estimates of regression coefficients βββ is given by

β̂ββ = (XTX)−1XTy (6.1)

using standard matrix multiplication. The covariance matrix of β̂ββ is given by

Σ
β̂ββ

= σ2(XTX)−1. (6.2)

Then the estimated covariance matrix is

S2
β̂ββ

= MSE × (XTX)−1 (6.3)

so that the standard errors referred to in Section 4.2 are given directly by

Sβ̂j =

√
MSE × [(XTX)−1]jj , (6.4)

that is, the square root of the jth diagonal element of matrix (6.3).

72

6.2. LINEAR COMBINATIONS OF βββ 73

6.2 Linear Combinations of βββ

One important problem in linear regression is the estimation of linear combinations of the regression
coefficients. Let

η = a1β1 + . . . aqβq = aaaTβββ,

where aaa = [a1 · · · aq]T is the appropriate column vector. The obvious estimator for η is

η̂ = aaaT β̂ββ. (6.5)

It may also be shown that the standard error Sη̂ of this estimate is given by

S2
η̂ = MSE × aaaT (XTX)−1aaa, (6.6)

which may be used in the inference procedures described in Section 4.2.

6.3 Fitted Values ŷyy

The column vector of fitted values is then expressed as, using (6.1),

ŷyy = Xβ̂ββ = X(XTX)−1XTy = Hy

where

H = X(XTX)−1XT

is known as the ‘hat’ matrix. This matrix is symmetric. It is also idempotent, meaning that
H = H2. The covariance matrix of y is Σy = σ2In, where In is the n × n identity matrix, so the
covariance matrix of ŷyy is therefore

Σŷyy = H
[
σ2In

]
HT = σ2H,

(see Appendix B). The variance of a single fitted values is therefore

σ2
ŷyyi

= σ2Hii. (6.7)

The standard errors are obtained by substituting MSE for σ2:

S2
ŷyy = MSE ×H,

S2
ŷyyi

= MSE ×Hii. (6.8)

6.4 Residuals eee

It is important to realize that while MSE1/2 is an estimate of σ, it is not an estimate of the
standard deviation of ei = yi − ŷi, which is itself a linear combination of the responses y. Viewed
this way, the residual vector is

eee = y− ŷyy = [In −H]y,

74 CHAPTER 6. LINEAR REGRESSION - FORMULATION USING MATRIX ALGEBRA

where In is the n× n identity matrix. The covariance matrix of y is Σy = σ2In, so the covariance
matrix of eee is therefore

Σeee = σ2[In −H][In −H]T = σ2[In −H],

(see Appendix B) so that the variance of ei is

σ2
ei = σ2(1−Hii), (6.9)

with standard errors

S2
eee = MSE × (In −H),

S2
ei = MSE × (1−Hii).

This is an important result, because it reveals that the variances of ei are not equal, depending
directly on the leverage Hii. This means a high leverage observation tends to disproportianately
pull the regression line towards it. In fact, since Hii may be arbitrarily close to 1, from (6.9) we
can see that σ2

ei may be arbitrarily close to zero, so this effect may be quite dominant.

Chapter 7

Least Squares Regression and Vector
Spaces

In the following discussion, it may be useful to keep in mind an important difference between pure
and applied mathematics. Applied mathematics is usually concerned with a program. This may
be the development of a fluid flow model, the application of a statistical estimation procedure, or
the optimization of a function. The explanation of such programs follows a natural sequence of
tasks. On the other hand, pure mathematics is often concerned with establishing the equivalence, or
otherwise, of two mathematical objects, which may have quite different derivations. In the author’s
experience, this difference must be understood in order for applied mathematicians to make good
use of pure mathematics. The end result should be that applied mathematics is made simpler, not
more challenging.

7.1 Vector Spaces and Prediction Spaces

We first define a collection of p vectors, denoted ṽvv = (vvv1, . . . , vvvp), where vvvj ∈ Rn. The span of a
set of vectors ṽvv, denoted span(ṽvv), is the set of all linear combinations of vectors in ṽvv. Next, assign
a symbol to span(ṽvv), say

V = span(ṽvv). (7.1)

What kind of object is V? Any linear combination of vectors from ṽvv is itself a vector in Rn, so V
is a special type of subset, in particular,

V ⊂ Rn.

Consider the following example of a vector span.

Example 7.1. We are given the set of vectors ṽvv = (vvv1, vvv2) in R3:

vvv1 = (1/2, 1/2, 5/8),

vvv2 = (1/2,−1/2,−1/8).

Then span(ṽvv) is the set of all vectors

V = {β1vvv1 + β2vvv2 : β1, β2}. (7.2)

75

76 CHAPTER 7. LEAST SQUARES REGRESSION AND VECTOR SPACES

Then suppose vvv′ ∈ V. This means

vvv′ =

 x1

x2

x3

 =

 (β1 + β2)/2
(β1 − β2)/2
(5β1 − β2)/8

 (7.3)

for some β1, β2. After some algebra we have

β1 = x1 + x2

β2 = x1 − x2,

which upon substitution into the third element of the vector defined in (7.3) gives the constraint

x3 =
1

2
x1 +

3

4
x2. (7.4)

Thus, the span V can be defined explicitly by construction, as in (7.2), or implicitly, as any vector
(or point) in R3 which satisfies constraint (7.4):

V = {(x1, x2, x3) ∈ R3 : x3 =
1

2
x1 +

3

4
x2}.

In addition, we maybe regard V as the surface of the multivariate function

f(x1, x2) =
1

2
x1 +

3

4
x2,

so that

V = {(x1, x2, f(x1, x2)) : (x1, x2) ∈ R2}.

However V is conceived, it can be visualized as a 2-dimensional plane in R3, which is illustrated
graphically in Figure 7.1.

7.1. VECTOR SPACES AND PREDICTION SPACES 77

x1

x2

x3

●

●

●

●

(1/2, 1/2, 5/8)

(−1/2, 1/2, 1/8)

(1/2, −1/2, −1/8)

(−1/2, −1/2, −5/8)

Figure 7.1: Plot shows rectangular section of span(ṽvv), where ṽvv = (vvv1, vvv2), vvv1 = (1/2, 1/2, 5/8),
vvv2 = (1/2,−1/2,−1/8).

It is important to observe that the vector span V given in Example 7.1 exists in three dimensions,
but is essentially a two-dimensional object. This is a crucial concept in studying linear models.
That V is two-dimensional would seem to follow from the fact that it is a span of two vectors. But
the number of vectors defining the span does not necessarily determine its dimension. This issue is
explored further in the next example.

Example 7.2. We continue Example 7.1. Suppose we add a new vector vvv3 = (−1/2,−1/2,−5/8),
and set ṽvv′ = (vvv1, vvv2, vvv3). Clearly, the dimension of span(ṽvv′) will be at least 2, because ṽvv′ includes
vvv1 and vvv2. However, vvv3 is in the span of vvv1 and vvv2 (see Figure 7.1). More precisely, vvv3 is a linear
combination of vvv1 and vvv2:

vvv3 = −vvv1 + 0vvv2.

This means for any β1, β2, β3

vvv′ = β1vvv1 + β2vvv2 + β3vvv3

= β1vvv1 + β2vvv2 + β3(−vvv1 + 0vvv2)

= (β1 − β3)vvv1 + β2vvv2.

In other words, any linear combination of vvv1, vvv2 and vvv3 is also a linear combination of vvv1 and vvv2, so
that span(ṽvv′) = span(ṽvv). Therefore, adding vvv3 does not increase the dimension of the vector span.

Suppose for the third vector we use instead vvv3 = (0, 0, 1), and redefine ṽvv′ accordingly. Then all
elementary vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (1, 0, 0) are in span(ṽvv′). This is verified by

78 CHAPTER 7. LEAST SQUARES REGRESSION AND VECTOR SPACES

observing

e1 = vvv1 + vvv2 −
1

2
vvv3

e2 = vvv1 − vvv2 −
3

4
vvv3

e3 = vvv3.

This means that any linear combination of the elementary vectors e1, e2 and e3 is also a linear
combination of vvv1, vvv2 and vvv3. But any vector in R3 is a linear combination of elementary vectors,
so we may conclude span(ṽvv′) = R3, and the span is now three dimensional.

Example 7.2 makes clear that the dimension of a vector span need not be the same as the number
of vectors defining the span (it can be less, but not greater). Consider the following definition:

Definition 7.1. The elements of vectors ṽvv = (vvv1, . . . , vvvm) are linearly independent if
∑m

j=1 ajvvvj = 0
implies aj = 0 for all j. Equivalently, the property holds if no vvvj is a linear combination of the
remaining vectors.

Suppose the vectors in ṽvv are not linearly independent. This means that, say, vvvm is a linear
combination of the remaining vectors, and so any linear combination in span(ṽvv) including vvvm may
be replaced with one including only the remaining vectors, so that span(ṽvv) = span(vvv1, . . . , vvvm−1).
This situation is illustrated in Example 7.2.

We then define the vector space:

Definition 7.2. A set of vectors V is a vector space if it is closed under all linear combinations.
In particular, if vvv1, vvv2 ∈ V, then avvv1 + bvvv2 ∈ V, for any two scalars a, b. This means that a vector
space must include the identity ~0, and for every element vvv ∈ V there is an inverse vvv−1 ∈ V such
that vvv + vvv−1 = ~0.

Then a set of vectors ṽvv is a basis for vector space V if

(i) V = span(ṽvv), and
(ii) The vectors in ṽvv are linearly independent (Definition 7.1).

Note that the definition of a vector space given in a formal treatment of abstract algebra or
functional analysis is typically much more detailed. The purpose of much of this detail, however, is
to ensure that linear combinations of vectors can be well defined. Once this is given, the important
property of a vector space is closure under linear combinations, which in turn implies the existence
of the identity and of inverses. Also, note that vector spaces can be defined for sets of general
types of objects. Here, we take a “vector” to be an element of Rn, but V may also be some class
of functions, as we will see below.

The dimension of a vector space V is the minimum number of vectors whose span equals V.
Clearly, this equals the number in any set of linearly independent vectors which span V. Equiva-
lently, this is the number of vectors in any basis (Definition 7.2). Clearly, a vector space will not
have a unique basis. However, the dimension is a characteristic of the vector space itself, so that
any basis must have the same number of vectors.

7.2. LINEAR TRANSFORMATIONS OF PREDICTION SPACES 79

7.2 Linear Transformations of Prediction Spaces

Consider the matrix representation of the multiple linear regression model

y = Xβββ + εεε (7.5)

where y is an n× 1 response vector,

X =

 x11 x12 . . . x1p
...

...
...

...
xn1 xn2 . . . xnp

is a n× p matrix, βββ is a p× 1 vector of coefficients, and εεε is an n× 1 vector of error terms. Then
the least squares estimates β̂ββ of βββ are obtained by minimizing

SSE =
n∑
i=1

(yi − ŷi)
2

where ŷ = Xβ̂ββ is the n× 1 vector of fitted values.
Suppose we then consider a linear transformation of X

X′ = XA =

 x′11 x′12 . . . x′1p
...

...
...

...
x′n1 x′n2 . . . x′np

 (7.6)

so that

x′ij =

p∑
k=1

akjxik.

That is, each predictor column of X′ is a linear combination of the predictor columns of X.
This generates a transformed model

y = X′βββ′ + εεε. (7.7)

Note that y and εεε are identical in models (7.5) and (7.7), and X′ is derived from X.

Clearly, we can obtain least squares estimates β̂ββ
′
= [β̂′1 . . . β̂

′
p]
T for model (7.7) in the same way

least squares estimates β̂ββ = [β̂1 . . . β̂q]
T were obtained for model (7.5).

The crucial question is whether or not the least squares fitted model for (7.5) and (7.7) differ

in any important way. Clearly, β̂ββ and β̂ββ
′

will not in general be equal. To see this, consider the
following example.

Example 7.3. Suppose the transformation matrix A is purely diagonal:

A =

1/2 0 . . . 0 0
0 1/2 . . . 0 0
...

...
...

...
...

0 0 . . . 1/2 0
0 0 . . . 0 1/2

 .

80 CHAPTER 7. LEAST SQUARES REGRESSION AND VECTOR SPACES

Then the transformation is simply

X′ = XA =
1

2
X,

and model (7.7) becomes

y = X′βββ′ + εεε =
1

2
Xβββ′ + εεε. (7.8)

So, if β̂ββ is the least squares estimate of βββ for model (7.5), then it seems reasonable to expect that

β̂ββ
′
= 2β̂ββ will be the least squares estimates of βββ′ for model (7.8), and the two models will not differ

in any important way. This is what we might expect of the units of a predictor were changed from,
say, feet to inches.

7.2.1 Evaluation of transformation matrix A

We are sometimes given both design matrices X, X′ of Equation (7.6), but then are faced with the
problem of deducing the transformation matrix A by which they are related. In fact, R provides
many powerful functions with which to construct design matrices X′ which are linear transfor-
mations of predictors given in some convenient form, in which case it may be useful to known
A.

In this case we may simply premultiply Equation (7.6) by [X′]T , yielding

[X′]TX′ = [X′]TXA,

so that
A =

(
[X′]TX

)−1
[X′]TX′. (7.9)

We will see that A is often chosen so that X′ has orthonormal column vectors, so that

A =
(
[X′]TX

)−1
I =

(
[X′]TX

)−1
. (7.10)

We will see examples of this in later applications.

7.3 General Transformation Equivalence

It turns out that this type of equivalence illustrated in Example 7.3 will hold for any invertible
transformation matrix A. Consider again model (7.5). Viewed geometrically, the vector of fitted
values ŷ is a linear combination of the form

ŷ = β̂1x1 + . . .+ β̂qxq,

where x1, . . . ,xq are the n × 1 column vectors of X. Let Y be the set of all n × 1 vectors which
are linear combinations of the column vectors of X (this set is strictly smaller than Rn, provided
n > q). If these column vectors are linearly independent, they form a basis for vector space Y.
Then ŷ is the unique vector in Y which minimizes SSE (this is because SSE is interpretable as a
strictly convex mapping of βββ).

If we consider instead the matrix representation of the multiple linear regression model (7.7)
we have

y = X′βββ′ + εεε,

7.3. GENERAL TRANSFORMATION EQUIVALENCE 81

with fitted values
ŷ′ = β̂′1x

′
1 + . . .+ β̂′qx

′
p.

Here, the least squares solution is obtained by minimizing SSE with respect to ŷ′ over Y ′, the
span of the column vectors of X′. However, if A is invertible, it is easily shown that Y = Y ′. In
particular, if ŷ ∈ Y, then there exists β̂ββ such that

ŷ = Xβ̂ββ = X′A−1β̂ββ = X′β̂ββ
′
,

where
β̂ββ
′
= A−1β̂ββ. (7.11)

This establishes an important principle for transformed regression models.

Theorem 7.1. Suppose we have linear models

y = Xβββ + εεε,

y = X′βββ′ + εεε,

where y and εεε are common to both models, X is an n× p matrix of linearly independent columns,
and

X′ = XA

for some invertible p× p matrix A. Then suppose β̂ββ, β̂ββ
′

are the respective least squares estimates

of the coefficients, and denote the fitted values ŷ = Xβ̂ββ and ŷ′ = X′β̂ββ
′
. Then the two fitted models

are equivalent in the sense that
ŷ = ŷ′.

In addition, the following relation always holds

β̂ββ
′
= A−1β̂ββ.

Proof. The argument is essentially that leading to Equation (7.11). Alternatively, consider the
SSE for model y = Xβββ + εεε:

SSE[βββ∗] = (y−Xβββ∗)T (y−Xβββ∗). (7.12)

Note that the vector βββ′ may assume any value in Rp. Then, it may be verified that SSE[βββ] is
uniquely minimized by some β̂ββ ∈ Rp.

Then consider the SSE for model y = X′βββ′ + εεε:

SSE′[βββ∗] = (y−X′βββ∗)T (y−X′βββ∗). (7.13)

As in the previous SSE, βββ∗ is simply a dummy variable over which SSE and SSE′ are minimized.
Then substitute the transformation X′ = XA into the preceding expression:

SSE′[βββ∗] = (y−XAβββ∗)T (y−XAβββ∗). (7.14)

From Equation (7.12), SSE[βββ∗] is minimized by allowing β∗ to vary over domain Rp. However, the
expression in (7.14) is equivalent to (7.12), except that Aβββ∗ replaces βββ∗. Since A is invertible, as βββ∗

82 CHAPTER 7. LEAST SQUARES REGRESSION AND VECTOR SPACES

varies over Rp, so does Aβββ∗, so that the two minimization problems are equivalent. In particular,

if βββ∗ = β̂ββ minimizes SSE[βββ∗], and βββ∗ = β̂ββ
′

minimizes SSE′[βββ∗], then

SSE[β̂ββ] = SSE′[β̂ββ
′
],

and
β̂ββ = Aβ̂ββ

′

7.4 Orthogonalization of Predictor Matrices

The dot product of two vectors uuu = (u1, . . . , un) and vvv = (v1, . . . , vn) is the scalar

uuu · vvv =
n∑
i=1

uivi.

Then uuu is a unit vector if uuu ·uuu = 1. Vectors uuu and vvv are orthogonal if uuu ·vvv = 0, and are orthonormal
if, in addition, they are both unit vectors.

A square m×m matrix M is an orthogonal matrix if distinct column vectors are orthonormal.
In that case, M is invertible, with M−1 = MT , so that MTM = I.

More generally, an n × p matrix X may have orthogonal or orthonormal column vectors (this
is only possible if n ≥ p). In the latter case X shares with an orthogonal matrix the property

XTX = I.

When we refer to the orthogonalization of a rectangular matrix, this is what is meant.
Then, linear transformations are often used to “orthogonalize” a linear regression model. If

β̂ββ = [β̂1 . . . β̂q]
T is the vector of least squares coefficient estimates, then the covariance matrix is

given by
Σ
β̂ββ

= σ2(XTX)−1

(Section 6.1). But an invertible square matrix is diagonal if and only if its inverse is diagonal.
Therefore, the components of β̂ββ are uncorrelated if and only if XTX is a diagonal matrix. This
condition is equivalent to

n∑
i=1

xijxik = 0 (7.15)

for each pair j 6= k. If the columns of X are orthogonal, XTX will be a diagonal matrix, and if the
columns are orthonormal, XTX will be the identity matrix.

7.4.1 Orthogonalization of simple linear regression

Simple linear regression offers a ready demonstration of the orthogonalization process. Here we
have

X =

 1 x1
...

...
1 xn

 .

7.4. ORTHOGONALIZATION OF PREDICTOR MATRICES 83

Select transformation matrix

A =

[
1 −x̄
0 1

]
where x̄ = n−1

∑
i xi. Then

X′ =

 1 x1 − x̄
...

...
1 xn − x̄

 .
We then have

[X′]TX′ =

[
n 0
0
∑n

i=1(xi − x̄)2

]
therefore condition (7.15) is satisfied, which implies that the least squares coefficients β̂0 and β̂1

are uncorrelated.

7.4.2 QR decomposition

Clearly, the basis for a vector space is not unique, and the formulation of a basis with certain
advantageous properties can be an important problem. Suppose X is a n × p design matrix, and
let V be the span of the column vectors. If the column vectors are linearly independent, then they
will form a basis for V.

Definition 7.3. A QR decomposition of an n× p matrix X is any product

X = QR (7.16)

where Q is an n×r matrix with orthonormal column vectors and R is a r×p matrix. The smallest
value of r for which this decomposition is possible is the matrix rank of X. Then X is a full rank
matrix if its rank is p, assuming p ≤ n.

The column vectors of a full rank matrix are necessarily linearly independent, in which case R
is invertible.

Clearly, a QR decomposition will not be unique. They can be constructed using a number
of well-known algorithms, including the Gram-Schmidt process, Householder transformations, or
Givens rotations (Chambers, 1977). For a full rank matrix, R can be readily constructed to be
upper triangular. Note that an upper triangular matrix is invertible if and only if all diagonal
elements are nonzero.

7.4.3 Orthogonalization of multiple linear regression

QR decomposition provides a general method of extending the idea discussed in Section 7.4.1 to
multiple linear regression. First note that we may force the new predictor matrix X′ to have
orthonormal in addition to orthogonal column vectors, in which case

Σ
β̂ββ

= σ2([X′]TX′)−1 = σ2Ip. (7.17)

Then given prediction matrix X and QR decomposition (7.16), we set transformation matrix A =
R−1, giving transformed predictor matrix

X′ = XR−1 = Q,

84 CHAPTER 7. LEAST SQUARES REGRESSION AND VECTOR SPACES

possessing orthonormal columns. We will see this idea used later in Section 19.2. It is also a useful
countermeasure in the presence of collinearity (Section 8.6).

Chapter 8

Linear Regression Diagnostics -
Outliers, Influential Observations and
Collinearity

An anomalous observation in a single sample is almost always an outlier, or a measurement that is a
relatively large distance from almost all remaining measurements. In regression, there is more than
one reason to consider an observation anomalous (an observation here is collectively the response
with associated predictor values). Also complicating matters is the fact that the responses are not
from a single well defined distribution. Anomalies in linear regression are usually (at least) one of
the following three types:

• An outlier is an observation with a large residual.

• An observation with high leverage is an observation with one or more relatively extreme
predictor values.

• An observation is influential if its removal changes the fitted model significantly. This applies
either to any of the coefficients, or to a fitted values.

Since the motivation is to test whether or not removing an observation significantly changes the
model fit (relative to the remaining observations), quantitative diagnostic measures often measure
the effect of deleting an observation. This can be done by simply recalculating the fit after removing
each observation in turn, but explicit formula usually exist, saving considerable computation time.

We use the notation ŷyy−i, β̂−ij ,
[
S2
β̂ββ

]−i
, for example, to denote the various quantities associated

with a regression model calculated after deleting the ith observation.

The reader should review Chapter 6, Appendix B, and Appendix A as needed.

8.1 Leverage

The ith diagonal element Hii of the hat matrix H (Section 6.3) is referred to as the leverage for the
ith observation. The motivation for this definition is as follows. Estimates should be reasonably
stable, in the sense that a small change in a data set should not result in a large change in the

85

86CHAPTER 8. LINEAR REGRESSION DIAGNOSTICS - OUTLIERS, INFLUENTIAL OBSERVATIONS AND COLLINEARITY

model estimate. However, if one observation has a relatively large value for Hii (referred to as a
high leverage point), this suggests that it has a disproportionately large effect on the fitted model,
as can be seen by Equation (6.7). This may be problematic, since we would not like the fitted
model to depend significantly on the presence or absence of one, or a few, high leverage points.

We next consider what constitutes high leverage, and there are a number of principles that may
be used. The simplest approach is to examine all leverage values Hii with a boxplot or histogram to
detect outliers. However, there are several methods by which the magnitude of Hii can be judged
without having to examine all leverage values at once.

It may be shown that we always have

trace(H) = q,

where the trace of a square matrix is the sum of the diagonal elements. Also, it always holds that
n−1 ≤ Hii ≤ 1. If there are n observations then the average value for Hii must be q/n. For this
reason, high leverage points may be flagged with a simple rule such as

Hii ≥ 2q/n.

8.2 Cook’s Distance

Another commonly used diagnostic is based on Cook’s distance:

Di =
e2
i

q ×MSE

[
Hii

(1−Hii)2

]
.

This is an interesting statistic for a number of reasons. First, it can be shown that an equivalent
form for Di is

Di =

∑
j 6=i(ŷj − ŷ

−i
j)2

q ×MSE
,

where ŷj is the jth fitted value using all data, and ŷ−ij is the jth fitted value obtained after deleting
observation i. The equivalence of these two forms for Di show that a fitted model may change
considerably following the addition or deletion of a high leverage point.

We also note that Di may be compared to a Fq,n−q distribution, and on this basis high leverage
points may be flagged by comparison to an appropriate quantile. A number of rules are used, which
are more or less conservative, for example:

Di ≥ 1.

8.3 Studentized Residuals

In statistics, the term studentize refers to the adjustment of a statistic by dividing it by its standard
error, in the form of an estimate of the true standard deviation obtained from the data. The t-
statistic is one example. The studentized residuals are therefore given by

e∗i =
ei
S′ei

, i = 1, . . . , n. (8.1)

8.4. INFLUENCE MEASURES 87

Because e∗i is usually used for diagnostic purposes, we do not estimate σei using all the data.
For this reason, we use the notation S′ei ≈ σei in (8.1). We retain the quantity Hii appearing
in the expression for σ2

ei in (6.9). However, because we are accepting the possibility that the ith
observation is anomolous, it is appropriate to use MSE−i instead of MSE to estimate σ2 in (6.9),
noting that both are unbiased estimates of σ2. This gives

S′ei =
√
MSE−i(1−Hii),

which, combined with (8.1) defined the studentized residual, sometimes denoted RSTUDENTi.

8.4 Influence Measures

One method of determining the influence of an observation is to simply delete it, recalculate any of
the various model quantities, and then note the change. Accordingly, given q predictors (including
the intercept), define the quantities

DFBETAij = β̂j − β̂−ij =

[
(XTX)−1ẋi

]
j
ei

1−Hii
, i = 1, . . . , n, j = 1, . . . , q.

Similarly, define

DFFITi = ŷyyi − ŷyy−ii =
Hiiei

1−Hii
,

where ŷyy−ii is the fitted value of the model at predictor value ẋi recalculated after deleting the ith
observation.

These quantities can be made more easily interpretable in their standardized form. Since
DFBETAij measures a change in β̂j resulting from the deletion of the ith observation, it makes
sense to standardize it by dividing by its standard error, the equation for which is given in (6.4).
Since we are interested in the standard error of β̂j and not β̂−ij (which are different) we do not
delete the ith observation in X. However, because we are accepting the possibility that the ith
observation is anomolous, it is appropriate to substitute MSE−i for MSE in (6.4), noting that
both are unbiased estimates of σ2. This gives the standardized form

DFBETASij =
DFBETAij√

MSE−i × [(XTX)−1]jj

.

Similarly, from the standard error for ŷyyi given in (6.8) we have the standardized version of DFFITi:

DFFITSij =
DFFITi√
MSE−i ×Hii

.

8.5 Covariance Ratio

The covariance ratio is defined as

cov.ratio =
det
(

[S2
β̂ββ
]−i
)

det
(
S2
β̂ββ

)

88CHAPTER 8. LINEAR REGRESSION DIAGNOSTICS - OUTLIERS, INFLUENTIAL OBSERVATIONS AND COLLINEARITY

This measures the aggregate effect of deleting an observation on the standard errors of the coefficient
estimate β̂ββ.

8.6 Collinearity

Based on (6.3), the standard error for β̂j can be shown to be obtained from

S2
β̂j

= MSE ×
[
(XTX)−1

]
jj

=
MSE∑n

i=1(xij − x̄j)2

1

1−R2
xj |X−j

. (8.2)

Here, x̄j is the mean of predictor xj , and R2
xj |X−j

is the value of R2 obtained by regressing xj onto

the remaining predictors. It is interesting to compare this expression to the standard error for the
slope coefficient in simple regression

S2
β̂1

=
MSE∑n

i=1(xij − x̄j)2

(see Equation (4.4)). The form is the same for both, except for the variance inflation factor (VIF):

V IFj =
1

1−R2
xj |X−j

which appears in equation (8.2). A few things are notable about V IFj . First, the quantity R2
xj |X−j

is a direct measure of collinearity, or the degree to which xj is linearly correlated to other predictors.
It can be seen that if xj is exactly equal to some linear combination of other predictors, then it is
not needed in the model. For example, if x1 = x2 + x3, then a fitted model

ŷyy = 2.5x1 − 4.7x2 + 10.4x3 (8.3)

can always be replaced by

ŷyy = 2.5x1 − 4.7x2 + 10.4x3

= 2.5(x2 + x3)− 4.7x2 + 10.4x3

= −2.2x2 + 12.9x3, (8.4)

and we can dispense with x1 entirely. Equations (8.3) and (8.4) are equivalent in the sense that
they yield exactly the same fitted values. So they are the same model. However, this example does
not convey the entire problem. We could easily construct a third equivalent model:

ŷyy = 1.5x1 − 3.7x2 + 11.4x3. (8.5)

Although we generally expect the least squares estimates to uniquely minimize the SSE, when
predictors are not linearly independent, there will exist an infinite number of least squares fits.

Next, suppose the predictors are linearly independent but that for some predictor xj , R
2
xj |X−j

is very close to 1. We will have a unique least squares fit, but something of the character of the
preceding example remains. Models with widely varying fitted coefficients will have values of SSE
close to the minimum attainable, and will yield very similar fitted values ŷyy. The consequence of

8.7. POSTSCRIPT 89

this can be seen directly, since we would then have a very large value of V IFj and, by (8.2), a very
large value for S2

β̂j
, meaning that the coefficient βj cannot be reliably estimated. A generally used

rule of thumb flags collinearity effects when

V IFj ≥ 10.

Collinearity can be avoided by orthogonalizing the prediction matrix X using QR decomposition
(Section 7.4.3) or principal components analysis (Section 17.3).

Demonstration software file REGRESSION-D.R gives an introduction to the use of R in regression
diagnostics, while Problems 22.7 and 22.8 explore the topic further.

8.7 Postscript

Chapter 22 gives practice problems for linear regression, although this topic is explored in the
context of other methodology introduced in these notes. There are also four demonstration software
files REGRESSION-A.R, REGRESSION-B.R, REGRESSION-C.R and REGRESSION-D.R.

The literature on linear regression is, of course, quite extensive, and it would be difficult to do
it justice.

First, as usual, James et al. (2013) provides an introduction to linear regression comparable to
that provided here, in the context of R, and is an excellent source of practice problems. Neter et al.
(1996) can be singled out as an excellent introductory text. Concepts are introduced throughout
in the context of detailed examples. It is also quite comprehensive in scope, and covers at an intro-
ductory level a number of important topics not included in these notes (correlated errors in linear
models, for example). One further advantage is that it includes an extended section on ANOVA,
which by itself is comparable to an independent textbook. This can be highly recommended as a
reference text for the practicing data scientist.

For the reader interested in a more detailed development of linear regression from the linear
algebraic point of view, Sen and Srivastava (2012) can be highly recommended. More advanced
topics are covered in Seber and Lee (2012) and Seber and Wild (1989).

When error terms are not independent, or identically distributed, as will often be the case,
generalized least squares may be used (otherwise, inferences which make use of the iid assumption
will be incorrect). Alternatively, longitudinal models anticipate correlation induced by repeated
measures, or observations clustered by subject, typically observed over time. This subject is quite
advanced, and requires a separate study. A good starting point would be McCulloch et al. (2008).

Chapter 9

Maximum Likelihood Estimation

Suppose we are given a joint density f(X̃; θ) of a random vector X̃ = (X1, . . . , Xn), noting that
the density depends on a parameter θ ∈ Θ, where Θ is known as the parameter space. If we think
of f(X̃; θ) as a function on the n-dimensional sample space, fixing θ, it is a probbaility density
function. However, we may also think of it as a function of θ over Θ, holding X̃ fixed. In this case,
it is referred to as the likelihood function

l(θ) = l(θ; X̃) = f(X̃; θ),

or, equivalently, the log-likelihood function

L(θ) = L(θ; X̃) = log f(X̃; θ).

If we are given a sample X̃, and we know the density has form f(X̃; θ), but we don’t know the
value of θ, then L(θ; X̃) becomes a type of index describing how well a particular parameter value
θ′ ∈ Θ describes the data. This is because, intuitively, we would expect the likelihood l(θ′; X̃) to
be relatively large when θ′ is close to the true value of θ. Thus, the maximum likelihood estimate
(MLE) θ̂MLE is defined as

θ̂MLE = argmaxθ∈ΘL(θ; X̃). (9.1)

There are, of course, a few technical issues. First, there is no guarantee that a maximum is unique,
or even exists, although for many well known cases regularity conditions under which this holds
have been derived. Note also that we use the log-likelihood function. It would be equivalent to use
the likeihood function, but in practice the computation tends to be simpler using (9.1).

9.1 Fisher Information

There exists a general theory that we outline here. Given a function f(x1, . . . , xn) of n variables
the Hessian matrix is the matrix of second order partial derivatives:

H =

∂2f
∂x12

· · · ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

∂xn2

 .
90

9.1. FISHER INFORMATION 91

We will use the shorthand

H =
∂2f

∂x2

where we use vector representation x = (x1, . . . , xn). The i, jth element of H is written

Hij =
∂2f

∂xj∂xj
.

The Fisher information matrix is defined as

I(θ) = −E

[
∂2L(θ; X̃)

∂θ2

]
and plays an important role in the theory of statistical inference, since it can be shown that the
covariance matrix of θ̂MLE , say Σθ̂MLE

, is approximately equal to I(θ∗)−1, where θ∗ is the true

value. Of course, θ∗ will not be known in the typical inference problem, but is estimated by θ̂MLE .
In turn, the covariance matrix of θ̂MLE can be estimated by substituting θ̂MLE for θ∗, that is,

Σθ̂MLE
≈ I(θ̂MLE)−1.

The observed Fisher information matrix is then

J (θ) = −∂L(θ2; X̃)

∂θ2
.

When this information matrix is used, it is sometimes the convention to refer to I(θ) as the expected
Fisher information matrix, so that I(θ) = E[J (θ)]. It is also possible to estimate Σθ̂MLE

using the
observed information, setting

Σθ̂MLE
≈ J (θ̂MLE)−1.

Using either form of information, we then have a general approach to formal inference in max-
imum likelihood estimation. Suppose θ ∈ Θ ⊂ Rp. This means

θ̂MLE = (θ̂1, . . . , θ̂p)

is a p-dimensional vector. Under general conditions the distribution of θ̂MLE is well approximated
by a multivariate normal distribution

θ̂MLE ∼ N(θ∗,Σθ̂MLE
).

Since Σθ̂MLE
≈ I(θ∗)−1 we also have the approximate distribution

θ̂MLE ∼ N(θ∗, I(θ∗)−1).

The final step is to substitute θ̂MLE for θ∗, using either the expected or observed information:

θ̂MLE ∼ N(θ∗, I(θ̂MLE)−1) or θ̂MLE ∼ N(θ∗,J (θ̂MLE)−1).

The choice between the expected and observed information has been widely discussed in the liter-
ature, largely due to the seminal paper Efron and Hinkley (1978).

92 CHAPTER 9. MAXIMUM LIKELIHOOD ESTIMATION

9.2 Inference Methods

Suppose we accept the estimate

Σθ̂MLE
≈ Î−1,

where

Î = I(θ̂MLE) or Î = J (θ̂MLE).

The standard error of component θ̂i of θ̂MLE is therefore

SEθ̂i =

√
[Î−1]ii,

that is, the square root of the ith element on the diagonal of Î−1. Then, level 1 − α confidence
intervals for the ith element of θ are given by

CI1−α = θ̂i ± tn−d;α/2SEθ̂i ,

where d is the degrees of freedom of the model, or for large sample sizes

CI1−α = θ̂i ± zα/2SEθ̂i .

Similarly, under a null hypothesis Ho : θi = θ∗i we have null distribution

θ̂i − θ∗i
SEθ̂i

∼ Tn−d

or for large samples

θ̂i − θ∗i
SEθ̂i

∼ N(0, 1).

Example 9.1. It is worth examining what the likelihood function looks like for a model we have
already seen. The model for simple linear regression is

yi = β0 + β1xi + εi, εi ∼ N(0, σ2).

Usually, the error terms εi are assume to be independent. Of course, this might not be the case,
but we will assume that here. This means means that the responses yi are also independent.

How do we assign a density to this model, in order to construct a likelihood function? The first
problem is to define the unknown parameters. In simple linear regression, this usually includes
β0, β1, although even here this ultimately depends on the application. The next problem is to
decide whether or not σ2 is a parameter. It is almost always ‘unknown’, but if it is not the object
of the inference, we may regard it as fixed (if not ‘known’), taking only the regression coefficients
as parameters. In this particular case, either choice will lead to the same estimated regression
coefficients, so we will opt to regard σ2 as fixed.

Note also that the predictors xi are considered fixed. This means

yi ∼ N(β0 + β1xi, σ
2),

9.3. THE LIKELIHOOD RATIO TEST AND DEVIANCE 93

and so the density of ỹ = (y1, . . . , yn) is, following (B.5), is

f(ỹ) =
n∏
i=1

φ(yi;β0 + β1xi, σ
2).

After some algebra, the log-likelihood function becomes

L(β0, β1; ỹ) = − 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2 + C (9.2)

where C is a constant which does not depend on parameters β0, β1, and so may be removed from
the likelihood function.

Finally, examining (9.2) we can see that the estimates β̂0, β̂1 which maximum the log-likelihood
function are exactly those that minimize the least squares criterion

SSE[β0, β1] =

n∑
i=1

(yi − β0 − β1xi)
2.

This means that the MLEs of β0, β1 are equal to the least squares estimates.

9.3 The Likelihood Ratio Test and Deviance

In linear regression the quantity SSE serves as a goodness of fit measure. It also serves as a means
of comparing nested models. Suppose a full model has q predictors (in addition to the intercept).
Then define a reduced model which contains only p < q of these predictors. The reduced model
can be considered to be a special case of the full model in which the coefficients βi for the removed
predictors are forced to zero. We then have SSEred ≥ SSEfull, since SSEfull is the minimum SSE
over the full model space, which includes the reduced model. The F -statistic is then

F =
(SSEred − SSEfull)/(q − p)

SSEfull/(n− (q + 1))
(9.3)

which has an Fq−p,n−(q+1) distribution under tha null hypothesis that the reduced model is correct.
A similar method of inference is available for maximum likelihood estimation. Suppose we are

given data X̃ and a likelihood function l(θ; X̃) on parameter space Θf ∈ Rq. Then let Θr ∈ Rp.
Assume the parameter spaces Θr and Θf are nested, in the sense that models in Θr are contained
in Θf . This situation describes the comparison of full and reduced regression models just described.
SImilarly, we calculate the full and reduced MLEs

θ̂f = argmaxθ∈Θf
l(θ; X̃),

θ̂r = argmaxθ∈Θr l(θ; X̃).

The likelihood ratio statistic is then

Λ(X̃; θ̂r, θ̂f) =
l(θ̂r; X̃)

l(θ̂f ; X̃)
,

94 CHAPTER 9. MAXIMUM LIKELIHOOD ESTIMATION

with small values of Λ(X̃) tending to support the full model. If we define null hypothesis Ho : θ ∈ Θr

(that is, the reduced model is correct) then by Wilk’s theorem

−2 log(Λ(X̃; θ̂r, θ̂f)) ∼ χ2
q−p (9.4)

approximately for large enough sample size. This serves the same purpose as the F -test defined in
(9.3).

An analog of SSE may then be developed by defining the saturated model, for which the number
of parameters is the same as the number of observations, so that the data are fitted exactly. For
example, if in a linear regression model there are n linearly independent predictors (including the
intercept) then we can attain SSE = 0 (since the fitted values can be made to equal the responses
exactly). Suppose the resulting MLE is θ̂s. Then any model is nested within the saturation model.
Suppose θ̂m is the MLE for our model of interest. The model deviance is then based on the
likelihood ratio test for the model of interest compared to the saturated model:

D(θ̂m) = −2 log(Λ(X̃; θ̂m, θ̂s)).

This statistic serves much the same purpose as the SSE, and permits a systematic comparison of
models, since, for example

D(θ̂r)−D(θ̂f) = −2 log(Λ(X̃; θ̂r, θ̂f)), (9.5)

which is just a reformulation of (9.4). In pratice, to compare nested models, we can calculate the
change in deviance (9.5), and compare this quantity to a χ2

q−p distribution. If the change is large
(ie. the p-value is small), then we conclude that the full model is an improvement over the reduced
model.

9.4 Postscript

Maximum likelihood theory is foundational, and must be studied in the context of a more general
theory of statistical inference (Section 1.2). For our purposes, it provides a means of extending
the ANOVA concept discussed in Section 2.10 to more general models. This idea is developed in
Chapter 10 on logistic regression.

Chapter 10

Logistic Regression

Consider a vector of responses y and a single predictor x. So far, our regression models have
assumed that the response has been normally distributed. We also noted that this assumption can
be relaxed somewhat, with the inference methods for β̂0, β̂1, based on the t-distribution, remaining
a reasonably accurate approximate.

Suppose. however, that are interested in predicting a binary outcomes. For example, we might
track whether or not a clinic patient has a certain infection. Then the response would be, say,
yi = 1 if the patient is infected, and yi = 0 otherwise. Thus, yi is a Bernoulli random variable, and
the normal assumption would not be appropriate.

Recall that when we develop a regression function

f̂(x) = β̂0 + β̂1x

we can think of f̂ either as a prediction of a future response y give feature x, or as an estimate of
the expected response E[y]. Similarly, for binary response, we may regard the problem as one of
developing a function which estimates the expected value

P (A) = E[yi] = g(xi) (10.1)

where we recognize yi as the indicator function I{A}. In our example, A = {patient is infected}.
The most common approach to this problem is the logistic regression model. We retain much of

the structure of linear regression. For example, we have the usual prediction matrix X and linear
coefficients

η = β0 + β1x1 + . . .+ βpxp.

However, η is not related to the response via the linear regression model y = η+ ε. Noting that an
estimate of E[yi] should sensibly be forced into the unit interval [0, 1], we select g in (10.1) which
does this, which then relates η to the response:

E[yi] = g(η). (10.2)

The final choice is of g. Several are proposed in the literature, but the most commonly used is the
logistic function

g(η) =
eη

1 + eη
=

1

1 + e−η
∈ (0, 1) (10.3)

This completely specifies the model:

yi ∼ bern(g(ηi)), where ηi = β0 + β1xi1 + . . .+ βpxip.

95

96 CHAPTER 10. LOGISTIC REGRESSION

10.1 The Odds Ratio in Logistic Regression

One advantage of the logistic function (10.3) is that it gives a very convenient method of calculating
the odds ratio of the defining event yi = 1 between two predictor values. Given response/predictor
pair (y, ẋ) we have estimate

P (y = 1) ≈ 1

1 + e−β̂ββ
T
ẋ
, and

Odds(y = 1) ≈ eβ̂ββ
T
ẋ.

Given two predictor observations ẋ, ẋ′ the odds ratio between them is therefore estimated by

OR(y = 1; ẋ, ẋ′) ≈ eβ̂ββ
T

(ẋ−ẋ′).

10.2 Likelihood Method for Logistic Regression

The density function for a Bernoulli random variable Y ∼ bern(π) can be written

f(y) = πy(1− π)1−y.

Then set expected values of yi to be
πi = g(ηi).

Note that πi is ultimately a function of the regression coefficients βi. If we assume the responses
are independent (as is commonly done), the likelihood function is, after some algebra,

l(β̂ββ; ỹ) =
n∏
i=1

πyii (1− πi)1−yi , (10.4)

and the log-likelihhood function is

L(β̂ββ; ỹ) =

n∑
i=1

yi log(πi) + (1− yi) log(1− πi).

We can use the methods outlined in Chapter 9 to obtain MLEs and standard errors for β̂ββ. This is
what most software does. However, there is no closed form solution to the optimization problem,
so numerical algorithms are used.

We would also like to develop a goodness of fit measure, since this is an important tool for model
selection. Although the model can be considered a form of classification, it yields a quantitative
estimate in the form a probability, rather than a predicted class, so classification error CE is not
a natural choice.

We then note that in linear regression, the goodness of fit measure is based on the criterion
which is optimized in order to fit the model, which is the MSE. In logistic regression, it is the
likelihood which is optimized.

In logistic regression, the fitted values are π̂i, the estimates of E[yi]. Next, recall from the
theory of linear regression the notion of a full and reduced model.

10.2. LIKELIHOOD METHOD FOR LOGISTIC REGRESSION 97

The Null Model

Recall that the simplest regression model is the one for which all coefficients are zero except the
intercept:

yi = β0 + εi, (10.5)

that is, the predictors play no role. In this case, the least squares (and the maximum liklihood)
estimate is β̂0 = ȳ.

The same logic applies to logistic regression. If the linear prediction term is simple ηi = β0, it
is easily shown that the maximum likehood estimate of the fitted values is simply

π̂i = π̂null =
1

n

n∑
i=1

yi, for all i,

which is the observed probability that yi = 1 (the estimate β̂0 is whatever value uniquely achieves
this). The null likelihood is then

lnull = π̂n1
null(1− π̂null)

n−n1

where n1 is the number of responses equal to one.

The Fitted Likelihood

Once the MLEs β̂i are calculated, they can be substituted back into the linear predictor terms to
yield

η̂i = β̂0 + β̂1xi1 + . . .+ β̂pxip

and

π̂i = g(η̂i).

Subtituting into (10.4) yields the fitted likelihood

lfit = l(β̂ββ; ỹ).

The Saturated Likelihood

Recall the saturated model of Section 9.3. If we had a ‘perfect’ model, then we would have enough
predictors to force yi = ŷi for all i. As can be seen from (10.4) the likelihood would be equal to
one in this case, yielding saturated likelihood:

lsat = 1.

At this point recall the ANOVA structure in linear regression (Section 3.2). The total sum of
squares decomposes as

SSTO = SSR+ SSE.

While SSE is a goodness of fit measure for the regression model, it is also important to remem-
ber that SSTO is also interpretable as a special case of SSE for the null model (10.5), and SSR

98 CHAPTER 10. LOGISTIC REGRESSION

is reduction in SSE when predictors are added to the null model. We also have coefficient of
determination

R2 =
SSTO − SSE

SSTO
=

SSR

SSTO
. (10.6)

Following Section 9.3 we may define model deviance,

Dmodel = − [2 log(lfit)− 2 log(lsat)] = −2 log(lfit),

and null deviance

Dnull = − [2 log(lnull)− 2 log(lsat)] = −2 log(lnull).

These quantities serve as a type of ANOVA decomposition, with analogous relationships

Dmodel ⇐⇒ SSE,

Dnull ⇐⇒ SSTO, and

Dnull −Dmodel ⇐⇒ SSR.

By Wilk’s theorem (9.4), under the null hypothesis

Ho : E[yi] = π, i = 1, . . . , n

that the null model is correct we have

Dnull −Dmodel ∼ χ2
p

approximately, where p is the number of predictors (in addition to the intercept).

In addition, it is common to define a pseudo-R2, of which several forms exist. By direct analogy
to linear regression we have

R2
L =

Dnull −Dmodel

Dnull
,

known as the likelihood ratio R2 (compare to (10.6)). It is known that R2
L is not in a monotonic

relationship with the odds ratio (Section 10.1). The Cox-Snell R2 is an alternative pseudo-R2

defined by

R2
CS = 1−

(
lnull
lmodel

)2/n

.

This is a more natural choice for logistic regression based on maximum likelihood estimation.
However, the maximum value of R2

CS is

R2
CS ≤ 1− (lnull)

2/n < 1,

since R2
CS would be maximized by the saturated model. For this reason, the Nagelkerke pseudo-R2

is sometimes used, which is simply R2
CS normalized to attain a maximum of 1:

R2
N =

R2
CS

1− (lnull)
2/n

.

10.3. POSTSCRIPT 99

10.3 Postscript

One of the obvious limitations of Gaussian linear regression models considered in Chapters 3-8
is the restrictive assumption that the error terms are iid normal random variables, meaning that
the responses are independent and normally distributed with common variance. In this chapter
we considered the logistic regression model, for which responses are independent binary random
variables.

We should note that logistic regression is one example of a class of models known as generalized
linear models (GLM), originally formulated in the seminal paper Nelder and Wedderburn (1972) as
a unified theory of linear models admitting responses of varying distributions. If we set the linear
prediction term

η = β0 + β1x1 + . . .+ βpxp,

we then specify a link function g through which the mean of response y is related to the predictors
as follows:

E[y] = g−1(η),

We then have a variance function
v(µ) = variance(µ),

which, depending on the distribution, relates the mean to the variance. For logistic regression with
binary responses of mean µ, we have

E[y] =
eη

1 + eη
(10.7)

and
v(µ) = µ(1− µ).

These models are fitted using maximum likelihood estimation (Chapter 9). However, it’s worth not-
ing that least squares regression estimation with Gaussian responses is mathematically equivalent
to maximum likelihood estimation (Example 9.1), so the class of GLMs includes this model, after
setting g(x) = x and v(µ) ≡ σ2. GLMs are commonly used to build linear models with responses
possessing the Poisson, gamma, inverse gamma, bernoulli or binomial distributions, and can also be
used to model categorical responses with m classes (logistic regression is an example of this model
with m = 2). While the variance function v is determined by the response distribution, the link
function is a matter of choice. Usually, the choice of link function has significant implications for
the type of inferences available. The choice of the link function implied by Equation (10.7) permits
inference to be expressed in terms of the odds ratio (Sections 10.1, 16.5).

For a primary text, see, for example, McCullagh and Nelder (1989). In R, GLMs are implemented
in the glm() function. See Venables and Ripley (2013) for a good introduction to its use.

GLMs are commonly extended to longitudinal models (Section 8.7). See, for example, McCul-
loch et al. (2008).

Chapter 23 contains a variety of practice problems in logistic regression modeling. In addition,
demonstration software CLASSIFICATION-B.R give a detailed demonstration of a logistic regression
analysis.

Chapter 11

Survival Analysis

We may think of survival analysis as the extension of statistical methods to models for which the
response variable is some measure of time. This is conventionally referred to as a survival time,
but represents any time to event observations (time between cancer diagnosis and cancer mortality,
time from cancer treatment to cancer recurrence, waiting time in a queue, and so on). A survey of
prediction methods should anticipate that the object to be predicted may be a survival time.

However, the statistical methods used in survival analysis differ in some important ways from
other types of linear models, and therefore need a separate development (an in depth discussion of
these methods is not included in, for example, James et al. (2013) or Friedman et al. (2001)). An
important consideration is the possibility of censored survival times. Suppose the primary outcome
of a study is time to recurrence of a form of cancer, represented as variable T . Suppose when the
study ends a patient has been observed for, say 7 months without recurrence. We do not observe
T for this patient, since any recurrence occurring after the study ends will not be observed by
the researcher. But neither can we simply discard this information, since this will lead to a bias
(probably, overall recurrence times would then be underestimated). Instead, we recognize that we
still have partial information, in that we at least know that T ≥ 7. Such an observation is censored,
and the ability of survival analysis to model this type of data gives it much of its unique character.
Once these methods are understood, survival analysis can be readily incorporated into the broader
concepts of statistical learning.

Much of the more advanced theory of survival analysis is available in Cox and Oakes (1984).
We also point out the introduction of the Kaplan-Meier estimator of the survival function (Section
11.3.2 below) in the seminal paper Kaplan and Meier (1958).

Formally, a survival time T is a nonnegative random variable variously interpreted as a survival
time, lifetime, waiting time, time to event, and so on. A survival time may be discrete (for example,
number of integer days until event) or continuous.

11.1 Memoryless Distributions

Recall the memoryless property which characterizes the geometric and exponential distributions,
that the average waiting time remaining, after having already waited a time t, is the same as the
original average waiting time.

100

11.2. THE FAILURE RATE 101

Example 11.1. The geometric random variable possesses the interesting memoryless property .
Suppose you have been repeatedly playing a game of chance with a probability p of winning. After
k games you have not yet won. We assume the outcomes are independent. Is the amount of time
until you win, starting from that point, different from the time to win when you started to play?
Many are tempted to believe that prior losses shorten the expected time to future wins, as though
the number of losses is somehow fixed. The question is answered by the following conditional
probability:

P (X > k + t | X > k) =
P (X > k + t)

P (X > k)
=

(1− p)k+t

(1− p)k
= (1− p)t, (11.1)

using the CDF of the geometric distribution. This is the probability that at least t further losses
precede a win following k consecutive losses. It is exactly the probability that at least t losses
precede a win at the beginning of play. In other words, the waiting time for a win following k losses
does not depend on k in any way. Equation (11.1) is a statement of the memoryless property.

At this point, it is worthing noting the resemblance of the exponential density to the geometric
density. First, the CDF is naturally calculated following the tail probability, for t > 0

FX(t) = P (X > t) =

∫ ∞
t

λe−λx = −e−λx
∣∣∣∞
t

= e−λt,

so that the CDF is

FX(t) =

{
0 ; t < 0
1− e−λt ; t ≥ 0

. (11.2)

Second, the exponential RV possesses the same type of memoryless property demonstrated in
Example 11.1.

Theorem 11.1. An exponentially distributed RV X ∼ exp(λ) possesses the memoryless property

P (X > t+ s | X > s) = P (X > t). (11.3)

Proof. We have directly from (11.2)

P (X > t+ s | X > s) =
P (X > t+ s,X > s)

P (X > s)
=
P (X > t+ s)

P (X > s)
=
e−λ(t+s)

e−λs
= e−λt

from which (11.3) follows.

11.2 The Failure Rate

The key to understanding this idea is to consider a failure rate. Suppose a survival time T is
discrete, representing the number of days until failure of a component (a light bulb, for example).
Let qi be the failure rate on day i. This means that if the component has survived until day i (T ≥ i)
we toss a coin (independently of all previous coin tosses). If we get a ‘head’ (for our particular
coins, this has probability qi) the component ‘fails’ and the survival time is T = i, terminating the

102 CHAPTER 11. SURVIVAL ANALYSIS

process. First, note that the failure rates qi are not a probability mass function for T . They are
actually the conditional probabilities

qi = P (T = i | T ≥ i), i = 1, 2,

Second, these rates may increase or decrease in time, and what defines a memoryless distribution
is precisely the assumption that the failure rates remain constant. This defines the geometric
distribution.

We do not, on the other hand, expect the lifetime of, say, a car to be memoryless. We expect
that the probability that a 10-year old car survives one more year is smaller than that for a 5-year
old car, and smaller still than that for a new car. In other words, the failure rates qi increase in i.
Such a survival time is called new better than used (NBU).

A survival time may also be new worse than used (NWU), in which case the failure rates are
decreasing. The survival time for young members of a species in an environment with high infant
mortality will typically be NWU. This is because the period immediately after birth is very high in
mortality risk, meaning that the failure rate is correspondingly high. However, if the infant survives
this high risk period, the failure rate will decrease, resulting in a NWU survival time. Of course,
if the infant survives into adulthood, the failure rate will begin to increase. A natural source of
NWU survival times would be survival in competitive environments.

Example 11.2. A random variable W has a Weibull distribution if there are two parameters k > 0
and λ > 0 such that

X = (λW)k (11.4)

has an exp(1) distribution (exponential distrubution with λ = 1). This will be denoted W ∼
weibull(k, λ). This distribution is commonly used to model survival times. By convention, k is the
shape parameter and θ is the rate parameter. Note that in some conventions λ is replaced by, say,
1/τ , in which case τ is referred to as a scale parameter (be careful, since λ may be used as a scale
parameter). Both definitions are equivalent, once the transformation is understood. We use the
rate parameter in order to emphasize the relationship with the exponential distribution.

Suppose W ∼ weibull(k, λ). The CDF of X ∼ exp(1) is FX(x) = 1− exp(−x) for x ≥ 0, so

FW (w) = P (W ≤ w) = P
(
λ−1X1/k ≤ w

)
= P

(
X ≤ (λw)k

)
= 1− exp

(
− (λw)k

)
, w ≥ 0,

and FW (w) = 0 for w < 0. To evaluate the density function, take the deriviate of the cumulative
distribution function (CDF), giving

fW (w) =
d

dw

{
1− exp

(
− (λw)k

)}
= kλkwk−1 exp

(
− (λw)k

)
, w ≥ 0,

and fW (w) = 0 for w < 0.
For some positive d, define the function

h(x; d, k, λ) = P (W ≥ x+ d |W ≥ x) =
P (W ≥ x+ d)

P (W ≥ x)
.

This is interpretable as the probability that a system with a lifetime of W survives an additional d
time units, given that it has survived x time units. We may write an R function that accepts input
(x, d, k, λ) and returns h(x; d, k, λ). Note that the R function dweibull uses the scale parameter,
not the rate parameter, so we need to transform accordingly.

11.2. THE FAILURE RATE 103

f0 = function(x,d,ishape,irate) {

pweibull(x+d,shape=ishape,scale=1/irate,lower.tail=F)

/pweibull(x,shape=ishape,scale=1/irate,lower.tail=F)

}

Consider 3 Weibull distributions:

W1 ∼ weibull(k = 1/2, λ = 1/5),

W2 ∼ weibull(k = 1, λ = 1/10),

W3 ∼ weibull(k = 3/2, λ =
√
π/20).

The following R code draws the required plot in Figure 11.1.

ex1 = expression(italic(x))

ex2 = expression(paste(italic(h),’(’,italic(x),’;’,italic(d),’,

’,italic(k),’,’,lambda,’)’,sep=’’))

ex3 = expression(paste(italic(d), ’ = 1, ’,italic(k),’ = 1/2,

’,lambda,’ = 1/5’,sep=’’))

ex4 = expression(paste(italic(d), ’ = 1, ’,italic(k),’ = 1,

’,lambda,’ = 1/10’,sep=’’))

ex5 = expression(paste(italic(d), ’ = 1, ’,italic(k),’ = 3/2,

’,lambda,’ = ’,sqrt(pi),’/20’,sep=’’))

xgr = seq(0,100,by = 1)

y = cbind(f0(xgr,1,0.5,1/5), f0(xgr,1,1.0,1/10), f0(xgr,1,2.0,sqrt(pi)/20))

par(mar=c(5,5,5,5))

matplot(xgr,y, col=c(2,3,4),lty=1,type=’l’,xlab=ex1,ylab=ex2)

legend(’bottomleft’,legend = c(ex3,ex4,ex5),col=c(2,3,4),lty=1,bty=’n’)

0 20 40 60 80 100

0.2
0.4

0.6
0.8

1.0

x

h(
x;d

,k
,λ)

d = 1, k = 1/2, λ = 1/5
d = 1, k = 1, λ = 1/10
d = 1, k = 3/2, λ = π /20

Figure 11.1: Plot for Example 11.2

The probability of surving an additional time unit given survival up to time x increases for W1,
remains constant for W2, and decreases for W3. This means W1,W2,W3 are NWU, memoryless
and NBU, respectively. See Figure 11.1.

104 CHAPTER 11. SURVIVAL ANALYSIS

The quantity h(x; d, k, λ) of Example 11.2 is interpretable as a probability of surviving an
addition d time units. If we divide by d, then the quantity h(x; d, k, λ)/d can be interpreted as a
failure rate or hazard rate. In fact, we can show that if we allow d to approach zero, the limit is
precisely the hazard function of a survival time X:

h(x) =
f(x)

S(x)
, (11.5)

where S(x) is the survival function
S(x) = 1− F (x) (11.6)

and f(x), F (x) are the density function and CDF of X. Then h(x) is interpreted as the failure rate
at time x. The cumulative hazard function is simply the integral

H(x) =

∫ x

y=0
h(y)dy. (11.7)

and it can be shown that
H(x) = − log(S(x)). (11.8)

11.3 Estimation of the Survival Function

The survival function is of great importance in survival analysis. For example, a cancer prognosis
is usually given in terms of S(x). The statement ‘5 year survival is 30%’ means exactly S(5) = 0.3.
Since S(x) is simply the complement of the CDF F (x), if we are given a sample of survival times
x1, . . . , xn, we can first estimate F with the empirical distribution function

F̂ (x) =
number of xi ≤ x

n
,

then the estimated survical function is

Ŝ(x) = 1− F̂ (x). (11.9)

11.3.1 Censoring

Unfortunately, there is a feature common to samples of survival data that prohibits the use of
(11.9). Suppose that we are studying the survival times of cancer patients (from time of diagnosis
until death by cancer, for example). The survival time ti recorded for patient i will, in practice,
either be the time from diagnosis to death by cancer, or it will be the time that the patient was
observed without having died from cancer. Presumably, a patient can be followed up only within
the lifetime of the study, or it may be that the patient died of other causes, or left the study for any
number of reasons. In this case we say that the observation ti is censored. It is a partial observation
of the survival time, in the sense that we can only say that the cancer survival time is ≥ ti. But,
this is still useful information, and so should be incorprated into the analysis. Note there are are
other forms of censoring. The one we have described is known as right censoring.

The symbol ‘+’ is used to denote censoring. If we have data (in months)

10.3, 11.2+, 13.6, 15.2

11.3. ESTIMATION OF THE SURVIVAL FUNCTION 105

this might mean, for example, that three patients died from cancer 10.3, 13.6 and 15.2 months after
diagnosis, and one patient was observed for 11.2 months after diagnosis without having died from
cancer.

11.3.2 Kaplan-Meier estimate of the survival function

Censored data cannot be used to construct the survival function estimate (11.9). Instead we may
use the Kaplan - Meier estimate. Suppose we are given survival times

0 = t0 < t1 < t2 < . . . < tm−1 < tm. (11.10)

Define intervals

Ii = [ti, ti+1).

Next, suppose pi is the probability of surviving interval Ii, given survival up to time ti. Then

S(ti) ≈
i−1∏
j=0

pj .

To estimate pi, let r(ti) be the number at risk (still alive) just before time ti, and let di be the
number of deaths. Then we estimate

pi ≈ p̂i =
r(ti)− di
r(ti)

.

The Kaplan - Meier estimate of the survival function is then

Ŝ(t) =
∏
ti<t

p̂i.

The estimator has a natural tabular representation. Suppose we are given a sample of survival
times T1, . . . , Tn. Values may be represented more than once, and some observations are censored.
Suppose the represented values are sorted as in (11.10). Survival time 0 is included as t0 whether
or not it appears in the sample. Thus, m need not equal n. We can then construct table

i ti di r(ti) p̂i
0 t0 = 0 d0 r(t0) = n (r(t0)− d0)/r(t0)
1 t1 d1 r(t1) (r(t1)− d1)/r(t1)
...

...
...

...
...

m tm dm r(tm) (r(tm)− dm)/r(tm)

Example 11.3. For example, if we have times 23.5, 34.0+, 34.0, 39.1+, 43.7, this yields Table 1

The following code calculates a Kaplan-Meier survival curve both directly from Table 1, and us-
ing the R function survfit(). See Figure 11.2. Note that censored observations are conventionally
indicated in a plot by the symbol ‘+’.

106 CHAPTER 11. SURVIVAL ANALYSIS

Table 1: Survival table for example .
i ti di r(ti) p̂i
0 0 0 5 (5-0)/5 = 1
1 23.5 1 5 (5-1)/5 = 4/5
2 34.0 1 4 (4-1)/4 = 3/4
2 39.1 0 2 (2-0)/2 = 1
3 43.7 1 1 (1-1)/1 = 0

Simple KM curve example. We’ll need the ’survival’ library.

library(survival)

Note the option pty=’s’, to create a step plot.

par(mfrow=c(1,2),pty=’s’)

#

Values from survival table.

#

p.hat = c(1,4/5,3/4,1,0)

km.time = c(0,23.5,34.0,39.1,43.7)

#

Calculate cumulative properties with R function cumprod()

#

km.curve = cumprod(p.hat)

#

Now draw plot

#

plot(km.time, km.curve, type=’s’, xlab=’Time’, ylab=’Survival’)

title("Cumulative probabilities")

#

In R, censored observations are represented by the object Surv(time, event, type="right").

#

time = observed time

event = 1 if time is complete, = 0 if time is censored.

Intuitively, event = 1 if a "death" or "failure" has occured.

type = type of censoring, right censoring being the default.

#

11.3. ESTIMATION OF THE SURVIVAL FUNCTION 107

#

Data entered as follows: z = observed time, ev = 0 if observation is censored.

#

z = c(23.5, 34.0, 34.0, 39.1, 43.7)

ev = c(1,0,1,0,1)

#

The R survfit function has several uses. When a formula is entered it

creates a KM survival curve, but it also will produce a survival curve

for a previously fitted Cox model. See help(survfit) for more.

#

Note that in this example, there are no predictors. So the formula is

Surv(z,ev)~1.

#

Note also that with the mark.time = TRUE option a "+" symbol will

mark each censored time.

#

plot(survfit(Surv(z,ev)~1), xlab=’Time’, ylab=’Survival’, mark.time = TRUE)

title("Using R survfit() function")

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l

Cumulative probabilities

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l

Using R survfit() function

Figure 11.2: Plot for Example 1

108 CHAPTER 11. SURVIVAL ANALYSIS

11.3.3 Cox proportional hazards regression

There are various ways to incorporate linear models into survival analysis. One of the most widely
used is the Cox proportional hazards regression model (CPH). We have the same linear prediction
term used in Gaussian linear models and logistic regression:

η = β1x1 + . . .+ βpxp. (11.11)

There is a baseline hazard function h0(x). The crucial assumption is that for any set of predictions,
there is an associated survival time with a hazard function h(x) ∝ h0(x), the exact relationship
being

h(x) = h0(x)eη. (11.12)

The data consists of observed survival times (possibly censored) associated with a set of predictors.
Note that the intercept term β0 is not needed. The important quantity is the hazard ratio

HR = eη−η
′
, (11.13)

where η and η′ are the linear prediction terms for two sets of predictors. This plays a similar role
to the odds ratio in logistic regression (Section 10.1).

Despite the apparent difference in structure between the CPH model and other linear models
already considered, the actual process of model building may be quite similar, and the R function
coxph() (from the survival package) outputs a coefficient table very similar to that produced by
lm() or glm() (the function used for logistic regression).

We will give a brief introduction to using the CPH model in R. A more detailed tutorial can be
found in the demonstration software file SURVIVAL.R. We will make use of the Melanoma data set
from the MASS library. The help(Melanoma) documentation is printed below:

Melanoma {MASS} R Documentation

Survival from Malignant Melanoma

Description

The Melanoma data frame has data on 205 patients in Denmark with malignant melanoma.

Usage

Melanoma

Format

This data frame contains the following columns:

time

survival time in days, possibly censored.

status

1 died from melanoma, 2 alive, 3 dead from other causes.

11.3. ESTIMATION OF THE SURVIVAL FUNCTION 109

sex

1 = male, 0 = female.

age

age in years.

year

of operation.

thickness

tumour thickness in mm.

ulcer

1 = presence, 0 = absence.

Source

P. K. Andersen, O. Borgan, R. D. Gill and N. Keiding (1993) Statistical Models

based on Counting Processes. Springer.

The survival times are contained in time, and the censoring status can be obtained from status.
The object will then be to model the effect on survival time of melanoma patients of various
predictors, which may include sex, age, year, thickness or ulcer. The descriptions are given
above.

Here, observations with status == 3 (dead from other causes) are removed for the analysis,
although the associated survival times may conceivably be interpreted as censored. Then status

== 2 (alive) signifies a censored survival time. Once the event indicator is created (in ev, say), it
may be used to create the survival time response object Surv(time,ev) and used in a formula.

> #

> # We will need the following libraries:

> #

>

> library(MASS)

> library(survival)

>

> #

> # Remove status = 3

> #

>

> Melanoma2 = subset(Melanoma, status!=3)

>

> #

> # Add Surv object event to the current dataframe.

> # We will then use Melanoma3

110 CHAPTER 11. SURVIVAL ANALYSIS

>

> head(Melanoma2)

time status sex age year thickness ulcer

3 35 2 1 41 1977 1.34 0

5 185 1 1 52 1965 12.08 1

6 204 1 1 28 1971 4.84 1

7 210 1 1 77 1972 5.16 1

9 232 1 1 49 1968 12.88 1

10 279 1 0 68 1971 7.41 1

> Melanoma3 = data.frame(Melanoma2, ev = 1*(Melanoma2$status==1))

> head(Melanoma3)

time status sex age year thickness ulcer ev

3 35 2 1 41 1977 1.34 0 0

5 185 1 1 52 1965 12.08 1 1

6 204 1 1 28 1971 4.84 1 1

7 210 1 1 77 1972 5.16 1 1

9 232 1 1 49 1968 12.88 1 1

10 279 1 0 68 1971 7.41 1 1

>

> ###

> ### Use Cox PH to build multiple regression models

> ###

>

> ### sex alone

>

> fit = coxph(Surv(time,ev) ~ sex, data=Melanoma3)

> summary(fit)$coef

coef exp(coef) se(coef) z Pr(>|z|)

sex 0.7007396 2.015243 0.2651396 2.642908 0.008219743

>

> ### sex and thickness

>

> fit = coxph(Surv(time,ev) ~ sex+thickness, data=Melanoma3)

> summary(fit)$coef

coef exp(coef) se(coef) z Pr(>|z|)

sex 0.6279349 1.873737 0.26521309 2.367662 1.790090e-02

thickness 0.1602204 1.173769 0.03236341 4.950664 7.396087e-07

>

> ### all main effects and 2nd order interactions

>

> fit = coxph(Surv(time,ev) ~ (sex+thickness+age+ulcer)^2, data=Melanoma3)

> summary(fit)$coef

coef exp(coef) se(coef) z Pr(>|z|)

sex 1.900499083 6.6892321 1.051709628 1.8070568 0.07075342

thickness -0.159887271 0.8522399 0.215200367 -0.7429693 0.45750025

11.3. ESTIMATION OF THE SURVIVAL FUNCTION 111

age 0.026088647 1.0264319 0.019929315 1.3090589 0.19051440

ulcer 1.990570432 7.3197080 1.250533580 1.5917769 0.11143485

sex:thickness 0.114050523 1.1208088 0.092297031 1.2356900 0.21657380

sex:age -0.025583430 0.9747411 0.016974041 -1.5072092 0.13175705

sex:ulcer -0.641314413 0.5265998 0.636445158 -1.0076507 0.31362218

thickness:age 0.003040403 1.0030450 0.002664797 1.1409509 0.25389036

thickness:ulcer 0.050266714 1.0515515 0.098163899 0.5120692 0.60860255

age:ulcer -0.012165871 0.9879078 0.021875595 -0.5561390 0.57811587

>

From the first model Surv(time,ev) sex, the coefficient associated with the sole predictor
sex is estimated to be β1 = 0.7007396. Note that sex is an indicator variable, with sex = 1/0
for males/females. So for this example, Equations (11.11), (11.12) and (11.13) can be readily
interpreted. The linear term itself is simply

η = β1 × sex

The hazard function for females (sex == 0) is

hfemales(x) ≈ h0(x)eβ1×0 = h0(x),

while for males (sex == 1) it is

hmales(x) ≈ h0(x)eβ̂1×1 = h0(x)e0.701.

It is important to note that, unlike linear or logistic regression, the mean of the response plays
no role in the actual fitting method. However, we can, in principle, obtain the mean survival time
from the hazard function, since it is a complete representation of the survival density. However, in
practice, the mean is often considered of secondary importance, since survival densities are often
highly skewed, and quantiles or tail probabilities (ie survival probabilities) are usually more readily
interpreted.

In an analysis like that illustrated in our example, interest is more likely to be in the effect of
predictor variables on survival rates. Here, we set ηmales and ηfemales to be the predictor terms of
the two classes of subjects. Then the hazard ratio between classes is, from Equation (11.13),

HR = eηmales−ηfemales = e(β1×1−β1×0) = eβ1 ≈ eβ̂1 = e0.701 = 2.015.

Thus, the hazard rate of males is estimated to be about twice that of females. Also, note that from
the coefficient table the P -value for the two-sided alternative against null hypothesis Ho : β1 = 0 is
P ≈ 0.008, so that the equivalent null hypothesis Ho : HR = 1 is rejected at this significance level.
A confidence interval for HR is also obtainable from the standard error Sβ̂1 = 0.2651396, so that

an approximate 95% confidence interval would have bounds

CIHR = e
β̂1±2Sβ̂1 = e0.701±0.532 = (1.19, 3.42).

112 CHAPTER 11. SURVIVAL ANALYSIS

11.4 Postscript

Among the canon of statistical methodology, survival analysis tends to be more of a specialty. It
is not covered in many general textbooks recommended by this author, for example, James et al.
(2013) or Neter et al. (1996). However, anyone interested in building predictive models or classifiers
must anticipate that the target responses may be time to event observations (cancer prognosis,
waiting time in a queue, etc). Cox and Oakes (1984) is a good primary text, and Van Belle et al.
(2004) provides an excellent applied introduction, ideal for the student familiar with the principles
of linear models, but unfamiliar with survival analysis. As for most other topics considered here,
Venables and Ripley (2013) gives a good introduction to R survival analysis functions, as well
as a compact but effective introduction to the mathematics underlying Kaplan-Meier estimation,
and the Cox proportional hazards model. Like the theory itself, R functions supporting survival
analysis tend to have their own structures and conventions, which must be taken into account when
mastering this topic.

A knowledge of survival analysis is important to the data science analyst, in that it extends
expertise to cover a class of applications which will almost certainly be encountered sooner or later.
But it is also an important companion to the analysis of positive random variables, which arise not
only as time to event data, but quite frequently in finance, econometrics, and engineering reliability.

What is often of interest here is not means and variances, but tails of density functions. Note
that survival analysis centers around the failure, or hazard, rate, and little use is made of means
and variances (Section 11.2). The crucial property becomes the rate at which the upper density
tail approaches zero. For the normal density this is quite fast, in particular, ∝ e−x

2/σ2
as x→∞.

On the other hand, the Pareto density is proportional to 1/xk, k > 1, and so convergence to zero as
x→∞ is much slower (the Pareto distribution is also referred to as a power-law distribution). The
term heavy-tailed distribution for a positive random variable X has various conventions. The most
precise definition requires that the distribution not possess a moment generating function (meaning
that the expected value E[etX] = ∞ for all t > 0). It can be more informally used to describe
distributions with “heavier tails” that the normal, meaning those that decrease more slowly to zero.

Heavy-tailed distributions typically do not possess all finite moments (although important ex-
ceptions exist, such as the log-normal distribution), meaning that E[Xr] =∞ for all r above some
positive integer. For the Pareto distribution, E[Xr] <∞ if and only if r < k − 1, and so does not
posses a mean if k ≤ 2, or a variance if k ≤ 3.

Monetary quantities tend to have heavy-tailed distributions. Part of the reason for this is that
pools of money tend to grow exponentially (for example the effect of interest rates). Exceptionally
large monetary values also appear when money beyond that needed for basis needs is reinvested.
One characteristic of heavy-tailed distributions is that such “outliers” can be predicted as part of
a distribution, rather than as an anomaly. See, for example, Ibragimov et al. (2015) for further
reading.

This type of positive random variable also emerges in engineering system reliability for the
purpose of modeling time to failure of a component or process. A very good introduction can be
found in Ross (2014), with more advanced statistical methods described in Meeker and Escobar
(2014).

Chapter 24 contains practice problems for survival analysis. Most provide practice in the
application of the Kaplan-Meier survival curve estimate or the Cox proportional hazards model.
Problem 24.5 emphasizes the crucial proportional hazards assumption. Problem 24.6 illustrates how

11.4. POSTSCRIPT 113

time to failure observations arise from engineering systems. In addition, Problem 27.2 describes an
engineering application making use of the Weibull distribution discussed in Example 11.2.

Chapter 12

Bayesian Inference

Suppose random data X is observed, which possesses a density f(x | θ) from a family of models
parametrized by θ ∈ Θ ⊂ Rp, where Θ is known as the parameter space.

Most modeling techniques we have seen attempt to minimize prediction error. We have also
seen the maximum likelihood principle. These methods can be modified to incorporate complexity
penalties, but what they have in common is that the selected model is the one which optimizes
some criterion.

Technically, the main difference between Bayesian inference and these other methods is that
optimization is replaced by integration. In likelihood, we regard the quantity l(θ) = f(x | θ) as a
modeling criterion to be optimized with respect to θ. In Bayesian inference, θ itself is taken to be a
random variable or vector. To formalize the idea, the following framework is adopted. We assume
there is a prior density π(θ) for θ. This describes the range of possible values for θ, and an initial
description of their relative plausibility, sometimes refered to as belief (or prior belief). This might
be based on some model, or it may be entirely subjective.

We have seen exactly this form of inference before in the Bayes classifer (Chapter 16.6). Given
classes j = 1, . . . ,m we have prior probabilities π1, . . . πm. In a sense we can think of class j as the
parameter θ within the set of all classes Θ = {1, . . . ,m}. We then have posterior probability, given
the data

P (j | x) =
f(x | j)πj
f(x)

=
f(x | j)πj∑m
j=1 f(x | j)πj

.

In other words, we have a prior distribution on the space of all models, and this distribution is
altered by conditioning on data (or evidence) to yield the posterior distribution.

In much the same way, if π(θ) is a continuous density on a parameter space Θ in Rp, we would
have posterior density

π(θ | x) =
f(x | θ)π(θ)

f(x)
=

f(x | θ)π(θ)∫
Θ f(x | θ)π(θ)dθ

. (12.1)

The prior density π(θ) itself will often depend on parameters, in this context refered to as
hyperparameters. The choice of hyperparameter can have considerable influence on the posterior
distribution, and is typically an important feature of Bayesian inference. See Section 12.2.3.

114

12.1. THE BAYES ESTIMATOR 115

12.1 The Bayes Estimator

In Chapter 16.6, we noted that the Bayes classifier minimized classification error. A similar result
holds for Bayesian inference in general.

The posterior distribution is the basis for Bayesian inference, but it is usually more convenient
to refer to a single point estimate. There is a well developed theory behind this problem, which
we briefly introduce. Recall from Section 15.5 the idea of loss L(x, y) and risk R = E[L(x, y)].
That discussion was in the context of prediction, that is, the construction of a predictor y which
is meant to be close to x, based on any avaliable feature data. The ideas are much the same for
estimation, in which x = θ is an unknown parameter to be estimated, and y is the estimator. The
loss function serves the same purpose, and is usually taken to be squared error L(x, y) = (x− y)2,
although absolute deviation L(x, y) = |x − y| is a commonly used alternative. In any case, we
generally assume L(x, x) = 0. Next, suppose θ̂ is an estimator of θ. Risk is then

R(θ, θ̂) = Eθ[L(θ, θ̂)]

where the expectation is calculated assuming that θ is the correct parameter value. Any loss
function may be used, but then, of course, the risk depends on that choice.

Risk is used to measure the accuracy of an estimator. We generally wish risk to be small, but we
also want this to hold in some sense over the entire parameter space θ ∈ Θ. For example, suppose
we wish to estimate θ from distribution N(θ, σ2), based on observation X ∈ N(θ, σ2). Clearly,
estimator θ̂ cannot depend on θ, but it should depend on observation X. Suppose, ignoring this
advice, we set θ̂ ≡ 10.51 for any value of X. In fact, this would be an excellent estimator if, indeed,
θ was equal to 10.5, since R(10.51, θ̂) = 0. But we can’t expect this, and R(θ, θ̂) would be very
large for most θ (not near 10.51).

There are a number of ways to use risk to formulate coherent criterion for the selection of
estimators. For example, suppose we have an iid sample from N(θ, σ2). It can be shown that
among unbiased estimates of θ, that is, estimators for which

Eθ[θ̂] = θ

for all θ ∈ Θ, the sample mean X̄ has uniformly minimum squared error risk over θ ∈ (−∞,∞)
(the estimator θ̂ ≡ 10.51 is not unbiased).

Bayesian inference provides a natural method of using risk to select estimators. We first integrate
risk over the prior distribution

B(π, θ̂) =

∫
θ∈Θ

R(θ, θ̂)π(θ)dθ,

a quantity known as Bayes risk. We interpret θ̂ as a decision rule which makes use of data to
be collected. Bayes risk expresses the expected performance of the decision rule before the data
is collected, and so is a property of an inference method, rather than a summary of a particular
inference. It also depends on the prior distribution. The problem, then, is to determine the
estimator θ̂ (or decision rule) which minimizes Bayes risk B(π, θ̂). This is known as the Bayes
estimator. It turns out that a very elegant solution to this problem exists. If L is squared error
loss then the Bayes estimator is the mean of the posterior distribution:

θ̂MSE =

∫
θ∈Θ

θπ(θ | x)dθ,

116 CHAPTER 12. BAYESIAN INFERENCE

which minimizes mean squared error MSE in the sense that it minimizes the mean squared error
loss over the prior distribution. Similarly, if L is absolute deviation, then the Bayes estimator is
the median of the posterior distribution:

θ̂MAD = median[π(θ | x)]

which minimizes mean absolute deviation MAD in the sense that it minimizes the mean absolute
error loss over the prior distribution.

12.2 Bayesian Inference for the Binomial Distribution

Suppose θ is a probability p in a binomial distribution bin(n, p). If we have no reason to favor
one choice of p over the other, we might set π(p) to be the uniform distribution on [0, 1]. This
would correspond to the uniform prior discussed in Section 16.6.1. However, a quite rich theory of
Bayesian inference for this problem exists.

12.2.1 The gamma and beta functions

First, the gamma function is defined by the definite integral

Γ(t) =

∫ ∞
x=0

xt−1e−xdx, t > 0.

It can be shown that

Γ(t+ 1) = tΓ(t),

and since Γ(1) = 1 we have

Γ(n) = (n− 1)!

for integers n = 1, 2, 3, The gamma function can therefore be thought of as a generalization of
the factorial. In addition, we have

Γ(1/2) =
√
π.

Similarly, the beta function is defined by the definite integral

B(α, β) =

∫ 1

u=0
uα−1(1− u)β−1du, α, β > 0.

It can be shown that we always have

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

12.2.2 The beta distribution

The beta function is used to normalize the beta distribution Z ∼ beta(α, β), which has density
function

f(z | α, β) =
1

B(α, β)
zα−1(1− z)β−1, z ∈ [0, 1].

12.2. BAYESIAN INFERENCE FOR THE BINOMIAL DISTRIBUTION 117

The beta distribution has support on the unit unterval [0, 1], and so it is useful for modeling
quantities that are interpretable as random probabilities. If Z ∼ beta(1, 1) then Z is uniformly
distributed on [0, 1], otherwise, the beta family admits a wide variety of shapes. The mean and
variance are important to note. We have

E[Z] =
1

B(α, β)

∫ 1

z=0
z × zα−1(1− z)β−1dz

=
1

B(α, β)

∫ 1

z=0
z(α+1)−1(1− z)β−1dz

=
B(α+ 1, β)

B(α, β)

=
α

α+ β
,

making use of the equalities noted above. The variance is given by

var[Z] =
αβ

(α+ β)2(α+ β + 1)
.

It is instructive to reparametrize the beta density, that is, to construct a one-to-one mapping
between parameter pairs (α, β) and, say, (ρ, T) such as

ρ =
α

α+ β
,

T = α+ β. (12.2)

Under the new parametrization we have

E[Z] = ρ,

var[Z] =
ρ(1− ρ)

T + 1
.

This can be compared to the estimator of a binomial proportion p̂ = X/n, where X ∼ bin(n, p),
which has mean and variance p and p(1− p)/n, respectively (see Chapter 15 of the CSC252 lecture
notes). Clearly, p̂ resembles Z ∼ beta(α, β) where, under the parametrization of (12.2), ρ can be
equated with p and T can be equated with n− 1.

12.2.3 Posterior distributions

Now, suppose we use beta(α, β) as the prior density π(p) for a binomial parameter p, to construct
a posterior distribution for p conditional on observation X ∼ bin(n, p). Here, α and β become the
hyperparameters. If we wish to use an uninformative prior (Section 16.6.1), we have the uniform
prior p ∼ beta(1, 1). On the other hand, is we believe that p is close to some value pprior, we set
ρ = pprior in (12.2). The remaining parameter T reflects the level of certainty we have in this prior
assumption, with larger values of T representing greater certainty. In a sense, T can be calibrated
by comparison with the sample size n used in the binomial parameter estimate p̂ (although p̂ is not
actually used in this analysis).

118 CHAPTER 12. BAYESIAN INFERENCE

Interpreting X as having a binomial distribution conditional on p, we write

P (X = x | p) =

(
n

x

)
px(1− p)n−x,

leading to posterior distribution

π(p | x) =
P (X = x | p)π(p)∫ 1

p=0 P (X = x | p)π(p)dp

=

(
n
x

)
px(1− p)n−x 1

B(α,β)p
α−1(1− p)β−1∫ 1

p=0

(
n
x

)
px(1− p)n−x 1

B(α,β)p
α−1(1− p)β−1dp

. (12.3)

Although this expression seems complicated, it is actually quite simple, as long as the objective is
kept in mind, which is to derive a density of p. We can always express (12.3) in the form

π(p | x) = Kg(p),

where K does not depend on p. This is sometimes written as a proportional relationship

π(p | x) ∝ g(p).

We can then renormalize to get

π(p | x) =
g(p)∫ 1

p=0 g(p)dp
,

and the normalization constant may have a convenient form. Clearly, from (12.3) we have

π(p | x) ∝ px+α−1(1− p)n−x+β−1.

In other words, the posterior density of p given observation X = x is beta(x+ α, n− x+ β). This
is an example of a conjugate prior, for which the prior and posterior distributions are in the same
parametric family. As a technical matter, note that the quantities

(
n
x

)
and 1/B(α, β) in (12.3) play

no role, since they do not depend on p (in fact, they appear in both the numerator and denominator,
and so cancel). In particular, we do not need to explicitly evaluate the integral in the denominator.

In the case of the binomial parameter p with beta(α, β) prior and observation X ∼ bin(n, p),
since the posterior density of p given observation X = x is beta(x+α, n−x+β), the Bayes estimator
with respect to squared error loss is

p̂MSE =
x+ α

n+ α+ β
.

12.3 Postscript

The subject of Bayesian inference is a foundational one, and is best studied in the context of a
more general theory of statistical inference (Section 1.2). In these notes, Bayesian ideas will be
revisited in Chapter 14 in the context of computational Bayesian methods. This field might be
said to originate in the practical problem of evaluating the posterior density of Equation (12.1)
when the denominator (or normalization constant) cannot in practice be calculated. In this case,

12.3. POSTSCRIPT 119

samples from this density can be simulated without requiring that constant, which is the subject
of Chapter 14. It can be said that a problem turns into an opportunity, since this method provides
a convenient solution to a large number of nonstandard inference problems, especially those using
data which is too sparse to admit more conventional methods (see, for example, Problem 27.2).

Bayesian ideas will also be applied to the problem of classification (Chapter 16), and we argue
there that a complete understanding of classification is impossible without them.

Practice problems in Bayesian inference are available in Chapter 25, and further examples can
be found in demonstration software file BAYESIAN-INFERENCE.R. Chapters 14 and 16 cite further
resources.

Chapter 13

Simulation Methods

Simulation methods play an important role in modern statistical practice. They provide a ready
means of obtaining P -values and confidence intervals when analytical methods would be impractical,
or even unavailable. Or, to be perfectly frank, they can simply save the analyst valuable time.
And it is a good habit to test one’s algorithm using simulated data sets, since their output can
be compared to what is known to be the correct answer (sometimes referred to as an oracle).
Demonstration software file MODEL-SELECTION-LASSO.R gives an extended example of this.

Simulation methods can involve either to simulating from known distribution, or resampling
from existing data. We discuss here primarily resampling methods, then review some of the basic
principles of the computational simulation of random variables.

Much of the theory we have seen is based on approximations to the normal distribution. We
either assume that the measurements we collect are normally distributed, or that the sample size
is large enough for the Central Limit Theorem to apply to the test statistic. This applies also to
test statistics with a χ2 distribution used for categorical data, with the additional assumption that
each category count is large enough.

There is very good reason to study normal-based theory, since much of it is provably optimal
when the assumptions are satisfied, as they often are. However, these assumptions will often prove
problematic, and even when they may hold, it might not be practical to verify them, for example,
when a procedure is to be repeatedly applied to a large number of cases. This is generally the case
in the analysis of, for example, gene expression data.

We then briefly consider two forms of simulation methods which do not rely on distributional
assumptions, and which are generally applicable.

13.1 Permutation Test

A permutation test is a hypothesis test in which a null distribution is created by a random permu-
tation of the data. Consider the following paired data,

X = 16.1 31.5 21.5 22.4 20.5 28.4 30.3 25.6 32.7 29.2 34.7

Y = 4.41 6.81 5.26 5.99 5.92 6.14 6.84 5.87 7.03 6.89 7.87

for which the Pearson correlation coefficient is robs = 0.939. Suppose we randomly permute one
of the variables (say, Y), then recalculate r. We can generate a random permutation with the
sample() function:

120

13.1. PERMUTATION TEST 121

> sample(11)

[1] 8 9 4 5 6 11 3 2 1 7 10

>

We can then permute Y , then recalculate r:

> Yrandom = Y[sample(11)]

> X

[1] 16.1 31.5 21.5 22.4 20.5 28.4 30.3 25.6 32.7 29.2 34.7

> Yrandom

[1] 4.41 6.81 6.84 7.03 6.14 6.89 5.26 7.87 5.87 5.99 5.92

> cor(X,Y)

[1] 0.9388037

> cor(X,Yrandom)

[1] 0.1196821

>

The correlation of the permuted data, r∗ = 0.1196821, is much smaller than the original robs =
0.939. This number is quite relevant, however. Under the null hypothesis Ho : ρ = 0, there
is no association between the paired variables X and Y . Therefore, if Ho is true, the observed
sample correlation robs should be comparable to a correlation coefficient r∗ produced by randomly
permuting the data. This gives directly a test procedure that does not require any distribution
assumptions. We can estimate the null distribution of r∗ by repeatedly permuting the data, and
then compared robs to this distribution, either by comparing it to a critical value of the null
distribution, or by estimating the appropriate tail probability to obtain a p-value.

We first simulate r∗ N = 50, 000 times, and display the distribution in a histogram (Figure
13.1).

> r.perm = rep(NA,50000)

> for (i in 1:50000) {r.perm[i] = cor(X,Y[sample(11)])}

>

> hist(r.perm, nclass=25)

> lines(rep(0.735,2), c(0,5000), col=4)

> lines(rep(-0.735,2), c(0,5000), col=4)

> text(-0.735,5500,"r = -0.735")

> text(0.735,5500,"r = 0.735")

We can show that the critical value rα/2 for a two-sided test against Ho : ρ = 0 (α = 0.01, n = 11)
was rα/2 = 0.735, that is we reject Ho if |robs| ≥ 0.735. This critical value is shown in Figure 13.1.
This means that under the null distribution, the correlation coefficient satisfies:

P (|r| ≥ 0.735 | ρ = 0) = 0.01.

We can estimate the same probability for r∗ from the simulated null distribution:

> mean(abs(r.perm) >= 0.735)

[1] 0.00862

122 CHAPTER 13. SIMULATION METHODS

Histogram of r.perm

r.perm

Fr
eq
ue
nc
y

-1.0 -0.5 0.0 0.5 1.0

0
10
00

20
00

30
00

40
00

50
00

60
00

r = -0.735 r = 0.735

Figure 13.1: Histogram of 50,000 replications of r∗. The critical values rα/2, −rα/2 for a two-sided
test against Ho : ρ = 0 (α = 0.01, n = 11) are superimposed.

so that
P (|r∗| ≥ 0.735 | ρ = 0) ≈ 0.0082,

which is close to α = 0.01. In fact, the level 95% margin of error of an estimate of a proportion
p = 0.01 with n = 50, 000 is

ME = 1.96

√
0.01× 0.99

50000
= 0.00087.

Judging from the margin of error, the tail probabilities for 0.735 is close to, but slightly less
than, α = 0.01. We can obtain a critical value for robs based on the distribution of r∗ using the
quantile() function:

> quantile(abs(r.perm),0.99)

99%

0.7257387

13.2. THE BOOTSTRAP PROCEDURE 123

> quantile(r.perm,0.995)

99.5%

0.734525

> quantile(r.perm,0.005)

0.5%

-0.7181912

>

Note that we can obtain the α/2 = 0.005 critical value for r∗ (r∗0.005 = 0.73425), the lower tail
1 − α/2 = 0.995 critical value (r∗1−0.005 = −0.7181912), or the α = 0.01 critical value for |r∗|
(|r∗|0.01 = 0.7257387). If the null distribution is symmetric, which we would expect in this case,
the critical value |r∗|0.01 should be used, since we would expect

|r∗|α ≈ r∗α/2 ≈ −r
∗
1−α/2.

The p-value can be obtained by estimating the relevant tail probability of robs, in this case

P (r∗ ≥ robs), P (r∗ ≤ robs), or P (|r∗| ≥ |robs|)

for an upper-tailed, lower-tailed or two sided test, respectively. However, it is usually the practice
to add the observed statistics robs with the simulated values of r∗ for this purpose, giving, for
example:

P (|r∗| ≥ |robs|) ≈
#{|r∗| ≥ |robs|}+ 1

N + 1
. (13.1)

This avoids p-values equal to zero, making the procedure somewhat conservative, although less so
with increasing N . To assign a p-value to robs = 0.939, we can determine the numerator of (13.1)
with the following command:

> sum(abs(r.perm) >= 0.939)

[1] 0

>

that is, no simulated value of r∗ exceeds 0.939 in magnitude. This gives p-value

P ≈ 1/50001 = 1.99996× 10−5.

13.2 The Bootstrap Procedure

Suppose we are given a sample of size n = 10:

X = 36.1 16.1 16.7 32.7 33.9 21.8 15.5 26.0 37.8 18.6

A 95% confidence interval for the mean is given by

X̄ ± t9,0.025S/
√
n = 25.2± 6.37 = (19.15, 31.89).

Remember that a confidence interval is a statement about a statistical method as well as a specific
data set. If we could observe repeated samples collected under identical conditions, obtaining

124 CHAPTER 13. SIMULATION METHODS

repeated observations of X̄, we could observe the distribution of X̄ directly, and form inference
statements accordingly, without the need to specify a distribution.

The bootstrap procedure is a method of simulating such samples, thus obtaining an estimated
sampling distribution of, for example, X̄, or any other statistic of interest. This is done by the
simple device of sampling, with replacement, from the original sample (of size n), a new sample of
the same size n.

This can be done in R by the sample() function in the following way:

> n = 10

> sample(1:n, n, replace = TRUE)

[1] 1 6 4 2 3 5 5 8 8 3

>

(the command sample.int(n, n, replace = TRUE) will do the same thing). A bootstrap sample
is then obtained by replacing the indices in the original sample:

> Xboot = X[sample(1:n, n, replace = TRUE)]

> X

[1] 36.1 16.1 16.7 32.7 33.9 21.8 15.5 26.0 37.8 18.6

> Xboot

[1] 33.9 21.8 16.1 37.8 36.1 15.5 16.7 32.7 21.8 16.1

> mean(X)

[1] 25.52

> mean(Xboot)

[1] 24.85

>

The bootstrap sample contains repeats, but we can still calculate most statistics for it. In this case,
we get a new sample mean X̄boot = 24.85 close to, but not exactly equal to, to original observed
sample mean X̄obs = 25.52. As for the permutation procedure, we may then obtain a simulated
sample, shown as a histrogram in Figure 13.2.

> xbar.boot = rep(NA,50000)

> for (i in 1:50000)

{xbar.boot[i] = mean(X[sample(1:n, n, replace = TRUE)])}

> hist(xbar.boot, nclass=25)

>

To obtain a 95% confidence interval, we need only obtain the 0.025 and 0.975 quantiles from the
bootstrap sample,

> quantile(xbar.boot, c(0.025, 0.975))

2.5% 97.5%

20.40 30.81

>

yielding an estimated 95% confidence interval of (20.40, 30.81), which is quite close to the confidence
interval (19.15, 31.89) obtained using the t-distribution above.

13.3. GENERAL PRINCIPLES OF COMPUTER SIMULATION 125

Histogram of xbar.boot

xbar.boot

Fr
eq
ue
nc
y

20 25 30 35

0
20
00

40
00

60
00

Figure 13.2: Histogram of 50,000 replications of X̄boot.

13.3 General Principles of Computer Simulation

R provides functions for simulating samples from a large class of distributions. For example, the
function rnorm() simulates a (pseudo-) random sample of normal random variables of given mean
and standard deviation:

> rnorm(5,mean=20,sd=0.1)

[1] 20.04352 20.13176 20.16265 20.23345 19.95649

See Section C.9 for a list of the relevant R functions. Although much of random number generation
is transparent to the R user, it is still important to understand how this is done.

13.3.1 Pseudorandom number generation

Random number generation is usually performed by an iterative algorithm, which is, of course,
deterministic, but also too chaotic to admit serial prediction. It can be thought of as a mapping T
between two integers within the range 0,M − 1, where M is very large, and usually a power of 2.
If we start with x0, we produce the next pseudorandom variate x1 = T (x0), then x2 = T (x1), and
so on. This iteration is repeated every time a new random number is requested. If we standardize
the variates ui = xi/M , then the sequence u1, u2, . . . resembles for all practical purposes an iid
sequence from a uniform distribution. In principle, any other random variable can be expressed
as a transformation of a uniform random variable, so this forms the basis of a general approach

126 CHAPTER 13. SIMULATION METHODS

for the simulation of samples from any given distribution. Ross (2014) offers an excellent chapter
on this topic. As for the design of random number generators, this is a highly technical topic. A
good introduction can be found in Chambers (1977). Otherwise, a long but fascinating journey
into this field can start with the command help("RNG"). In the meantime, it is worth exploring a
simple but widely used method, which exemplifies the essential properties of pseudorandom number
generation. We do this next.

13.3.2 Linear congruential generators

A linear congruential generator takes the form

xn+1 = (axn + b) mod P, n = 0, 1, 2, . . . , (13.2)

resulting in a sequence x0, x1, The numbers a, b and P are fixed integers, and their informed
choice is crucial. The number P is the period, and the initial value x0 is usually referred to as
the seed . If a and b are both positive then the generator is mixed congruential, and if b = 0 the
generator of multiplicative congruential. Keeping track of the seed is crucial for reproducibility, since
two linear congruential generators with the same parameters a, b, P will generate the same sequence
using the same seed. Most computing environments, including R, allow the user to specify the seed,
and allowing this option is good practice when designing randomized algorithms. The period P
determines the range of the linear congruential generator, since any evaluation y = x mod P must
be an integer between 0 and P − 1 inclusive.

Suppose we set a = 2, b = 3, P = 20, with seed x0 = 5. Then (13.2) produces the sequence

x0 = 5

x1 = (2× x0 + 3) mod 20 = 13

x2 = (2× x2 + 3) mod 20 = 9

x3 = (2× x2 + 3) mod 20 = 1

x4 = (2× x3 + 3) mod 20 = 5

x5 = (2× x4 + 3) mod 20 = 13

x6 = (2× x5 + 3) mod 20 = 9

...

yielding sequence 5, 13, 9, 1, 5, 13, 9, Note that the sequence returns to the seed value x0 = x4 =
5 after 4 iterations of (13.2). As we would expect, the sequence begins to repeat itself, and will, in
fact, repeat the sequence 5, 13, 9, 1 indefinitely. To what degree does the sequence depend on the
seed? If we set x0 = 19, we obtain sequence

19, 1, 5, 13, 9, 1, 5, 13, 9, . . . (13.3)

so that the same four number sequence is repeated indefinitely. Interestingly, the sequence will
never return to 19. On the other hand, if we set x0 = 12 we obtain sequence

12, 7, 17, 17, 17, . . . (13.4)

so that 17 will be repeated indefinitely, and the sequence will never return to 12 or 7.

13.3. GENERAL PRINCIPLES OF COMPUTER SIMULATION 127

Since the period is P = 20 we only need consider sequence elements 0, 1, . . . , 19. If we set
the seed in turn to each of these values, we find that when the seed is 2,7,12 or 17, the sequence
eventually converges to 17, as in sequence (13.4). For all other seeds, the sequences will eventually
cycle through 1,5,13,9 as in sequence (13.3).

To understand this behavior, it is important to note that the sequence is deterministic, in the
sense that each possible value possesses exactly one other value that can follow it. For 17, that
number happens to be 17 itself, that is, it is a fixed point, which by definition satisfies

x = (2× x+ 3) mod 20.

We can then see that whenever the sequence enters the cycle 1,5,13,9 it will never leave, and
whenever the sequence reaches 17, it will remain there indefinitely.

Clearly, the linear congruential generator possesses some interesting structure, but the type of
behavior we have seen is clearly problematic, given its intended use. Ideally, we would like the
sequence to avoid the type of behavior exemplified in (13.3) or (13.4), and consist of one single
cycle of length P . This means that for any seed, the sequence will visit each possible value exactly
once, and then return to the seed.

Fortunately, theory exists which informs the choice of parameters a, b, P . We have referred to
P as the period. The attained period, as we seen, may be smaller. In the preceding example the
attained period is either 4 or 1, depending on the seed. The largest possible attained period is
called the maximal period, and we would like to have conditions under which the maximal period
is attained. For linear congruential generators, this has been resolved with a great deal of precision
and simplicity for the case P = 2i. We present two results from Chambers (1977).

Theorem 13.1. Suppose in (13.2) P = 2i.
For the mixed congruential generator (a, b > 0) the maximal period is P , and is attained if and

only if

(i) a mod 4 = 1,
(ii) b is odd.

For the multiplicative congruential generator (a > 0, b = 0) the maximal period is 2i−2, and is
attained if and only if

(i) a mod 8 = 3 or 5,
(ii) the seed x0 is odd.

The multiplicative congruential generator may be more advantageous when the computing plat-
form must be economical.

Example 13.1. We examine two mixed congruential generators satisfying the conditions of The-
orem 13.1. For both, we set P = 220, then consider separately (a, b) = (936001, 102295) and (5, 1)
(we have 936001 mod 4 = 1, for example).

The following R, code produces plots with which to examine visually the degree of “randomness”.
Figure 13.3 shows the first 100 elements of the sequence in various forms (top plots for (a, b) =
(936001, 102295), bottom plots for (a, b) = (5, 1)). Roughly, the first generator appears generally
random throughout. The second generator appears similarly unordered, except for short sequences
of similar magnitude. This is due to the relatively small values of a and b compared to P .

128 CHAPTER 13. SIMULATION METHODS

> x = 1:100

> y = sin(x)

> plot(x,y)

>

> par(mfrow=c(2,2))

>

> P = 2^20

> a = 936001

> b = 102295

>

> x = rep(NA, 100)

>

> x0 = 1

> for (i in 1:100) {

+ x0 = (x0*a + b) %% P

+ x[i] = x0

+ }

> plot(1:100, x)

> plot(1:100, x, type=’l’)

>

> a = 5

> b = 1

> x0 = 1

> for (i in 1:100) {

+ x0 = (x0*a + b) %% P

+ x[i] = x0

+ }

> plot(1:100, x)

> plot(1:100, x, type=’b’)

13.3.3 Uniform random number generation

If we compute the first 10,000 variates from the generator (a, b, P) = (936001, 102295, 220) of Ex-
ample 13.1, the resulting histogram is shown in Figure 13.4. By Theorem 13.1 the maximal period
220 = 1, 048, 576 is attained, and so the histogram accordingly covers approximately the range (0,
1048576). In fact, the largest value observed in the sequence was 1,048,383, just below P . Sim-
ulated random variables with a uniform distribution on [0, 1] are given simply by dividing by P ,
that is

x0/P, x1/P, . . . , xN/P

can be taken as a random sample from unif [0, 1].

13.3. GENERAL PRINCIPLES OF COMPUTER SIMULATION 129

0 20 40 60 80 100

0
e
+
0
0

4
e
+
0
5

8
e
+
0
5

1:100

x

0 20 40 60 80 100

0
e
+
0
0

4
e
+
0
5

8
e
+
0
5

1:100

x

0 20 40 60 80 100

0
e
+
0
0

4
e
+
0
5

8
e
+
0
5

1:100

x

0 20 40 60 80 100

0
e
+
0
0

4
e
+
0
5

8
e
+
0
5

1:100

x

Figure 13.3: Sample sequences from linear congruential generators defined in Example 13.1. Top
plots demonstrate (a, b) = (936001, 102295), bottom plots demonstrate (a, b) = (5, 1).

13.3.4 The inverse transformation method

Many simulation methods begin with uniform random variables. Suppose we are given a continuous
CDF F and U ∼ unif [0, 1]. Then F possesses inverse F−1, since F is also increasing. This provides
an elegant method of simulating a random variable with such a CDF.

Theorem 13.2. Suppose F is a continuous CDF, and U ∼ unif [0, 1]. Then the CDF of RV

X = F−1(U) (13.5)

is exactly FX = F .

Proof. Under the hypothesis, the CDF of X is given by

X = F−1(U). (13.6)

130 CHAPTER 13. SIMULATION METHODS

Output of Mixed Congruential Generator

F
re
qu
en
cy

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
10
0

20
0

30
0

40
0

50
0

Figure 13.4: Histogram of the first 10,000 variates from the generator (a, b, P) =
(936001, 102295, 220) of Example 13.1.

The CDF of X is then

FX(x) = P (X ≤ x)

= P (F−1(U) ≤ x)

= P (U ≤ F (x))

= FU (F (x)).

The CDF of U is FU (u) = u for u ∈ [0, 1], so that completing the analysis gives

FX(x) = F (x),

which completes the proof.

A common application of this method is the simulation of exponentially distributed random
variables.

Example 13.2. If X ∼ exp(λ) then

FX(x) =

{
1− exp(−λx) ; x ≥ 0
0 ; x < 0

.

13.3. GENERAL PRINCIPLES OF COMPUTER SIMULATION 131

The inverse is obtained by solving

u = 1− exp(−λx),

exp(−λx) = 1− u,

x =
− log(1− u)

λ
.

So, given U ∼ unif [0, 1], if we set

X = F−1
X (U) =

− log(1− U)

λ
,

then X ∼ exp(λ). Note that 1−U may be replaced by U , since both have the same distribution.

13.3.5 Simulation of discrete random variables

The occurrence of an event with probabilty p is easily simulated with a random variable U ∼
unif [0, 1]. For any interval I ⊂ [0, 1], set

X =

{
1 ; U ∈ I
0 ; U /∈ I

If I has length p, then X ∼ Bern(p).
The same idea may be used to simulate more complex discrete RVs. Suppose X has support

SX = {0, 1, . . . ,M}, and possesses PMF PX(i) = pi. Generate U ∼ unif [0, 1]. If U ∈ [0, p0) set
X = 0. If U ∈ [p0, p0 + p1) set X = 1. In general, set

X =

0 ; U ∈ [0, p0)
1 ; U ∈ [p0, p0 + p1)
... ;

...
M ; U ∈ [p0 + . . .+ pM−1, 1)

.

This rule can be seen to be equivalent to

X = k if U ∈ [FX(k − 1), FX(k)) (13.7)

and so is similar to the inverse transform method of the previous section.

Example 13.3. Suppose X ∼ geom(p). Then FX(k) = 1 − (1 − p)k. Then using the method of
Equation (13.7) we have

X = min{k : U > 1− (1− p)k}

= min{k : k >
log(1− U)

log(1− p)
}

= 1 + b log(1− U)

log(1− p)
c,

where bxc is the largest integer i ≤ x, (referred to as the floor function).

132 CHAPTER 13. SIMULATION METHODS

13.3.6 Computer simulation and reproducibility in R

That pseudorandom variates are not actually random is something of an advantage. One drawback
of simulation methods is that they are not completely reproducible, and two separate applications of
the same simulation method on the same data will give answers that differ (slightly, hopefully). For
this reason, a good habit to develop is to set the random number seed explicitly at the beginning
of the algorithm, and to document its value. By seed, we simply mean the first variate x0 of
the sequence of pseudorandom variates, which in R can be done using the set.seed() function.
Consider the following code:

>

> rnorm(5,mean=20,sd=0.1)

[1] 19.90912 20.01406 20.02100 19.97172 20.18680

> rnorm(5,mean=20,sd=0.1)

[1] 20.09122 20.05108 19.99625 20.04081 19.81416

> set.seed(2143)

> rnorm(5,mean=20,sd=0.1)

[1] 20.03002 20.01832 20.16643 19.89089 19.95767

> set.seed(2143)

> rnorm(5,mean=20,sd=0.1)

[1] 20.03002 20.01832 20.16643 19.89089 19.95767

>

The identical command rnorm(5,mean=20,sd=0.1) is applied four times. The first two applications
of the command rnorm(5,mean=20,sd=0.1) produce distinct variates. However, before the third
application, the seed is set explicitly with the set.seed(2143) command. If the seed is reset to
the same value, as it is before the fourth application, the identical variates are produced.

13.3.7 Simulating dependent random variables in R

Sequences of pseudorandom variates can be regarded as independent. Certainly, this is a desirable
property of a random number generator. Of course, sometimes we wish to generate random variables
which possess some form of dependence. This can be a challenging topic, but we can review a
number of available solutions. For example, Problem 22.11 provides a method of generating pairs
of correlated normal random variables, assuming we have a method of generating independent
variates (for example, function rnorm()). The R package mvtnorm can be used for simulating
general multivariate normal and t-distributions, while the R package bindata simulates correlated
vectors of binary random variables.

13.4 Postscript

This chapter provides only a brief introduction by example to a topic crucial to model statistical
methodology. The situations for which analytical forms for P -values, standard errors or confidence
intervals are convenient, practical, or even available, is quite limited. And even these are often
highly dependent on distributional assumptions which may be difficult to validate. Simulation
methods provide a very powerful answer to this issue.

13.4. POSTSCRIPT 133

Hopefully, the examples of this chapter demonstrate why the “learning by doing” approach
works for this topic. The methods seem quite intuitive. The permutation test of Section 13.1 is a
case in point. If paired observations are not correlated, then their pairing should be irrelevant. It
is then a simple matter to randomly “shuffle” the pairings, to see if the data changes character in
any important way.

We should, however, recognize what we are doing. A statistical hypothesis test is constructed
from the distribution of the data under a null hypothesis. What the permutation test does is
to define a null distribution, then estimate it by simulating a sample from it. Roughly, the null
hypothesis is

Ho : The distribution of the data does not depend on how certain observations are labeled.

and the distribution is simulated by randomly permuting those labels. But if this seems too easy,
it often is. In particular, it must be carefully asked if a random permutation results in data which
might plausibly be observed. See Good (2013) for a good source on this topic.

The other method considered in this chapter is the bootstrap. Again, the idea seems simple.
If we wish to estimate the standard deviation of an estimator, we can always resample new data
sets with properties similar to the dataset actually observed. We then recalculate the estimator for
each one. The standard deviation of the resampled estimators should be approximately equal to
the standard deviation we are looking for.

This is, however, a relatively recent idea (Efron, 1979), which at first struck some as counterin-
tuitive (and was presented as such in a science article appearing in The Economist magazine). An
excellent treatment of the bootstrap is given by its inventor in Efron and Tibshirani (1994). See
also Efron and Gong (1983), Davison and Hinkley (1997) and Good (2005). It is important to note
that the use of resampling methods in linear models requires special care.

Chapter 26 contains a number of practice problems on permutation and bootstrap procedures.
The demonstration software file SIMULATIONS.R contains more examples of the permutation and
bootstrap procedures. It also demonstrates R support for parallel computing, which may be par-
ticularly useful for these methods.

The implementation of resampling methods is often straightforward, given the emphasis of R on
vectorized computation. However, we also note the R package boot, which provides a quite general
method for implementing the bootstrap (Canty and Ripley, 2017). Its main function, also named
boot(), has a variety of modes of use. We demonstrate here only a relatively simple application:

>

> x.obs = rnorm(100)

> boot(data = x.obs, statistic = function(x,d) {mean(x[d])}, R=1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = x.obs, statistic = function(x, d) {

mean(x[d])

}, R = 1000)

134 CHAPTER 13. SIMULATION METHODS

Bootstrap Statistics :

original bias std. error

t1* 0.2161051 -1.483572e-05 0.09079445

>

A sample of n = 100 iid standard normal random variables is generated as data. The estimator
in question is the sample mean. In the default mode, the statistic argument expects a function
of two arguments. The first accepts the data, the second accepts the indices of a sample with
replacement. There are then R replications. The correct standard error is 1/

√
n = 0.1, for which

the estimate given here is 0.09079445.
The practical value of such a method can perhaps be seen in the next example. If we want the

standard error for an alternative estimator, the IQR (the difference between the 75th and 25th
sample percentiles), we need only replace mean with IQR in the code:

>

> boot(data = x.obs, statistic = function(x,d) {IQR(x[d])}, R=1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = x.obs, statistic = function(x, d) {

IQR(x[d])

}, R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 1.534805 -0.04888736 0.1512865

>

Reasonable estimates of an essentially limitless variety of estimators are obtainable with little
difficulty.

The demonstration software file SIMULATIONS.R contains further applications of the boot pack-
age.

Chapter 14

Markov Chains, MCMC and
Computational Bayesian Methods

14.1 Markov Chains

A stochastic process may be defined as a (possibly uncountable) indexed collection of random
variables {Xt}, t ∈ T . The index t usually represents time, although stochastic processes may also
be used to describe random processes defined on some space.

Most stochastic processes are either discrete time, and take the from of a sequence X1, X2, . . .,
or continuous time, and may be represented as a process X[t] on a subset t ∈ [0,∞), with X[t]
being the value of the process at time t.

The Markov chain is a discrete time stochastic process. The defining property is the memoryless
property or Markovian property, essentially, that the distribution of future states depends on the
current state, but not on previous states.

Definition 14.1. Suppose we are given a discrete time stochastic process Xn ∈ X , i = 0, 1, 2, . . .,
which assumes values in a discrete state space X . Without loss of generality we have either a finite
state space X = {0, 1, . . . , n} or countable state space X = {0, 1, . . .}. Then Xi is a Markov chain
if the following memoryless property holds:

P (Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = i0) = P (Xn+1 = j | Xn = i) = Pij .

The quantity Pij is called the transition probability from state i to state j. We also have transition
probability matrix (or transition matrix)

P =

P00 P01 P02 · · ·
P10 P11 P12 · · ·

...
...

...
Pi0 Pi1 Pi2 · · ·
...

...
...

135

136CHAPTER 14. MARKOV CHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

Row i of transition matrix P is equivalent to the conditional probability

P (Xn+1 = j | Xn = i) = Pij , j ∈ X .

Note also that P will be a matrix of infinite dimension when X is countable. We also have no
difficulty conceiving of P as ‘doubly infinite’ when the state space is the set of positive and negative
integers {. . . ,−2,−1, 0, 1, 2, . . .}, which requires no important change of Definition 14.1.

Example 14.1. We start with an example of a two-state Markov chain, which, despite it’s simplic-
ity, demonstrates a number of important features of Markov chains. Formally, we have state space
X = {0, 1}. However, we lose nothing by replacing the notation of Definition 14.1 with something
more intuitive.

For example, the time index i = 0, 1, 2, . . . may represent a sequence of days, and we may wish
to define a simple infection model, in which state i = 0 represents a healthy state H and i = 1
represents a sick state I (due to, say, an infection). The transition matrix is therefore the 2 × 2
matrix

P =

[
P00 P01

P10 P11

]
.

However, the true degrees of freedom of P is 2, since each row is constrained, as a probability
distribution, to sum to 1 (such a matrix is known as a stochastic matrix). We can therefore write,
without loss of generality,

P =

[
1− α α
β 1− β

]
. (14.1)

for two numbers α, β ∈ [0, 1]. This means that if a subject is healthy on day i, he/she is sick on
day i + 1 with probability α, and if the subject is sick on day i, he/she is sick on healthy in day
i+ 1 with probability β. The state transition diagram for infection model is shown in Figure 14.1.

Figure 14.1: State transition diagram for infection model of Example 14.1.

Is this a reasonable model? First, we note that when the subjects enters state H, he/she remains
there for a geometrically distributed waiting time, with mean α−1. If we suppose that acquiring an

14.1. MARKOV CHAINS 137

infection is a consequence of a chance exposure, which happens on any given day with probability
α, then the memoryless ‘coin toss’ model for the waiting time until infection would be reasonable.

On the other hand, the infection lifetime also follows a geometric distribution, but with mean
β−1. Presumably, clinical experience would guide the choice of β, setting

β−1 = E[infection lifetime].

However, whether the geometric distribution adequately models an infection lifetime would be an
important question to resolve.

The transition probability Pij may be more formally referred to as the one-step transition
probability, since it describes transition following a single time step. We may also describe the
k-step transition probability

P (Xn+k = j | Xn = i) = P kij , (14.2)

noting that this probability does not depend on n. We will demonstrate this computation for k = 2.
In Equation (14.2) set

E = {Xn+2 = j}, B = {Xn = i},
and we may form partition

Ak = {Xn = k} for all k ∈ X .
This gives

P 2
ij = P (Xn+2 = j | Xn = i) =

∑
k∈X

P (Xn+2 = j | Xn+1 = k,Xn = i)P (Xn+1 = k | Xn = i).

(14.3)
Then consider each term in the summation. Recall by the Markovian property of Definition 14.1
that the distribution of Xn+2 given history Xn+1, Xn, . . . , X1, X0 depends only on the most recent
state Xn+1. We therefore have

P (Xn+2 = j | Xn+1 = k,Xn = i) = P (Xn+2 = j | Xn+1 = k) = Pkj . (14.4)

The remaining quantity is simply the one step transition probability

P (Xn+1 = k | Xn = i) = Pik. (14.5)

Substituting (14.4) and (14.5) into (14.3) yields

P 2
ij =

∑
k∈X

PikPkj . (14.6)

This is a particularly important relationship, since we can recognize (14.6) as the result of matrix
multiplication. We summarize this in the following definition.

Definition 14.2. The k-step transition probability from state i to j is the probability that a Markov
chain in state i occupies state j after exactly k transitions. Formally,

P (Xn+k = j | Xn = i) = P kij ,

The k-step transition probability matrix P k has value P kij at (row,column) (i, j), and can be calcu-
lated by iteratively multiplying P k times:

P k = [P]k

138CHAPTER 14. MARKOV CHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

14.1.1 Maze example

There has always been considerable interest in the skill with which rats navigate mazes. Markov
chains provide an analytical tool with which the translate experimental observations into relevant
conclusions.

For example, the term ‘memoryless’ implies an inability to learn. A Markov chain should be
able to model navigational behavior which is more or less random, implying an inability to learn
by trial and error. Therefore, we should be able to decide whether or not experimental data is
explainable by truly memoryless behavior.

Consider the maze shown in Figure 14.2. A rat is introduced to the maze at the ‘Start’ label,
and is provided some incentive to reach the ‘Finish’ label. There are 4 nodes of decision, labeled
a, b, c, d, and a terminal node e. Node a is the first node encountered by the rat.

Figure 14.2: Maze diagram for Section 14.1.1.

How should we model the rat’s navigation? It seems reasonable to define the state space
X = {a, b, c, d, e}, modeling transitions between decision points. We might suppose that if the
rat’s behavior is truly random, whenever it reaches a decision node, it simply chooses any available
direction with equal probability, and otherwise it walks along it’s chosen path.

Assuming the entrance is closed after entry, from node a the rat can proceed N(orth), E or
S. If it proceed N, it next reaches node b, otherwise it must return to a. This gives transition
probabilities

Paa = 2/3, Pab = 1/3, Pak = 0 for k = c, d, e.

From node b the rat can proceed W, E or S. If it proceeds W it returns to a, if it proceeds E it
reaches a dead end, and so must return to b, and if it proceeds S it reaches c. This gives transition
probabilities

Pba = 1/3, Pbb = 1/3, Pbc = 1/3, Pak = 0 for k = d, e.

14.1. MARKOV CHAINS 139

Continuing in this way, and ordering states a, b, c, d, e as 0, 1, 2, 3, 4 we have transition matrix

P =

a b c d e
a 2/3 1/3 0 0 0
b 1/3 1/3 1/3 0 0
c 0 1/3 0 1/3 1/3
d 0 0 1/3 1/3 1/3
e 0 0 0 0 1

 (14.7)

Note that Pee = 1, so that once the Markov chain reaches state e it remains there indefinitely,
which is commonly interpreted as a termination of the process. Such a state is referred to as an
absorbing state.

After some reflection, we might ask if a rat, when reaching a decision node, is likely to respond
by reversing direction. We have assumed that the rat is as likely to do this as to choose any of the
remaining directions.

Let’s consider what happens if we try to rule out this behavior. If the rate reaches node a while
traveling N, if we rule out direction reversals, the rat will either proceed N, reaching b, or proceed
E, returning to a. The nonzero transition probabilities are now Paa = 1/2, Pab = 1/2, which differ
from those given in (14.7). Unfortunately, we can see that these transition probabilities depend
on the direction of travel. If the rat reaches node a by traveling S, barring direction reversals, the
rat can only proceed S or E, forcing a return to a, suggesting that Paa = 1. The problem is that
the Markovian property is being violated. To say that the transition probabilities depend on the
direction of travel is equivalent to saying that they depend not only on the current state (node), but
also on the previous state (node). After all, if the rat reaches node a traveling S, it must previously
have been at node b, whereas if it reaches node a traveling N, it must previously have been at node
a. Definition 14.1 is therefore not satisfied.

Fortunately, it possible to rule out direction reversals while maintaining the memoryless prop-
erty. This can be done by expanding the state space (sometimes referred to as Markovianizing a
process). In particular we include in the definition of the state both the node and the direction of
approach. That is, the rat transitions to state a − N by arriving at node a traveling N. At state
a−N the rat proceeds N or E with equal probability. By proceeding N the rat reaches state b−E,
and by proceeding E the rat returns to state a−N . This gives nonzero transition probabilities

Pa−N,a−N = 1/2, Pa−N,b−E = 1/2.

Node a must be expanded into states a−E, a−N , a−S and a−W . Our protocol is to designate
X0 = a − E as the initial state, although the definition of the Markov chain model remains the
same for any initial state. Once the rat leaves state a− E it does not return.

Similarly, state b is expanded into state b−E, b−W and b−N . Since the rat cannot approach
b traveling S, no state b − S is needed. From state b − E the rat can proceed E or S. If the rat
proceeds E, it meets a dead end, and must return to node b traveling W, thus transitioning to state
b −W . Otherwise, it arrives at node c traveling S, thus transitioning to node c − S. This gives
nonzero transition probabilities

Pb−E,b−W = 1/2, Pb−E,c−S = 1/2.

Continuing in this way, we may deduce the transition probabilities given in Table 1.

140CHAPTER 14. MARKOV CHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

Table 1: Transition probabilities for Markov chain model of Section 14.1.1
Pij = a-E a-N a-S a-W b-N b-E b-W c-N c-S d-N d-S d-W e-S

a-E 0 1/3 0 1/3 0 1/3 0 0 0 0 0 0 0
a-N 0 1/2 0 0 0 1/2 0 0 0 0 0 0 0
a-S 0 1/2 0 1/2 0 0 0 0 0 0 0 0 0

a-W 0 0 0 1/2 0 1/2 0 0 0 0 0 0 0
b-N 0 0 1/2 0 0 0 1/2 0 0 0 0 0 0
b-E 0 0 0 0 0 0 1/2 0 1/2 0 0 0 0

b-W 0 0 1/2 0 0 0 0 0 1/2 0 0 0 0
c-N 0 0 0 0 1/2 0 0 0 0 0 0 0 1/2
c-S 0 0 0 0 0 0 0 0 0 0 1/2 0 1/2

d-N 0 0 0 0 0 0 0 1/2 0 1/2 0 0 0
d-S 0 0 0 0 0 0 0 0 0 1/2 0 1/2 0

d-W 0 0 0 0 0 0 0 1/2 0 0 0 1/2 0
e-S 0 0 0 0 0 0 0 0 0 0 0 0 1

A Markov chain, as a set of discrete probability distributions, is easily simulated (use, for
example, the rmultinom() function, or consult Ross (2014)). An example of a single path is shown
in Figure 14.3. In this example there are 26 transitions. A total of 27 states are visited, including
initial and final states a−E and e−S. We note some ’cycling’ behavior around node a at transitions
1 and 13, and around node d at transitions 8 and 21. This is characteristic of memoryless behavior.

14.1.2 Distributional properties of Markov chains

All distributional properties of a Markov chain follow from transition matrix P . In principle, these
properties may be studied by simulating sample paths, using some large number of replications
N . For example, in the maze example suppose T is the number of transitions required to reach
terminal state e−S from inittal state a−E. This is a random survival time, and examining Figure
14.3 we can see that the minimum possible value is T = 3, attained exclusively by path

a− E → b− E → c− S → e− S. (14.8)

Note that T is one less that the number of states in a path. Suppose we observe a rat solve the
maze with T = 3. If the rat has already had some experience with the maze, we may suspect that
it has ‘learned’ the shortest route. On the other hand, T = 3 is an outcome which may occur
under the memoryless model defined in Table 1. We can form some judgement by calculating the
probability P (T = 3). If it is very small, we conclude that the rat is unlikely to have achieved the
optimal path by chance.

Simulations may be used to estimate P (T = 3). If out of N simulated paths, X equal the
optimal path, then

P (T = 3) ≈ X/N.

However, the Markov chain model proves to be a very powerful analytic tool, and many interesting
properties may be calculated exactly. When this is possible, it is to be preferred to simulation.

For example, the probability of a path is easily calculated.

14.1. MARKOV CHAINS 141

0 5 10 15 20 25

a-
E

a-
N

a-
S

a-
W

b-
N

b-
E

b-
W

c-
N

c-
S

d-
N

d-
S

d-
W

e-
S

Number of Transitions

Figure 14.3: Simulated Markov chain navigation for maze example of Section 14.1.1, based on
transition probabilities of Table 1.

Theorem 14.1. Let

i0 → i1 . . .→ im−1 → im

be any path of m transitions. The probability of the path, given initial state X0 = i0 is

P (Xm = im, Xm−1 = im−1, . . . , X1 = i1 | X0 = i0) = Pi0,i1 × Pi1,i2 × . . .× Pim−2,im−1 × Pim−1,im .
(14.9)

Proof. We may write

P (Xm = im, Xm−1 = im−1, . . . , X1 = i1, X0 = i0) = P (Xm = im | Xm−1 = im−1, . . . , X1 = i1X0 = i0)

×P (Xm−1 = im−1, . . . , X1 = i1, X0 = i0). (14.10)

By the Markov property

P (Xm = im | Xm−1 = im−1, . . . , X1 = i1X0 = i0) = P (Xm = im | Xm−1 = im−1) = Pim−1,im .
(14.11)

Substituting (14.11) into (14.10) yields

P (Xm = im, Xm−1 = im−1, . . . , X1 = i1, X0 = i0) =

Pim−1,imP (Xm−1 = im−1, . . . , X1 = i1, X0 = i0). (14.12)

142CHAPTER 14. MARKOV CHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

We may apply essentially the same argument to the quantity P (Xm−1 = im−1, . . . , X1 = i1, X0 = i0)
in (14.12), giving

P (Xm = im, Xm−1 = im−1, . . . , X1 = i1, X0 = i0) =

Pim−2,im−1Pim−1,imP (Xm−2 = im−2, . . . , X1 = i1, X0 = i0).

Repeating enough times, we have

P (Xm = im, Xm−1 = im−1, . . . , X1 = i1, X0 = i0) =

Pi0,i1 × Pi1,i2 × . . .× Pim−2,im−1 × Pim−1,imP (X1 = i1, X0 = i0). (14.13)

We condition both sides of (14.13) on {X0 = i0} by dividing by P (X0 = i0), noting that

P (X1 = i1, X0 = i0)/P (X0 = i0) = P (X1 = i1 | X0 = i0) = Pi0,i1 ,

which yields (14.9).

Note that the probability of a path starting at any time index may be calculated using the
method of Theorem 14.1.

Example 14.2. For the Markov chain of Table 1, if T is the number of transitions required to
reach terminal state e − S, then, as discussed earlier in this section, the minimum value T = 3 is
reached exclusively by the path of (14.8). By Theorem 14.1, we have

P (T = 3) = P (X3 = e− S,X2 = c− S,X1 = b− E | X0 = a− E)

= Pa−E,b−EPb−E,c−SPc−S,e−S

= 1/3× 1/2× 1/2

= 1/12.

Thus, under the memoryless model, the optimal path is attained with probability 1/12, and would
therefore be consistent with the memoryless model.

It turns out that the exact distribution of T is readily obtained. Recall the k-step transition
probability

P ka−E,e−S = P (Xk = e− S | X0 = a− E).

Clearly, if Xk = e− S, we must have T ≤ k (the path may have entered state e− S before the kth
transition). However, recall that e− S is an absorbing state, so that if Xj = e− S for some j, we
must also have if Xk = e−S for all k ≥ j. This means that if T ≤ k we must also have Xk = e−S,
so that

{T ≤ k} = {Xk = e− S}

and so we have CDF

FT (k) = P (T ≤ k) = P (Xk = e− S) = P ka−E,e−S .

Note that we are implicitly conditioning the distribution of T on the event {X0 = a−E}. Then, the
k-step probabilities P ka−E,e−S can be obtained by matrix multiplication of P . Interpreting Table 1
as a 13× 13 matrix P , we have

FT (k) = P k[1, 13],

14.1. MARKOV CHAINS 143

from which we get the PMF

pT (k) = FT (k)− FT (k − 1) = P k[1, 13]− P k−1[1, 13],

where the matrix P 0 is taken to be the identity matrix. Figure 14.4 shows the values of P (T = k).
We may compute the expected value

E [T] ≈ 11.33.

On average, under the memoryless model, a rat requires 11.33 transitions to solve the maze. How-
ever, note that the tail of the distribution extends well above this value. For example, we have the
probability P (T ≥ 25) ≈ 0.083 and P (T ≥ 35) = 0.027, so observing a solution time well above the
mean will not be a rare occurrence.

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0 10 20 30 40 50 60

k

P(
T=
k)

Figure 14.4: PMF pT (k) = P (T = k) of T , the number of transitions required to reach terminal
state e− S, for maze example of Section 14.1.1, based on transition probabilities of Table 1.

14.1.3 Balance equations and steady states

There is often interest in the long run behavior of a Markov chain. In Example 14.1 the process
fluctuates between Healthy and Infected states indefinitely, and we may be interested in knowing
the long run proportion of time spent in each state.

Suppose we have counting process

Nj(k) = The number of transitions into state j after the kth transition.

144CHAPTER 14. MARKOV CHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

A long run frequency (formally, a steady state frequency) would then be defined by

πj = lim
k→∞

Nj(k)

k
. (14.14)

A number of mathematical questions lurk here. Does the limit always exist? If so, under what
conditions is πj zero or positive? Last, and far from least, does this quantity depend on the initial
state? To formally resolve these questions requires some amount of mathematical theory, even
when dealing with relatively simple models. While this would be beyond the scope of this course,
we can give some insight into the issues.

Deducing πj for general models requires acknowledgement of an apparently obvious fact, that
is,

number of times process enters a state = number of times process exits a state, (14.15)

(within one). The value of this statement becomes more apparent if we think in terms of rates.
Clearly, πj can be interpreted as the occupancy rate of state j, but also as its entrance rate and the
exit rate. Next, we may consider the rate at which the Markov chain transitions from states i to
j. There are two components to this. First, to transition from i to j, the Markov chain must first
enter i. This occurs at rate πi. Second, given that the Markov chain is in i, it transitions from i to
j with probability Pij . The rate of transition from i to j is therefore πiPij .

We are now in a position to use (14.15). We recognize the exit rate for state j as πj . The
entrance rate, on the other hand, can be given as the sum of all other transition rates into state
j, that is , πiPij for i ∈ X (this includes i = j, when Pjj > 0). Equation (14.15) then yields the
balance equation

πj =
∑
i∈X

πiPij . (14.16)

Example 14.3. Consider the two-state Markov chain of Example 14.1. We write a balance equation
for each state, yielding

π0 = π0P00 + π1P10

π1 = π0P01 + π1P11,

which, after substituting transition probabilities (14.1) gives

π0 = π0(1− α) + π1β

π1 = π0α+ π1(1− β).

Rewriting the first equation yields
π0

π1
=
β

α
. (14.17)

Since we must have
∑

i πi = 1, only one balance equation is actually needed to solve for (π0, π1),
and we obtain

π0 =
β

α+ β
, π1 =

α

α+ β
.

That the frequencies π0, π1 should posses ratio β/α is to be expected. The time spent in each state
prior to transition is geometrically distributed with means 1/α and 1/β respectively. The ratio
π0/π1 should then be the ratio of the means, which is confirmed by (14.17).

14.2. THE HASTINGS-METROPOLIS ALGORITHM 145

14.2 The Hastings-Metropolis algorithm

In Bayesian inference, we have a posterior density of the form

π(θ | x) =
f(x | θ)π(θ)

f(x)
=

f(x | θ)π(θ)∫
Θ f(x | θ)π(θ)dθ

,

or, similarly when model space Θ is discrete,

π(θ | x) =
f(x | θ)π(θ)

f(x)
=

f(x | θ)π(θ)∑
θ∈Θ f(x | θ)π(θ)

.

It is often not possible to evaluate the normalization constant (which is f(x) in this example). In
this case, we may use a Markov chain Monte Carlo method to simulate a sample from a density
or probability mass function, say p(y), on state space Sy, which is known only up to a normalizing
constant. This means we can write

p(y) = Kg(y),

where g(y) is known, K does not depend on y but K is otherwise unknown. We can, for example,
write a Bayesian posterior density

π(θ | x) = Kg(θ)

where, for fixed x, g(θ) = f(x | θ)π(θ) and K = 1/f(x).
The Hastings-Metropolis algorithm (Hastings, 1970) is an MCMC method which simulates a

Markov chain on a state space Sy which has steady state distribution p(y). It depends on p(y) only
through ratios of the form p(y′)/p(y). Therefore, if p(y) = Kg(y), where K does not depend on y,
the algorithm only needs ratios

p(y′)

p(y)
=
Kg(y′)

Kg(y)
=
g(y′)

g(y)
,

that is, all we need is a function g(y) which is proportional to p(y).

The algorithm takes the following steps:

• First define Q(y2 | y1), a proposal Markov chain on Sy. This MC should be irreducible, which
can in practice be difficult to prove (a MC is irreducible if any state may be reached from any
other state).

• Construct a Markov chain y1, y2, . . . according to the following algorithm:

(1) Given current state yn, select proposal state y′ according to probability distribution
Q(y′ | yn).

(2) With probability α set yn+1 = y′, and with probability 1− α set yn+1 = yn, where

r =
p(y′)Q(yn | y′)
p(yn)Q(y′ | yn)

α = min(r, 1).

• The Markov chain is irreducible, with steady-state distribution p(y).

There are alternative formulations. See Hastings (1970) “Monte Carlo sampling methods using
Markov chains and their applications”, Biometrika.

146CHAPTER 14. MARKOV CHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

14.3 Simulated annealing

Suppose the objectve is to maximize a function f(y) on a state space Sy (or minimize −f(y)).
This can be done using simulated annealing. This is an MCMC algorithm similar to the Hastings-
Metropolis algorithm, in that it simulates a stochastic process y1, y2, . . . using a similar proposal
acceptance mechanism. The difference is that, under known conditions, the process converges to
y∗, where maxy f(y) = f(y∗). In particular, if Sy is discrete, then

lim
n→∞

P (yn = y∗) = 1,

assuming the maximum is unique. Under quite general conditions, we have for any positive constant
δ > 0

lim
n→∞

P (f(yn) > f(y∗)− δ) = 1.

Many optimization algorithms guarantee convergence to a local maximum, but simulated anneal-
ing is one of the few optimization algorithms which is able to guarantee convergence to the global
maximum.

The algorithm takes the following steps:

• Construct a proposal Markov chain Q(y′ | yn) as in the Hastings-Metropolis algorithm.

• Define a decreasing temperature sequence t1, t2, . . . (the cooling schedule).

• Construct a process y1, y2, . . . according to the following algorithm:

(1) Given current state yn, select proposal state y′ according to probability distribution
Q(y′ | yn).

(2) With probability α set yn+1 = y′, and with probability 1− α set yn+1 = yn, where

α =

{
1 if f(y′) ≥ f(yn)

exp
(
f(y′)−f(yn)

tn

)
if f(y′) < f(yn)

• The process y1, y2, . . . converges to the maximum if f(y) in the sense given above.

Note that the process y1, y2, . . . is Markovian, or memoryless, but is not a time-homogenous Markov
chain, since the transition probabilities depend on time index n through the cooling schedule.

We next consider the question of the the cooling schedule (a good review can be found in
Nourani and Andresen (1998)). For a cooling schedule of the form

tn =
c

log(n+ d)
, (14.18)

the simulated annealing has been proven to converge to the optimal solution in the sense defined
above, provided c is large enough. Unfortunately, the minimum value of c for which convergence
can be guaranteed depends on the problem, and in general, the extremely slow convergence rate
makes this cooling schedule impractical. Furthermore, because the algorithm is stochastic, it will
not generally be possible to define a stopping rule, that is, a rule which can be used to decide when
the optimal solution has been reached (assuming the largest value f(y∗) is not known).

14.4. POSTSCRIPT 147

Despite these qualifications, simulated annealing is useful for optimization problems not pos-
sessing regularity conditions for which more specialized algorithms would be available. It is also
widely applicable, and relatively easy to implement. In practice the cooling schedule (14.18) is not
used. Commonly used choices include the exponential schedule

tn = t0ρ
n

and the linear schedule

tn = t0 − βn,

although neither results in a provably convergent algorithm.

14.4 Postscript

The texts Ross (2014), then Ross (1996), provide an excellent introduction to the theory of Markov
chains. The maze example of Section 14.1.1 demonstrates how the Markov chain model can be used
to simulate and analyze seemingly complex systems. The Simulation Projects section of Chapter
27, as well as Problem 28.12, offer a few more examples of Markov chain modeling. Problem 27.1
is similar to the maze example.

MCMC sampling is quite old. Originally published in 1953 (Metropolis et al., 1953), the ideas
have probably been in practice several years earlier. It is commonly used today in a form closer
to that proposed in Hastings (1970). An accessible introduction to this topic can be found in
Shonkwiler and Mendivil (2009).

At one level, once the MCMC sampling method is understood, its application to Bayesian
inference is clear enough. It is simply used to sample from a posterior density, the advantage
being that the normalization constant is not needed. Chapter 27 contains a number of detailed
applications. Problem 27.3 demonstrates the accuracy of the method by sampling from a known (bi-
nomial) distribution. Demonstration software file COMPUTATIONAL-BAYESIAN.R contains a detailed
example based on the “archaeology” example in the Wikipedia entry for Bayesian inference

(https://en.wikipedia.org/wiki/Bayesian_inference).

It might be going too far to say that computational Bayesian applications are easy to do, but
difficult to do well. But we have only provided the briefest of introductions, and the analyst who
makes consistent use of this method should read more widely on this topic. Albert (2009) and
Marin and Robert (2014) provide good starting points, in an R context.

We have not covered another widely used MCMC sampler, the Gibbs sampler (Geman and
Geman, 1984), which tends to be used to sample from densities on very high dimensional objects
possessing some spatial structure (image processing, graphical models, etc). Bayesian inference
based on the Gibbs sampler is supported by a widely used class of software applications, an initiative
of the BUGS Project (Bayesian inference Using Gibbs Sampling) at www.mrc-bsu.cam.ac.uk/

software/bugs/. See also Lunn et al. (2000).

Simulated annealing is a later adaption of the MCMC method, generally credited to Kirkpatrick
et al. (1983). While MCMC sampling is used to approximate a density (by sampling from it),
simulated annealing is used to optimize a function, which need not be a density. The text Shonkwiler
and Mendivil (2009) recommended above also contains an introduction to simulated annealing. For
a more advanced treatment, see, for example, van Laarhoven and Aarts (1987).

148CHAPTER 14. MARKOV CHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

This technique is relatively slow, and is often thought of as a “method of last resort”, suitable for
problems lacking regularity conditions required by more efficient optimization techniques (especially
combinatorial, or discrete, optimization problems). However, Problem 27.4 offers a demonstration
of simulated annealing which highlights one of its truly remarkable properties, in particular, its
ability to distinguish between local and global minima/maxima. This ability is actually quite rare
among more commonly used optimization algorithms, so simulated annealing is a method worth
considering in general.

As an example demonstration software SIMULATED-ANNEALING.R contains an application to the
well-known travelling salesman problem.

We finally note that the R function optim(), available for general multivariate optimization,
implements simulated annealing as an option. The command help(optim) provides a good intro-
duction to optimization in R. For univariate optimization the function optimize() is preferable.

Part II

Supervised and Unsupervised
Learning

149

Chapter 15

Machine Learning and Statistical
Learning - General Concepts

Machine learning describes computer applications in pattern recognition, computational learning
or artificial intelligence. Examples include the detection of purposeful motion in a dynamic pixel
field, or the development of software capable of identifying handwritten letters. Statistical learning
is the application of statistical methodology to these problems, focusing on the exploitation of data
sets.

Most statistical learning problems share a common structure. We are given, at the very least,
a set of n observations ẋ1, . . . , ẋn. For our purposes, we can take ẋi to be a vector of length p:

ẋi = (xi1, . . . , xip).

If we combine the observations into rows, we get an n× p matrix

X =

x11 · · · x1p

...
. . .

...
xi1 · · · xip
...

. . .
...

xn1 · · · xnp

 =

ẋ1
...
ẋi
...
ẋn

 .

It is important to note that X may also be decomposed by column. We may also define vector
xj = (x1j , . . . , xnj), so that

X = [x1 · · ·xp] .

Formally, we are interpreting ẋi as a 1× p row vector, and xj as a n× 1 column vector, that is

ẋi = [xi1 · · ·xip] and xj =

 x1j
...
xnj

 .
The symbol X represents a data set, with row/column i, j element [X]ij = xij . We refer to xj
as a feature, predictor or independent variable. The latter two are more common in statistical
literature, the first more common in computer science. Intuitively, a feature refers to a type of

150

15.1. SOME NOTATIONAL CONVENTIONS 151

information, of which there are p in this data set. Each element of feature xj is a member of
an outcome set xij ∈ Ej . These p data types may be of any form, quantitative (integer, real or
complex), qualitative or categorical (nominal or ordinal) or logical (true or false). However, it is
necessary that all outcomes in a feature be of the same type, and additionally of the same unit
(inches, degrees celsius, etc) when they are quantitative. The feature space is then the product
space ẋi ∈ Ex = E1 × · · · × Ep.

15.1 Some Notational Conventions

The ‘tilde’ notation x̃ or β̃ will be used to denote vectors in general, say, x̃ = (x1, . . . , xn) or
α̃ = (α1, . . . , αp). The symbols ẋi and xj denote specifically the row and column vectors of a
feature matrix X.

In the context of linear algebra, unless otherwise specified an n-dimensional vector is interpreted
as an n× 1 column vector. Therefore, given, for example, x̃ = (x1, . . . , xn) and ỹ = (y1, . . . , yn) we
may write

x̃T ỹ =

n∑
i=1

xiyi.

As in the previous section, in some cases bold font will denote vectors, for example µµµ = (µ1, . . . , µp).

If AAA is a matrix, then the i, j element may be written Aij or [A]ij , based on whichever seems
clearer in the context.

15.2 Structure of Data

The observations are usually sampling units. That is, observation ẋi is a set of p features outcomes
associated with a single sampling unit (person, city, computer image, etc). It is possible that a
observation does not contain outcomes for all features. In this case, a special symbol, say xij = NA,
is used when the jth feature of sampling unit i is not observed. This becomes a missing value, and
considerable research has gone into the development of principled methods for dealing with this
problem.

15.2.1 Features

As a practical matter, since X will be subject to algebraic operations, we are forced to regard any
element xij as a number. Usually, this is easily done. A logical feature can translate outcomes true
or false to integers 1 or 0. An ordinal feature xj can be converted to a rating scale 1, . . . , N , when
there are N ordered outcomes in Ej (eg, ‘nonsmoker’, ‘light smoker’, ‘heavy smoker’). We may refer
to an indicator variable xj as one whose outcome set is Ej = {0, 1}. This device is often used to
indicate the presence or absence of a particular characteristic in the sampling unit (eg ‘possesses
college degree’ = 1). Formally, this type of feature is nominal, but may be used within algebraic
operations in a logical manner. While a single indicator variable can represent a nominal feature
with only two outcomes, nominal features with m > 2 outcomes can be expanded into m (or m−1)

152CHAPTER 15. MACHINE LEARNING AND STATISTICAL LEARNING - GENERAL CONCEPTS

indicator variables, by assigning one indicator variable to each outcome:
Red
Red
Blue

...
Green

 =

1 0 0
1 0 0
0 1 0
...
0 0 1

 =

1 0
1 0
0 1
...
0 0

 . (15.1)

Here, a single feature consisting of outcomes Ej = {Red,Blue,Green} shown in (15.1) has been
converted to 3, then 2 indicator variables. It is important to note that the 2 column representation
is obtained simply by deleting the third column. No information has been lost, as long as we know
that the outcome is Green, if it is not Red or Blue, as the definition of the outcome set Ej tells us.
In general, it is preferable from a mathematical point of view to represent an m outcome nominal
feature with m− 1 indicator variables.

15.2.2 Response

Some datasets include a response variable y = (y1, . . . , yn). As for features, the elements are of a
common type, with outcomes in outcome set yi ∈ Ey. In fact, in all ways y is a feature, except that
is plays a special role in the machine learning application. Alternatively, we may have a data set
X in which one feature y = xj is selected as the response variable, the selection depending on the
objective of the application. In this case we take the data set to be (y,X).

15.3 Feature Distances

It is sometimes important to define a distance d between two vectors observations uuu = (u1, . . . , um),
vvv = (v1, . . . , vm). The most natural is Euclidean distance

d(uuu,vvv) =
√

(u1 − v1)2 + . . .+ (um − vm)2,

but there are often good reasons why alternative distance functions should be considered. A number
of mathematical objects are important when considering this problem, particularly the metric and
the norm.

15.3.1 Metrics

The metric can be thought of as a generalization of the notion of Euclidean distance, allowing more
flexible notions of distance, while retaining the most important properties.

Definition 15.1. Suppose we have real-valued mapping d : Rm × Rm 7→ R operating on two
observations uuu,vvv. Then d is a metric if

(i) d(uuu,vvv) ≥ 0 (non-negativity);

(ii) d(uuu,vvv) = 0 if and only if uuu = vvv (identifiabilty);

15.3. FEATURE DISTANCES 153

(iii) d(uuu,vvv) = d(vvv,uuu) (symmetry);

(iv) d(uuu,vvv) ≤ d(uuu,www) + d(www,vvv) for any www ∈ Rm (triangle inequality).

The term distance function may be used for mappings satisfying some but not all of these axioms,
which otherwise satisfy the intuitive notion of a distance. For example, if (ii) is replaced by
(ii)′ d(uuu,vvv) = 0 if uuu = vvv; then d is a pseudometric. If (iii) does not hold then d is a quasimetric. A
non-symmetric mapping can always be symmetrized by taking

d∗(uuu,vvv) = d(uuu,vvv) + d(vvv,uuu).

Note that a metric multiplied by a positive scalar remains a metric. A real-valued mapping s :
Rm×Rm 7→ R operating on two observations uuu,vvv is a similarity measure if it is negatively associated
with a distance.

The similarity measure of Definition 15.1 is not as precisely defined as a metric. Some conven-
tions require that it be non-negative or symmetric. On the other hand, a similarity measure can
be simply constructed as s(uuu,vvv) = −d(uuu,vvv) , where d is a distance function, and later standardized
to be non-negative if needed.

15.3.2 Lp norms

The magnitude of a vector uuu = (u1, . . . , um) in Euclidean space is

|uuu| =
√
u2

1 + . . . u2
m.

Similarly, the Euclidean distance between vectors uuu and vvv is |uuu − vvv|. In much the same way that
the metric generalizes Euclidean distance, the norm generalizes Euclidean magnitude.

Definition 15.2. Suppose we have real-valued mapping ‖ · ‖ : Rm 7→ R is a norm if for any vectors
uuu,vvv ∈ Rm and scalar a ∈ R

(i) ‖auuu‖ = |a|‖uuu‖ ≥ 0 (absolute scalability);

(ii) ‖uuu‖ = 0 implies uuu = ~0 (identifiabilty);

(iii) ‖uuu+ vvv‖ ≤ ‖uuu‖+ ‖vvv‖ (triangle inequality).

Note that ~0 = (0, . . . , 0) is the zero vector. It is not necessary to state that ‖~0‖ = 0 since this is
implied by axiom (i). In addition, that ‖uuu‖ ≥ 0 follows from axiom (i) (‖uuu‖ = ‖ − uuu‖) and axiom
(iii) (set vvv = −uuu).

If axiom (ii) does not hold, then ‖ · ‖ is a semimetric, which shares all properties of a metric,
except that ‖uuu‖ = 0 does not imply that uuu = ~0.

The Lp norms are an important class of norms.

Definition 15.3. The Lp norm for uuu ∈ Rm is defined as

‖uuu‖p =

[
m∑
i=1

upi

]1/p

,

154CHAPTER 15. MACHINE LEARNING AND STATISTICAL LEARNING - GENERAL CONCEPTS

for p ∈ (0,∞). In addition, the supremum norm (setting p =∞) is defined as

‖uuu‖∞ = max
i=1,...,m

|ui|.

It can be verified that Lp norms are true norms according to Definition 15.2.
Suppose wi > 0, i = 1, . . . ,m are a set of weights. The weighted Lp norm, denoted Lpw, is

defined as

‖uuu‖p,w =

[
m∑
i=1

(wiui)
p

]1/p

,

for p ∈ (0,∞). In addition, the weighted supremum norm is defined as

‖uuu‖∞,w = max
i=1,...,m

|wiui|.

Weighted Lpw norms are also true norms.

15.3.3 Distance functions

One property of norms proves to be useful in statistical learning. Given any norm ‖ · ‖ on Rm
(Definition 15.2), the distance function

d(uuu,vvv) = ‖uuu− vvv‖

is a true metric (Definition 15.1). Many commonly used distance functions are based on norms,
including Euclidean distance

deuc(uuu,vvv) = ‖uuu− vvv‖2,

Manhattan distance
dman(uuu,vvv) = ‖uuu− vvv‖1,

and supremum or maximum distance

dsup(uuu,vvv) = ‖uuu− vvv‖∞.

More variety of distances follow by using weighted Lpw norms in the same way. An m×m matrix
Σ is positive definite if uuuTΣuuu > 0 for all nonzero column vectors uuu. In this case Σ is invertible, and
Σ−1 is also positive definite. Then Mahalanobis distance is defined by

dmah(uuu,vvv) =
[
(uuu− vvv)TΣ−1(uuu− vvv)

]1/2
,

and is a true metric. When this metric is used, Σ is usually a covariance matrix. Note that some
conventions refer to Mahalanobis distance as d2

mah. However, d2
mah is not a metric (it does not

satisfy the axioms of Definition 15.2). This distinction should be kept in mind.
If uuu and vvv are binary vectors, assuming only values in {0, 1}, then Hamming distance is often

used, which is equivalent to
dham(uuu,vvv) = ‖uuu− vvv‖1,

that is, Hamming distance is the L1 metric applied to binary vectors. It is equivalent to the number
of element pairs which differ between uuu and vvv.

15.4. SUPERVISED AND UNSUPERVISED LEARNING 155

It is also possible to define similarity or distance using a correlation coefficient. A correlation
already serves as a similarity measure, and a distance function can be defined as

dcor(uuu,vvv) = 1− r(uuu,vvv)

where r(uuu,vvv) can be any correlation coefficient, including the Pearson and Spearman correlation
coefficients, and Kendall’s τ .

15.4 Supervised and Unsupervised Learning

Given a set of features X, and possibly a response y, we may define the two main classes of problems
in statistical learning. These are distinguished by the presence or absence of a response variable.

In unsupervised learning, there is no response variable y. The goal is to uncover relationships
or patterns within the observations or features. Perhaps the most common application is cluster
analysis, in which observations, or possibly features, are divided into clusters of similar observations
(or features).

In supervised learning the objective is to relate the features X to the response variable y. The
formal object is to develop a mapping f̂ : Ex 7→ Ey, with the property that f̂(ẋi) ≈ yi, in some
sense, whether y is qualitative or quantitative.

The distinction can be seen in Figure 15.1. The MPG and Horsepower ratings of a sample of
cars manusfactured in 1973 and 1981 are shown as a scatterplot. The year is indicated by distinct
symbols. If we ignore the year, we may note that the points seem to separate into two distinct
clusters, and we can imagine a boundary A between them (Figure 15.1). Intuitively, we might
conjecture that the two clusters are distinct car styles, perhaps large sedans on one side of the
boundary, and smaller economy cars on the other. This is an example of unsupervised learning,
since the boundary was constructed without any information beyond the two features MPG and
Horsepower.

Next, suppose we wish to develop a rule with which to predict the manufacture year, which
then becomes the response variable. We will study methods which, when applied to this data set,
might yield a boundary similar to B (Figure 15.1). This yields a mapping f̂ which assigns category
f̂(ẋ) = ‘1981’ if ẋ is in the interior of B, and f̂(ẋ) = ‘1973’ otherwise. We can assess the accuracy
of f̂ by systematically comparing f̂(ẋi) to yi. If we do, we find that there are two observations with
response ‘1981’ outside boundary B and two observations with response ‘1973’ inside, for a total
of 4 errors, but all other predictions are correct. Note that to construct this boundary we needed
to know the response y. This is a typical example of supervised learning.

15.5 Loss and Risk

The purpose of f̂ is to predict a response y given an observation ẋ, developed from data (y,X)
using the types of methodologies we will discuss below.

Note that y may be qualitative or quantitative. Up to a point, the principles of supervised
learning do not depend on this distinction, but eventually, the difference becomes unavoidable.
In either, case, it is assumed that a response y obeys a distribution f(y | ẋ) conditional on its
associated feature. When a new feature ẋ is presented, we form a prediction ŷ = f̂(ẋ) for y.
Recognizing that a prediction f̂(ẋ) is subject to some error, we define a loss function L(y, ŷ), which

156CHAPTER 15. MACHINE LEARNING AND STATISTICAL LEARNING - GENERAL CONCEPTS

10 15 20 25 30 35 40

50
10

0
15

0
20

0

MPG

H
or

se
po

w
er

1973
1981

A

B

Horsepower and MPG for cars
 manufactured in 1973 and 1981

Figure 15.1: Sample of cars manufactured in 1973 and 1981 (Section 15.4).

is our assessment of the cost of prediction error. This can vary with the goal of the predictor, and
a variety of loss functions might be considered. This is because we might view one type of error as
more consequential than another (a false negative would be of greater consequence for a fire alarm
than a false positive). Given a probability model, we define risk :

R(ẋ) = E[L(y, f̂(ẋ))],

which is the expected loss for feature ẋ. The goal of a predictor is to minimize risk, the predictor
which achieves this will depend on the loss function.

We first assume that y is quantitative. In this case we define the model

y = f(ẋ) + ε. (15.2)

Here, ε is a random error, assumed to have a mean E[ε] = 0. Furthermore, ε is often assumed
to be normally distributed, that is, ε ∼ N(0, σ2). The conditional density of response y is then
y ∼ N(f(ẋ), σ2). There are good reasons for this assumption, but the basic ideas do not depend on
this. Of course, it is possible that σ2 depends on ẋ. The usual practice is to first develop a theory
of statistical modeling based on the assumption of constant σ2, then to modify these models for
more general cases. An example of a model with varying σ2 (logistic regression) will be discussed
in Chapter 10.

The mapping f is not known, so must be estimated by f̂ . We now formally state the problem.
We are given data (y,X). Depending on the methodology, f̂ is to be chosen from some class of
functions f̂ ∈ F . Clearly, f̂ should be close to the f given in (15.2). We can achieve this by
systematically testing candidate functions f̂ ∈ F using the data. Assuming ε is not too large, if

15.5. LOSS AND RISK 157

f̂ ≈ f , then we would expect

yi ≈ f̂(ẋi), 1, . . . , n.

All elements of this approximation are observable, so we develop an aggregate goodness of fit
measure. The most commonly used is the error sum of squares:

SSE =
n∑
i=1

(yi − f̂(ẋi))
2 =

n∑
i=1

e2
i ,

where ei = yi− f̂(ẋi) are the residuals. Note that SSE is also known as the residual sum of squares
RSS. This corresponds to a loss function L(x, y) = (x− y)2.

The least squares fit f̂ is then

f̂ = argminf∗∈FSSE[f∗],

where we write SSE[f∗] to emphasis the dependence on the sum of squares on f∗. By convention,
when we write SSE alone, this refers to the minimum possible value over F .

We now ask a crucial question. What will SSE be if we are correct, that is, if f̂ = f? In
this case, ei = y − f(ẋ) = εi, where εi is the true error term given in (15.2). If we assume that
var [εi] = σ2, whether or not εi is normally distributed, then

SSE =
n∑
i=1

ε2i ,

and the mean squared error MSE will be

MSE =
1

n

n∑
i=1

ε2i ≈ σ2. (15.3)

This means the object is not to make the MSE as close to zero as possible, rather, it is to make
it as close to σ2 as possible.

To see the problem suggested here, suppose we attempt a simple regression model with only
two observations. It will then be possible to find a line which passes exactly through these points,
and we will have MSE = 0. This, of course, does not mean that the true model is error free,
rather, it means that our modeling method is not well conceived. In particular, our model space
F is too large. In fact, there is a special term for this. We say that a model which is sufficiently
flexible to force f̂(ẋi) = yi for all i is a saturated model (this idea is discussed further in Chapters
9 and 10). To achieve this, we only need let F be ‘the set of all functions conceivable’, and we will
achieve MSE = 0. More realistically, it is always possible that the model space F is large and rich
enough that the process of minimizing MSE leads to an underestimate of σ2, a problem usually
refered to as overfitting.

How do we overcome this problem, especially if we don’t know the value of σ2, which is usually
the case? We first need to recognize that we really have two estimation problems. We need to
estimate f using f̂ ∈ F , but we also need to estimate the appropriate level of complexity for F .
That is, we are estimating both F and f̂ . This process is referred to as model selection.

158CHAPTER 15. MACHINE LEARNING AND STATISTICAL LEARNING - GENERAL CONCEPTS

Of course, this problem is related to the estimation of σ2, and a general solution is expressible
in those terms. Suppose we set our goal not as selecting f̂ which minimizes MSE, but as the
function which minimizes

MSEtest = E
[
(y′ − f̂(ẋ′))2

]
where (y′, ẋ′) is an response/observation pair not previously sampled (but sampled under identical
conditions). Then, omitting some details, we have, given model (15.2),

MSEtest = E[(y′ − f(ẋ′) + f(ẋ′)− f̂(ẋ′))2]

= E[ε2 + 2ε(f(ẋ′)− f̂(ẋ′)) + (f(ẋ′)− f̂(ẋ′))2]

= E[ε2] + E[(f(ẋ′)− f̂(ẋ′))2]

= σ2 + E[(f(ẋ′)− f̂(ẋ′))2]. (15.4)

The second term of (15.4) is positive, and also approaches 0 as f̂ becomes more accurate, in which
case MSEtest yields an estimate of σ2. Therefore, finding f̂ which minimizes MSEtest is a better
strategy than minimizing the MSE defined in (15.3). In fact, this is the approach which minimizes
risk based on squared error loss.

15.6 Cross-Validation

The problem now is the estimation of MSEtest. We can think of this as a two stage process. First,
we build a predictor f̂ using training data (y,X). Then we estimate MSEtest distinct test data
(y′,X′). If f̂ is the predictor fit using the training data, then

MSEtest ≈
1

n

n′∑
i=1

(y′i − f̂(ẋ′i))
2,

where (y′i, ẋ
′
i), i = 1, . . . , n′, are the response/observation pairs from the test data set. It is impor-

tant to note that the data used to build the predictor f̂ is independent of the data used to test the
predictor’s accuracy. The degree to which a predictors’ accuracy is overestimated by failing to do
this can be surprisingly large, particularly with smaller data sets.

So, where does the test data come from? In medical studies, collecting new data to test a
previously developed model is inevitable, for any model which shows promise. Absent this, we may
take the point of view that we already have test data. All we need do is divide our current data
into training and test data sets, preferably at random. At this point, we may then refer to the
MSE calculated from training data as MSEtrain.

We may then use the following approach.

Algorithm 15.1. For a given data set (y,X) take the following steps:

(i) Define a sequence of model spaces F1, . . . ,FK .
(ii) Calculate f̂i minimizing MSEtrain on model space Fi, i = 1, . . . ,K.

(iii) Estimate MSEtest for each predictor f̂i, i = 1, . . . ,K.
(iv) Select the predictor with the smallest MSEtest.

15.7. BIAS AND VARIANCE 159

This simple partition method is sound, but may be subject to considerable variability, and the
predictor may depend considerably on the particular training/test partition. One alternative is
cross-validation (CV). Suppose we delete the first response/observation pair from the data set,
then fit a predictor f̂ (−1) using the remaining data. Then we may expect

E[(y1 − f̂ (−1)(ẋ1))2] ≈MSEtest.

Doing this for each observation yields the CV estimate

MSECV =
1

n

n∑
i=1

(yi − f̂ (−i)(ẋi))
2, (15.5)

and we expect MSECV ≈MSEtest.
More generally, we have k-fold cross validation. The sample is divided into k groups, or folds.

The first group is used as test data for a model fit with the remaining (training) data, yielding
MSEtest(1). This is repeated for each group, and the cross-validated MSE is taken to be the
average

MSECV [k] =
1

k

k∑
i=1

MSEtest(i).

When k = n, we have (15.5), commonly referred to as leave-one-out CV (LOOCV).
In this way Algorithm 15.1 is altered accordingly:

Algorithm 15.2. For a given data set (y,X) and some fixed k take the following steps:

(1) Define a sequence of model spaces F1, . . . ,FK .
(2) Calculate MSECV [k] for each model space i = 1, . . . ,K.
(3) Select the model space yielding the smallest MSECV [k]. Use this to construct the predictor.

15.7 Bias and Variance

It is worth decomposing equation (15.4) a little further. First note that an estimator θ̂ of any
parameter θ is unbiased if E[θ̂] = θ (otherwise they are biased). Despite what we might expect, not
all estimators are unbiased, including many widely used ones. The bias of an estimate is defined as

Bias[θ̂] = E[θ̂]− θ.

Then for squared error loss function L(θ, θ̂), the risk is, after some algebra,

R(θ) = E
[
(θ̂ − θ)2

]
= E

[(
θ̂ − E[θ̂] + E[θ̂]− θ

)2
]

= var[θ̂] +Bias[θ̂]2. (15.6)

It might seem a simple matter to subtract the bias from θ̂ to yield an unbiased estimated, thereby
reducing risk. Of course, we can’t do this if the bias depends on θ, which is unknown, and this is
often the case.

160CHAPTER 15. MACHINE LEARNING AND STATISTICAL LEARNING - GENERAL CONCEPTS

In statistical inference we are sometimes confronted with the bias/variance tradeoff suggested
by (15.6). Suppose we implement Algorithm 15.1 or 15.2. We first note that MSEtest is an
estimate of risk. Then, we will often find that the sequence of model spaces F1, . . . ,FK represents
a gradual decrease in complexity. More complex models tend to have less bias, due to their greater
flexibility, but also more variance, again due to their greater flexibility. As complexity decreases,
the variance term in (15.6) decreases, while the bias term increases. Hopefully, at some point
within the sequence we will find a ‘sweet spot’, where the optimal tradeoff between variance and
bias yields the minimum MSEtest or, approximately, risk.

15.8 Model Selection for Classifiers

The approach of Section 15.6 can be used for classifiers. We are using a different loss function,
usually L(y, ŷ) = I{y 6= ŷ}, so that risk is now

R(f̂(ẋ)) = P (y 6= f̂(ẋ))

for a new response/observation pair (y, ẋ). Given training data, the risk can be estimated as the
observed error rate

CEtrain =
1

n

n∑
i=1

{yi 6= f̂(ẋi)}.

Of course, this measure suffers from the same defects asMSEtrain, that is, it is subject to overfitting,
and may overestimate the predictor’s accuracy. We may use CV and Algorithms 15.1-15.2 in much
the same way as described in Section 15.6, except that observed classification error is used in place
of mean squared error. Then the quantities CEtest, CECV and CECV [k] follow in much the same
way.

15.9 Postscript

The subjects of prediction, classification and model selection are foundational, and best studied in
the context of a more general theory of statistical inference (Section 1.2). There is no single set of
practice problems for this chapter. Of course, these ideas support most of the methods considered
in these notes, so related practice problems can be found throughout Part III.

A number of problems in Chapters 28 and 30 make use of cross-validation for variable or
parameter selection. We will see in later chapters that many R functions either support cross
validation, or are accompanied in their packages by modified functions which do.

Problems 30.19, 30.20 and 30.22 involve more analytical explorations of the bias/variance trade-
off central to the problem of prediction, and demonstrate that cross-validation is merely one method
of resolving these problems.

There is also a demonstration software file CROSS-VALIDATION.R which contains examples illus-
trating some of the finer points of cross validation. These are generally introduced in the context
of methods to be discussed in later chapters.

The importance of cross validation cannot be overstated. The difference between estimates of
prediction accuracy obtained with and without cross validation can be large, even alarming. In
other words, cross validation might prevent costly errors (a demonstration of this can be found in

15.9. POSTSCRIPT 161

CROSS-VALIDATION.R). Even when used, it is important to ensure that all steps involved in building
a classifier or predictive model are included within the cross validation loop. A common error is to
use all data for an initial feature selection step, before applying cross validation to the selection of
the remaining model parameters (see Ambroise and McLachlan (2002) for an interesting discussion
of this problem). Problem 28.13 illustrates this issue.

James et al. (2013) and Friedman et al. (2001) contain further discussion on the various topics
considered in this chapter. See also Efron and Gong (1983) and Picard and Cook (1984).

Chapter 16

Bayes Theorem and Classification

If we are given a conditional probability P (E | A) we often would like to “reverse the order” of the
events to obtain P (A | E). To do this we use Baye’s theorem

Theorem 16.1. For two events A and E, with P (E) > 0, we have

P (A | E) = P (E | A)
P (A)

P (E)
. (16.1)

Proof. The Equation (16.1) is proven with the following argument:

P (A | E) =
P (AE)

P (E)

=
P (E | A)P (A)

P (E)
.

The following definition, though straightforward, is quite important to understanding the cur-
rent chapter.

Definition 16.1. In the context of Baye’s theorem P (A) is the prior probability of A, and P (A | E)
is the posterior probability of A given information E.

The following is a useful variation of Baye’s theorem.

Theorem 16.2. Suppose events A1, . . . , An is a partition of sample space S, that is, the events
are mutually exclusive with

S = ∪ni=1Ai.

For any 1 ≤ i ≤ n

P (Ai | E) =
P (E | Ai)P (Ai)

P (E)

=
P (E | Ai)P (Ai)

P (E | A1)P (A1) + . . .+ P (E | An)P (An)
. (16.2)

162

163

Proof. Equation 16.2 follows from the law of total probability.

Example 16.1. Suppose a test for a certain infection is evaluated by administering the test to 50
patients with the infection, and 100 patients known to be without the infection (control patients).
The test was positive for 49 of the 50 infected patients and positive for 4 of the 100 control patients.
Let

T = { Patient tests positive }
D = { Patient has infection }

From the above data we can estimate directly

P (T | D) = 49/50

P (T c | D) = 1/50

P (T | Dc) = 4/100

P (T c | Dc) = 96/100.

Thus, from the data we get directly

P (T | D) = Probability of testing positive when infected

and
P (T | Dc) = Probability of testing positive when not infected

but what is of ultimate interest are the probabilities

P (D | T) = Probability of being infected when testing positive

and
P (D | T c) = Probability of being infected when not testing positive

since this is the quantity which is clinically relevant. We use Baye’s Theorem to calculate these
probabilities, setting

A1 = D

A2 = Dc.

Then

P (D | T) =
P (T | D)P (D)

P (T | D)P (D) + P (T | Dc)P (Dc)

=
(49/50)P (D)

(49/50)P (D) + (4/100)P (Dc)

and

P (D | T c) =
P (T c | D)P (D)

P (T c | D)P (D) + P (T c | Dc)P (Dc)

=
(1/50)P (D)

(1/50)P (D) + (96/100)P (Dc)
.

Note that in order to evaluate these probabilities we need to know P (D) which was not obtained
from the original experiment. This should be the case, since if P (D) = 0 (i.e., the infection is
nonexistent) we would also expect both P (D | T) = P (D | T c) = 0.

164 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

16.1 Odds

The term odds is synonymous with probability, and is formally defined as follows:

Definition 16.2. For a given event A we define the odds to be

Odds(A) =
P (A)

P (Ac)
=

P (A)

1− P (A)
.

If I roll a die, the probability of getting a six is 1/6, but the odds are 1/5. Mathematically, the
odds and the probability of an event A are equivalent, since we can calculate the odds from the
probability, as well as the probability from the odds:

P (A) =
Odds(A)

1 +Odds(A)
.

In particular, if A is certain to occur then

P (A) = 1

Odds(A) = ∞

and if A is certain to not occur then

P (A) = 0

Odds(A) = 0.

We can also define the conditional odds of A given E.

Definition 16.3. The conditional odds of A given E is defined as

Odds(A | E) =
P (A | E)

P (Ac | E)
=

P (A | E)

1− P (A | E)
.

The conditional odds leads to a particularly intuitive form of Baye’s theorem.

Theorem 16.3. The conditional odds of A given E may be expressed

Odds(A | E) =
P (E | A)

P (E | Ac)
×Odds(A). (16.3)

Proof. Equation (16.3) is proven with the following argument:

Odds(A | E) =
P (A | E)

P (Ac | E)

=
P (E | A)P (A)

P (E)
× P (E)

P (E | Ac)P (Ac)

=
P (E | A)

P (E | Ac)
× P (A)

P (Ac)

=
P (E | A)

P (E | Ac)
×Odds(A).

16.2. THE BAYESIAN MODEL 165

16.2 The Bayesian Model

Under the Bayesian model we are interested in the probability of a hypothesis A, or more
specifically, the effect on this probability of the introduction of information or evidence E. There
may be a well known prevalence of a certain condition (hypothesis A) among a population. For any
given patient entering a clinic, this prevalance may be P (A). A diagnostic test is then done. Let E
be the event that this test is positive. We are now no longer interested in P (A), but in P (A | E)
or P (A | Ec), depending on the outcome of the test.

Based on an evaluation of the accuracy of the test, we may know P (E | A) and P (E | Ac).
Examining Equation (16.3), we define the likelihood ratio as follows:

Definition 16.4. When considering the odds of an event A given evidence E, the likelihood ratio
is given by

LR =
P (E | A)

P (E | Ac)
,

from which we get, as a reexpression of Theorem 16.3,

Odds(A | E) = LR×Odds(A). (16.4)

We refer to Odds(A) as the prior odds and to Odds(A | E) as the posterior odds.

The relationship between the prior and posterior odds is the same as that between the prior and
posterior probability. However, Equation (16.4) very neatly captures the ability of the evidence to
alter our assessment of the probability of a hypothesis in a way which does not depend on the prior
probability.

Example 16.2. We will express the previous Example 16.1 in terms of odds of having the infection.
If a patient tests positive, the odds are adjusted by the formula

Odds(D | T) =
P (T | D)

P (T | Dc)
×Odds(D)

=
49/50

4/100
×Odds(D)

= 24.5×Odds(D)

so that testing positive increases the odds of having the infection by a factor of 24.5.
If the patient tests negative, the odds are adjusted by the formula

Odds(D | T c) =
P (T c | D)

P (T c | Dc)
×Odds(D)

=
1/50

96/100
×Odds(D)

=
1

48
×Odds(D)

so that testing negative decreases the odds of having the infection by a factor of 48.
We are therefore in a better position to evaluate the accuracy of the test when the problem is

expressed in terms of odds.

166 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

Example 16.3. Suppose blood collected at a crime scene is typed for DNA. A genotype if found
which is estimated to occur in the population with a frequency of p. A suspect is similarly typed
and found to have the same genotype. Suppose

A = { Suspects blood is that found at the crime scene }
E = { Suspect has the same genotype as blood found at crime scene }

Then the likelihood ratio is constructed by noting that

P (E | A) = 1

P (E | Ac) = p

giving

LR =
P (E | A)

P (E | Ac)

=
1

p

so that the odds that the blood is the same is adjusted by

Odds(A | E) = LR×Odds(A)

=
1

p
×Odds(A)

We usually have no way of directly evaluating Odds(A). We can only describe how the evidence
changes the odds. If it were established without doubt that the suspect was not at the crime scene
by other evidence then we would have

Odds(A) = 0

and
Odds(A | E) = 0

for any value of LR. If guilt were established with absolute certainty then

Odds(A) =∞

and
Odds(A | E) =∞.

for any value of LR.
Now, suppose the genotype does not match. (That is, Ec occurs). The likelihood ratio is now

calulated from

P (Ec | A) = 0

P (Ec | Ac) = 1− p

giving LR = 0 so that

Odds(A | E) = LR×Odds(A)

= 0

for any Odds(A).

16.3. THE FALLACY OF THE TRANSPOSED CONDITIONAL 167

16.3 The Fallacy of the Transposed Conditional

In the previous example suppose we set p = 1/100. We could then say

P (E | Ac) = 1/100

which is the probability of a genotype match if the suspect is not guilty. A common error is to
transpose the conditional which yields (incorrectly)

P (Ac | E) = 1/100.

This statement says that the probability that the suspect is not guilty is 1/100 if a match occurs.
After some algebra we then get

P (A | E) = 1− P (Ac | E)

= 99/100

which says that, given a match, the probability that the suspect is guilty is 99/100, which cannot
be concluded from the evidence. The odds of guilt given the evidence depends on the prior odds.
This is often referred to as the prosecutor’s fallacy .

16.4 Diagnostic Testing - Basic Definitions

A common problem in medical research is the evaluation of the accuracy of diagnostic tests. This
can be framed in the context of probability theory. In the simplest case, a diagnostic test is either
positive (in which case the patient is predicted to have the condition being tested) or negative (in
which case the patient is predicted to not have the condition being tested). There are 4 events of
interest:

O− = { the patient does not have the condition }
O+ = { the patient has the condition }
T− = { the patient tests negative }
T+ = { the patient tests positive }

Clearly, Oc− = O+ and T c− = T+, so that P (O−) + P (O+) = 1 and P (T−) + P (T+) = 1.
Conditional probabilities and Bayes theorem can be very useful in developing a probabilistic

model for these outcomes, and a widely used terminology has been developed:

sensitivity (sens) = P (T+ | O+)

specificity (spec) = P (T− | O−)

positive predictive value (PPV) = P (O+ | T+)

negative predictive value (NPV) = P (O− | T−)

prevalance (prev) = P (O+). (16.5)

Two more related definitions are sometimes used:

true discovery rate (TDR) = sens

false discovery rate (FDR) = P (T+ | O−) = 1− spec.

168 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

In an evaluation study, a diagnostic test will typically be administered to subjects with known
outcomes, which will allow sensitivity and specificity to be estimated. However, when used in a
clinical setting, the outcomes will not be known. These are to be predicted based on the test result,
so it will be PPV and NPV which are more relevant. These quantities can be related to sensitivity,
specificity and prevalence using Baye’s Theorem:

PPV = P (O+ | T+)

=
P (T+ | O+)P (O+)

P (T+ | O+)P (O+) + P (T+ | O−)P (O−)

=
sens× prev

sens× prev + (1− spec)× (1− prev)
(16.6)

and

NPV = P (O− | T−)

=
P (T− | O−)P (O−)

P (T− | O−)P (O−) + P (T− | O+)P (O+)

=
spec× (1− prev)

spec× (1− prev) + (1− sens)× prev
. (16.7)

It is important to understand the degree to which PPV and NPV depend on prevalence. We have
already seen in Example 16.1 that if, for example, prev = 0 we would necessarily have PPV = 0,
no matter what sensitivity and specificity are. On the other hand, sensitivity and specificity do not
depend on prevalence, and this distinction is an important one.

16.4.1 Diagnostic tests and contingency tables

The outcomes of a study used to evaluate a diagnostic test can be summarized in Table 1 below,

Table 1: Outcomes of diagnostic testing

Condition
Positive Negative

Test Positive TP FP
Negative FN TN

where

TP = T+ ∩O+ = True Positive

FP = T+ ∩O− = False Positive

TN = T− ∩O− = True Negative

FN = T− ∩O+ = False Negative. (16.8)

Table 1 can be interpreted as a contingency table, with numerical entries TP, FP, TN, FN giving
the counts of subjects in each category. These can be used to estimate all important quantities. If

16.4. DIAGNOSTIC TESTING - BASIC DEFINITIONS 169

we let N = TP + FP + TN + FN (the total number of entries in Table 1) we can calculate the
marginal probabilities:

P (O−) =
FP + TN

N

P (O+) =
TP + FN

N

P (T−) =
FN + TN

N

P (T+) =
TP + FP

N
, (16.9)

and the important diagnostic quantities

prev =
TP + FN

N
= P (O+)

sens =
TP

TP + FN
= P (T+ | O+)

spec =
TN

TN + FP
= P (T− | O−)

PPV =
TP

TP + FP
= P (O+ | T+)

NPV =
TN

TN + FN
= P (O− | T−). (16.10)

However, the prevalence must be very carefully interpreted. If we calculate prev directly from
Table 1, we obtain the prevalence of an outcome within the study population, which may have no
relationship to the prevalence in any given clinical population. This would be especially true if
the study was designed to ensure a large enough sample of disease positive subjects to accurately
evaluate the test. In such cases, we would expect prev to be much higher than it would be in a
clinical population.

Therefore, it is important to understand that it is always possible, and usually preferable, to
calculate prevalence independently of sensitivity and specificity. In particular, if we are using a
study such as that represented by Table 1 we would use equations (16.10) to estimate sens and
spec but not prev, PPV or NPV . Instead, we would use an independent estimate of prev which
more accurately estimates the prevalance within the clinical population of interest, and then use
(16.6)-(16.7) with that value of prev.

In summary, the important question is whether or not the subjects used in Table 1 are repre-
sentative of the population in which the test is to be applied, in terms of the relative frequencies of
outcomes O+ and O−. The values of prev, PPV and NPV calculated by equations (16.10) would
be interpretable only if this is the case.

16.4.2 The use of odds in the evaluation of diagnostic tests

In the absence of a reliable estimate of prevalence, the accuracy of a diagnostic test can be expressed
using odds, as shown above. Using the previous terminology we have

LR =
P (T+ | O+)

P (T+ | O−)
=

sensitivity

1 - specificity

170 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

so that
Odds(O+ | T+) = LR×Odds(O+).

Then Odds(O+) is the prevalence expressed as odds, and the predicitive ability of the test can be
expressed using only the sensitivity and specificity.

Note that we can also assess the accuracy of a negative test outcome. In this case we can
distinguish between the LR for a positive test outcome LR+ and the LR for a negative test outcome
LR−:

LR+ = LR as defined above LR− =
P (T− | O+)

P (T− | O−)
=

1 - sensitivity

specificity

so that

Odds(O+ | T+) = LR+ ×Odds(O+)

Odds(O+ | T−) = LR− ×Odds(O+).

Example 16.4. Studies into the accuracy of a diagnostic test often proceed by pairing the test
with a gold standard in a study group of size N , the latter assumed to be perfectly accurate. In this
case, we can estimate sensitivity and specificity. After the study we would construct a contingency
table like the following (N = 1000):

Table 2: Outcomes of diagnostic testing for Example 16.4

Condition
Positive Negative

Test Positive 30 110
Negative 10 850

We have, using equations (16.10), (TP = 30, for example):

sens = 30/40 = 0.75

spec = 850/960 ≈ 0.885

LR+ = (30/40)/(1− 850/960) ≈ 6.545

LR− = (1− 30/40)/(850/960) ≈ 0.282

and the Bayes model gives

Odds(O+ | T+) ≈ 6.545×Odds(O+)

Odds(O+ | T−) ≈ 0.282×Odds(O+).

A positive test result increases the odds of a positive outcome by a factor of 6.545, while a negative
test result decreases the odds of a positive outcome by a factor of 0.282.

Next, if we calculate prev, PPV and NPV dircetly from the contingency table, using equations
(16.10). we would have

prev = (10 + 30)/1000 = 0.04

PPV = 30/140 ≈ 0.214

NPV = 850/860 ≈ 0.988.

16.5. THE ODDS RATIO 171

The values of PPV and NPV assume a prevalance of 4%, estimated directly from tha data.
Suppose the true prevalence was 2%. We would then use (16.6)-(16.7) with prev = 0.02 and the
estimates of sens and spec obtained from the data (remember that these quantities do not depend
on the prevalence). This gives

PPV =
sens× prev

sens× prev + (1− spec)× (1− prev)

=
0.75× 0.02

0.75× 0.02 + (1− 0.885)× (1− 0.02)

≈ 0.117

and

NPV =
spec× (1− prev)

spec× (1− prev) + (1− sens)× prev

=
0.885× (1− 0.02)

0.885× (1− 0.02) + (1− 0.75)× 0.02

≈ 0.994.

Reducing the prevalence by 1/2 results in a reduction in PPV of almost the same magnitude (verify
that if we use prev = 0.04 in equations (16.6)-(16.7) we reproduce the values of PPV and NPV
obtained using equations (16.10)).

Using either method, that PPV is much smaller than sensitivity is typical, and is due to the
fact that PPV depends on the prevalence. Expecting the two to be equal is an example of the
‘prosecutor’s fallacy’, since one is obtained from the other by transposing the conditional.

Note also that NPV is quite large. This is a function both of the ability of the test to rule out
a positive outcome (measured by specificity) and of the relatively small prevalence. This means
NPV would be smaller when the test is confined to a higher risk population.

16.5 The Odds Ratio

Consider the following events

O− = { the patient does not have the condition }
O+ = { the patient has the condition }
G1 = { the patient is in Group 1 }
G2 = { the patient is in Group 2 }.

Typically, we are interested in comparing

P (O+ | G1) and P (O+ | G2).

Perhaps the obvious comparison method is to examine the difference:

∆ = P (O+ | G1)− P (O+ | G2).

172 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

This will be, sometimes, a reasonable approach, but will not work well when the probabilities are
small. Alternatively, we have the relative risk

RR =
P (O+ | G1)

P (O+ | G2)

and the odds ratio (OR)

OR =
Odds(O+ | G1)

Odds(O+ | G2)
=
P (O+ | G1)/(1− P (O+ | G1))

P (O+ | G2)/(1− P (O+ | G2))
.

The OR has an interesting property, in that events defining it may be transposed, that is

OR =
Odds(G1 | O+)

Odds(G1 | O−)
,

so that the OR does not depend on the marginal probabilities (that is, the prevalences). For some
applications, this is a considerable advantage, for the reasons discussed earlier in this chapter.

16.6 Bayes Classifiers

We now consider the problem of classification. We have, as before, responses and features y and X.
But now, Y is qualitative, and the predictor function f̂(ẋ) now assigns a predicted class from Ey to
each feature ẋ. The additive error model (15.2) is no longer applicable. Instead, either a predicted
class is correct, or an incorrect class is predicted. Suppose there are m classes in Ey, which we
can always label 1, . . . ,m. If there is any information in the features ẋ which is able to distinguish
between classes, then there must be conditional densities f(ẋ | y = j), j ∈ 1, . . . ,m which differ
noticeably from each other. We can then use Bayes theorem to get conditional distribution:

P (y = j | ẋ) =
f(ẋ | y = j)πj

f(ẋ)
(16.11)

where πj is the prior probability of class j (the prevalance of class j in the population of interest),
and

f(ẋ) =
m∑
j=1

f(ẋ | y = j)πj

is the total probability distribution of ẋ. Suppose we use loss function:

L(y, f̂(ẋ)) = I{y 6= f̂(ẋ)},

that is, the loss is one if and only if the classification is incorrect. Then given feature ẋ, the
minimum risk classifier, refered to as the Bayes classifier can be shown to be

f̂(ẋ) = argmaxj∈EyP (y = j | ẋ) = argmaxj∈Eyf(ẋ | y = j)πj , (16.12)

noting that the denominator in (16.11) does not depend on class type j. Of course, we may choose
to define a more complex loss function. For example, if the true class is 1, then is may be a less
costly error to predict 2 than 3. We may set L(1, 2) = 1/2 and L(1, 3) = 1 accordingly. Then a
distinct classifier will minimize risk.

16.6. BAYES CLASSIFIERS 173

16.6.1 Prior probabilities

It is important to understand the role of the prior probabilities π̃ = (π1, . . . , πm), since the optimal
properties of the Bayes classifier depend on their correct identification. To see this, suppose we are
developing a test for the presence of a type of infection. When we develop the test, we presumably
have training data (y,X) with which to estimate conditional densities f(ẋ | y = j). However,
it would usually not be appropriate to use as estimates of π̃ the proportions of each class in the
training data. We would hope that the prior probability of infection, say π1, would be much less
than 1/2, and so for the purposes of efficient estimation, the proportion of the infected class in y
should be chosen to be much higher than π1.

For this reason, the choice of prior probabilities is often made independently of the training
data. To take an extreme example, suppose the infection in question is nonexistent (small pox, for
example). In this case, it would be appropriate to set π1 = 0, in which case the Bayes classifier will
predict noninfection for any observation ẋ.

When there is apparently no basis on which to choose prior probabilities a commonly used
strategy is to select an uninformative prior, which weights each prediction equally. When the
number of classes is finite, the logical choice would be the uniform prior πj = 1/m. This is an
example of the principle of indifference. However, in more complex example of Bayesian prediction,
the question of what constitutes an uninformative prior can be a very deep one, and there may be
a number of competing answers.

For our purposes, there are three choices:

(1) We use prior knowledge to inform the choice of π̃.
(2) We use a uniform prior as the indifferent choice.
(3) We as estimates for π̃ the class frequencies observed in the training data

The third option is the easiest to take, since it is often the default choice of algorithms which
build classifiers. Sometimes it will be the correct choice, but the fact that a choice is being made
should always be kept in mind.

16.6.2 Naive Bayes classifiers

Typically, the technical issue for Bayes classifiers is the estimation of the conditional density
f(ẋ | y = j) in (16.12). In principle, this may be done directly from the training data. How-
ever, there is scalability issue with respect to the number of features p. If we consider, for example,
the p-dimensional multivariate normal distribution we note that the mean vector contains p param-
eters, while the covariance matrix contains p+ p(p− 1)/2 parameters (p variances and p(p− 1)/2
covariances). This means the number of parameters to be estimated is of order O(p2), and so does
not scale well with increasing numbers of predictors. A simple (ie ‘naive’) solution is to assume that
the features are independent (even when evidence to the contrary exists), so that the conditional
density is

f(ẋ | y = j) =

p∏
i=1

fi(xi | y = j).

Instead of estimating one multivariate density f(ẋ | y = j), p univariate densities fi(xi | y = j) are
estimated, so that the total number of parameters to estimate is of order O(p). In the normal case,
that number is exactly 2p, absent any further constraints.

174 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

16.7 K Nearest Neighbor (KNN) Classifiers and Regression

Assume there is a distance function d defined on the feature space Ex. We have data set (y,X).
For any feature ẋ and K ≥ 1 define the neighborhood

NK(ẋ) = {i : rank of d(ẋi, ẋ) no greater than K },

that is, NK(ẋ) consists of the indices of the K features nearest to ẋ (ẋ need not be in X). Then
for quantitative responses, the KNN predictor of f(ẋ) is

f̂(ẋ) =
1

K

∑
i∈NK(ẋ)

yi,

or, the mean response in the neighborhood.
For the classification problem,

f̂(ẋ) = j if j is the most frequent class in NK(ẋ),

where ties are resolved randomly.
In a typical application, Algorithms 15.1-15.2 may be used with the model spaces F1, . . . ,FN ,

where Fi is the model space for the KNN classifier with neighborhood size parameter Ki.

16.8 Linear and Quadratic Discriminant Analysis

Linear and quadratic discriminant analysis (LDA and QDA) are special cases of Bayes classifiers
based on the normal distribution. Suppose, we have p features and m classes, and we wish to build
a Bayes classifier with conditional distributions

f(ẋ | y = j) = φ(ẋ;µµµj ,Σj), j = 1, . . . ,m.

This requires an estimate of mean vectors and covariance matrices µµµj ,Σj for each class j. As
discussed in Section 16.6.2 without further constraint the number of parameters to estimate becomes
very large with increasing p. One way to control this is to assume (if justified) that the class
covariance matrices are equal, so that Σj = Σ for any j. Another method is to use a naive Bayes
classifier (Section 16.6.2). In this case, the feature independence assumption forces each Σj to be
a diagonal matrix, but they may still differ by class.

Once the conditional distributions are given the Bayes classifier is given directly by (16.12). It
is generally simpler to apply a log transformation, in which case we have

log(φ(ẋ;µµµj ,Σj)πj) = −1

2
Qj(ẋ)− 1

2
log(det(Σj)) + log(πj)−

p

2
log(2π), (16.13)

where
Qj(ẋ) = (ẋ−µµµj)TΣ−1

j (ẋ−µµµj).

At one level, all that is needed at this point is to calculate (16.13) for each class for any given
observation ẋ, then take as the prediction that class with the largest value. If needed, the parameters
can be estimated, as discussed in Section 16.8.1 below.

16.8. LINEAR AND QUADRATIC DISCRIMINANT ANALYSIS 175

However, some insight can be gained by trying to refine the approach. First, we note that the
procedure can be represented as a collection of functions hj(ẋ), j = 1, . . . ,m, yielding prediction

ŷ = argmaxjhj(ẋ). (16.14)

This means these functions can be subject to a common strictly increasing transformation while
yielding exactly the same predictions. This includes addition of a constant (positive or negative),
or multiplication by a positive scalar. If we initially set hj(ẋ) equal to (16.13), we might then
note that there is a common term −p

2 log(2π) (that it, it does not depend on j). We can therefore
remove this term to get

hj(ẋ) = −1

2
Qj(ẋ)− 1

2
log(det(Σj)) + log(πj).

Next, suppose we adopt a uniform prior πj = 1/m (Section 16.6.1). The term log(πj) is now
constant across classes, so it can be rmoved, yielding classifiers:

h′j(ẋ) = −1

2
Qj(ẋ)− 1

2
log(det(Σj)). (16.15)

Finally, suppose the covaniance matrices Σj = Σ are constant. The term −1
2 log(det(Σj)) may

then be removed, but further simplification is possible. The quadratic term Qj(ẋ) may also be
decomposed:

Qj(ẋ) = (ẋ−µµµj)TΣ−1
j (ẋ−µµµj)

= ẋTΣ−1
j ẋ− 2(ẋ)TΣ−1

j µµµj +µµµTj Σ−1
j µµµj .

When Σj = Σ the first term of this decomposition is constant across classes, so we have classifiers

h′′j (ẋ) = ẋTΣ−1µµµj −
1

2
µµµTj Σ−1µµµj . (16.16)

Note that the covariance matrix Σ still appears in (16.15), but only in terms which otherwise vary
by class.

At this point we have the distinction between linear and quadratic discriminant analysis, specif-
ically, whether or not the covariance matrices differ by class, which yield respective classifiers (in
their most general form):

LDA hj(ẋ) = ẋTΣ−1µµµj −
1

2
µµµTj Σ−1µµµj + log(πj)

QDA hj(ẋ) = −1

2
(ẋ−µµµj)TΣ−1

j (ẋ−µµµj)−
1

2
log(det(Σj)) + log(πj).

Recall the example in Figure 15.1. In general, classifiers can be defined geometrically by the
boundaries they induce in the feature space. One advantantage of discriminant analysis is that this
boundary takes an analytical form. Suppose we have m = 2 classes. From (16.14) we can see that
this boundary is given by the equation

h1(ẋ)− h2(ẋ) = 0.

176 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

By (16.17) it can be seen that for LDA this boundary is linear (boundary A, Figure 15.1) and for
QDA it will be quadratic (boundary B, Figure 15.1).

Finally, the naive Bayes classifier (Section 16.6.2) is easily defined. For a multivariate normal
distribution, independence is equivalent to zero covariance. Therefore a naive Bayes classifier is
implemented simply by forcing each Σj to be a diagional matrix. This holds for both LDA and
QDA. This method is known as diagonal discriminant analysis (DDA).

16.8.1 Estimation for LDA/QDA

The estimation problem is straightforward. We are given training data (y,X). The feature matrix
is then partitioned by class, into X1, . . . ,Xm. The class mean vector µµµj is estimated by the sample
means µ̄µµj = (x̄1, . . . , x̄p), where x̄i is the sample mean of feature i using class j feature data Xj .

Similarly, Σj is estimated by the sample covariance matrix using feature data Xj :

Σ̂j =
1

nj − 1

∑nj

i=1(xi1 − x̄1)2 · · ·
∑nj

i=1(xi1 − x̄1)(xip − x̄p)
...

. . .
...∑nj

i=1(xip − x̄p)(xi1 − x̄1) · · ·
∑nj

i=1(xip − x̄p)2

 .
where nj is the number of observations of class j, and the indices are defined relative to Xj .

If we assume identical covariance matrices Σ = Σj , then the single estimate of Σ may be
obtained by pooling the separate class estimates:

Σ̂pooled =
1

n− p

p∑
j=1

(nj − 1)Σ̂j ,

(compare this procedure to the pooled t-test).
For DDA, the nondiagonal terms of Σ̂j are set to zero, and the diagonal estimated as already

described.

16.9 Classification and the Receiver Operator Characteristic (ROC)
Curve

We already introduced a probabilistic model for the evaluation of a classifier, in the context of
diagnostic testing. This was based on an application of Baye’s theorem to the following events on
a probability space:

O+ = { positive outcome }
O− = { negative outcome }
T+ = { positive test outcome }
T− = { negative test outcome }.

We defined sensitivity and specificity as the following quantities:

sens = P (T+ | O+)

spec = P (T− | O−),

16.9. CLASSIFICATION AND THE RECEIVER OPERATOR CHARACTERISTIC (ROC) CURVE177

and we may also define the false positive rate and false negative rate as

fpr = P (T+ | O−) = 1− spec
fnr = P (T− | O+) = 1− sens.

These quantities are relevant in the evaluation phase of the development of a classifier. The ultimate
goal is to maximize the positive predictive value (PPV) and negative predictive value (NPV), defined
as

PPV = P (O+ | T+)

NPV = P (O− | T−),

but to do so we need to test the classifier using subjects with known outcomes O+ and O−, which
gives sens and spec. We also need the prevalence of the outcome

prev = P (O+),

with which Baye’s theorem leads to

PPV = P (O+ | T+)

=
P (T+ | O+)P (O+)

P (T+ | O+)P (O+) + P (T+ | O−)P (O−)

=
sens× prev

sens× prev + (1− spec)× (1− prev)

and

NPV = P (O− | T−)

=
P (T− | O−)P (O−)

P (T− | O−)P (O−) + P (T− | O+)P (O+)

=
spec× (1− prev)

spec× (1− prev) + (1− sens)× prev
.

16.9.1 Classifiers based on a numerical risk score

The preceding section summarizes a probabilistic classification model for which the classifier can
be reduced to two outcomes T+ and T−. Of course, classifiers are often based on a numerical
score. We can adopt the convention that higher scores can be interpreted as evidence in favor of a
positive outcome O+ (if needed, reverse the score by multiplying by −1). In this way, the numerical
classifier can be interpreted as a risk score, with high risk implying greater probability (risk) of a
positive outcome O+.

To fix ideas, consider the Melanoma data set included in the MASS package:

> library(MASS)

> help(Melanoma)

Survival from Malignant Melanoma

178 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

Description

The Melanoma data frame has data on 205 patients in

Denmark with malignant melanoma.

Usage

Melanoma

Format

This data frame contains the following columns:

time

survival time in days, possibly censored.

status

1 died from melanoma, 2 alive, 3 dead from other causes.

sex

1 = male, 0 = female.

age

age in years.

year

of operation.

thickness

tumour thickness in mm.

ulcer

1 = presence, 0 = absence.

Source

P. K. Andersen, O. Borgan, R. D. Gill and

N. Keiding (1993) Statistical Models based on Counting

Processes. Springer.

We will investigate the possibility of using thickness (tumor thickness in mm) to predict death
from melanoma. We have outcome status, which classifies the patient as dead from melanoma
(status = 1); alive (status = 2); or dead from other causes (tttstatus = 3). We may remove

16.9. CLASSIFICATION AND THE RECEIVER OPERATOR CHARACTERISTIC (ROC) CURVE179

from the analysis patients who died from other causes, leaving outcomes

O+ = {patient died from melanoma}
O− = {patient is still alive}.

In practice, this type of analysis would take into account the observation times of the patients, which
may vary considerably. For example, a patient with outcome O− may have only been observed for
a short period of time, so that that negative outcome would be more difficult to interpret than
an negative outcome which follows a longer observation period. With that caveat, we will accept
survival as the outcome.

We have a quick first look at the data:

> names(Melanoma)

[1] "time" "status" "sex" "age" "year"

"thickness" "ulcer"

> Melanoma[1:3,]

time status sex age year thickness ulcer

1 10 3 1 76 1972 6.76 1

2 30 3 1 56 1968 0.65 0

3 35 2 1 41 1977 1.34 0

> is.factor(Melanoma$status)

[1] FALSE

>

Note that status is not a factor variable. So, to subset the data we use the command:

> Melanoma2 = Melanoma[Melanoma$status < 3,]

> dim(Melanoma2)

[1] 191 7

>

and use data frame Melanoma2. There are n = 191 subjects remaining.
Next, look at boxplots of the variable thickness by outcome group (Figure 16.1):

> par(mfrow=c(1,1), mar=c(3,5,3,3), cex=1.1)

> boxplot(thickness ~ status, data = Melanoma2,

names = c("Died", "Alive"), ylab="Tumor Thickness in mm.")

> for (i in 1:10) {lines(c(0,3), rep(i,2), col=4)}

We have superimposed lines (in blue) at thickness levels 1, 2, . . . , 10. Clearly, death outcomes
are associated with higher values of thickness, which can therefore be used as a risk score for
melanoma mortatility (higher values of thickness mean greater mortality risk). Suppose we select
a risk score threshold T , possibly one of the blue lines. We may then define a positive test outcome
as

T+ = {thickness ≥ T}. (16.17)

This allows us to apply a classifier in an intuitive way, in the sense that if T+ occurs we predict
O+, and if T− = T c+ occurs we predict O−.

180 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

Died Alive

0
5

10
15

Tu
m

or
 T

hi
ck

ne
ss

 in
 m

m
.

Figure 16.1: Boxplot of melanoma thickness variable (tumor thickness in mm) by survival outcome
group.

Of course, this leaves open the problem of selecting T . If there were no overlap (that is, if the
smallest risk score among the O+ group was larger than the largest risk score among the O− group)
then the selection of T would be straightforward. If there was some T that is larger than all risk
scores in the O− group and smaller than all risk scores in the O+ group, we would would use that
threshold to define a positive test according to (16.17), which would yield sens = spec = 1 that is,
perfect classification (at least for this sample).

Of course, we don’t usually expect this ideal. Suppose we consider the blue lines in Figure
16.1 as possible values for the threshold T used to define the positive test outcome T+ in (16.17).
Clearly, for each value of T we will have false positives and false negatives, as long as within each
group there are risk scores on both sides of the threshold.

It is instructive, however, to consider the limiting case. If T = 0 (all risk scores are above 0),
then the test outcome will be positive for all subjects in both groups. Since mortality is (correctly)
predicted for all subjects in O+, we have sens = 1. At the same time, mortality is (incorrectly)
predicted for all subjects in O−, so spec = 0. This is clearly not a satisfactory predictor. If
T = 100 (that is, a value larger than all observed risk scores) we (incorrectly) predict survival for
all subjects in O+, so that sens = 0. We also (correctly) predict survival for all subjects in O−, so
that spec = 1.

16.9. CLASSIFICATION AND THE RECEIVER OPERATOR CHARACTERISTIC (ROC) CURVE181

Clearly, we must find a balance between sens and spec. As T increases, sens decreases and
spec increases. At this point, we can write an R function that calculates sens and spec for a given
threshold, for a given data set. The function will have to input three things, namely, the threshold
T , risk score score and the outcome groups gr. The variable gr will be a 0-1 numerical vector,
with 1 corresponding to high risk. We assume score and gr are paired. Subjects with score ≥ T
are assigned positive test outcomes.

To estimate sens and spec from the data, we can use the following calculation:

sens =
P (O+ ∩ T+)

P (O+)
=

Num subjects for which score ≥ T and gr = 1

Num subjects for which gr = 1

spec =
P (O− ∩ T−)

P (O−)
=

Num subjects for which score < T and gr = 0

Num subjects for which gr = 0
.

We therefore write the function:

> diag.thresh = function(thresh, score, gr) {

+ sens= sum((score >= thresh) & (gr == 1))/sum(gr == 1)

+ spec= sum((score < thresh) & (gr == 0))/sum(gr == 0)

+ ans = c(sens, spec)

+ names(ans) = c("Sensitivity", "Specificity")

+ return(ans)

+ }

>

We can create our data variables for input

> gr = 1*(Melanoma2$status == 1)

> score = Melanoma2$thickness

> gr = gr[sort.list(score)]

> score = score[sort.list(score)]

Note that we have sorted the paired data using the sort.list() function. We can, for example,
get the sensitivity associated with a threshold of T = 5:

> diag.thresh(5, score, gr)

Sensitivity Specificity

0.2456140 0.8955224

>

While the specificity is quite good (spec = 0.8955224) the sensitivity would be, by most standards,
too low (sens = 0.2456140), and we would probably want to use a lower threshold for an actual
application.

To see how the specificity and sensitivity vary with threshold T , we can create a loop to calculate
a range of values for T , and create a simple table.

> diag.tab = NULL

> for (i in 1:10) {diag.tab =

182 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

rbind(diag.tab,diag.thresh(i, score, gr))

+ }

> rownames(diag.tab) = paste("Threshold",1:10)

> colnames(diag.tab) = c("Sensitivity", "Specificity")

> diag.tab

Sensitivity Specificity

Threshold 1 0.8947368 0.3507463

Threshold 2 0.7719298 0.6641791

Threshold 3 0.5964912 0.7611940

Threshold 4 0.3859649 0.8656716

Threshold 5 0.2456140 0.8955224

Threshold 6 0.1578947 0.9179104

Threshold 7 0.1403509 0.9253731

Threshold 8 0.0877193 0.9626866

Threshold 9 0.0877193 0.9776119

Threshold 10 0.0877193 0.9850746

>

A value of T in the range 2 to 3 would seem to offer a better balance of false positive and false
negative rates.

16.9.2 ROC curves

Of course, this type of analysis can be much more refined. First of all, we can input as threshold T
all observed value of the risk score, obtaining much greater resolution than the previous table. To
do this, we could use a for loop, but it’s good to remember at this point that R permits vectorized
operation. This would seem to suggest that if in the function call diag.thresh(i, score, gr)

we substitute score for i, we would get the sens, spec values for all observed values of score in a
single object. However, if we try this we get:

> diag.thresh(score, score, gr)

Sensitivity Specificity

1 0

>

which is not what we wish. The problem lies in the fact that the other inputs are also vectors,
leading to ambiguity. The problem may be fixed by using the Vectorize() function, which modifies
an existing function by designating one or more of it’s inputs as the vectorized input as an option.
The original function is evaluated for each element of the vectorized input. A new function is
created in this way:

> help(Vectorize)

> diag.thresh.vect = Vectorize(diag.thresh, "thresh")

> temp = diag.thresh.vect(score,score,gr)

> dim(temp)

[1] 2 191

16.9. CLASSIFICATION AND THE RECEIVER OPERATOR CHARACTERISTIC (ROC) CURVE183

> sens = temp[1,]

> spec = temp[2,]

A new function diag.thresh.vect() has been created, which evaluates diag.thresh() sepa-
rately for each element of the vector used as the first argument. The results are stored as a 191× 2
matrix, each column containing the values of sens, spec for each element of score.

At this point we are ready to plot an ROC curve, which is simply a plot of sensitivity (or
true positive rate) against 1-specificity (or false positive rate) (‘ROC’ is an acronym for receiver
operating characteristic). The script used to draw the plot is given below (Figure 16.2).

> auc = roc.area(class, gr)

> pv = wilcox.test(gr ~ class)$p.value

> par(mfrow=c(1,1), cex=1.1, oma = c(1,2,1,1))

> plot(1-spec, sens, xlab="false positive rate (1 - specificity)",

ylab="true positive rate (sensitivity)", type = "s")

> title("ROC curve for prediction of melanoma

survival \n based on tumor thickness")

> lines(c(0,0),c(0,1),col=3)

> lines(c(0,1),c(1,1), col=3)

> lines(c(0,1), c(0,1))

> text(.7,.1, paste("AUC = ",signif(auc,3),",

P = ", signif(pv,3),sep=""))

First note the option type = "s" in the plot() function, which produces a step function type
plot, which is appropriate for an ROC curve. Also, the control character ‘‘\n" may be used in
the plot title to force a line break. In addition, an identity reference line has also been added to
the plot, as well as green lines joining the points (0,0), (0,1) and (1,1). The plot also gives two
quantities, AUC as well as a p-value, which we now explain.

First, recall the “perfect” classifier discussed above, with sensitivity and specificity both equal
to one. In this case, the ROC curve would coincide with the green lines of Figure 16.2. A highly
accurate risk score would produce an ROC curve close to the green lines in some sense.

We next explain AUC. This is simply an acronym for area under curve. That is, AUC is
defined as the area under the ROC curve. It may be shown that AUC is equal to the probability
that a randomly chosen positive subject has a higher risk score than a randomly chosen negative
subject. This can be given directly from the data:

AUC =

∑
i∈-ve

∑
j∈+ve I{scorej > scorei}+ 0.5× I{scorej = scorei}

n− × n+
(16.18)

where n−, n+ are the number of negative and positive outcome subjects. Note that ties are assumed
to be resolved randomly, hence the presence of the 0.5 factor in the numerator of (16.18). A function
which calculates AUC is given below, and was used to calculate the value of AUC shown in figure
Figure 16.2. This function is not, but could be, vectorized, as for the diag.thresh.vect() function
given above.

> roc.area<-function(x,y) {

+

184 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

false positive rate (1 - specificity)

tru
e

po
si

tiv
e

ra
te

 (s
en

si
tiv

ity
)

ROC curve for prediction of melanoma survival
 based on tumor thickness

AUC = 0.749, P = 5.18e-08

Figure 16.2: ROC curve for prediction of melanoma cancer survival based on melanoma thickness
variable (tumor thickness in mm). The AUC is given, as well as the p-value for a WIlcoxon rank
sum test for group homogeneity of risk score distributions. The green lines represent a “perfect”
classifier, with sensitivity and specificity both equal to one. The diagonal identity line represents a
noninformative risk score of AUC = 0.5.

+ y0 = y[x==0]

+ y1 = y[x==1]

+

+ count<-0

+ for (i in 1:length(y0))

{count = count+sum(y1 > y0[i]) + 0.5*sum(y1 == y0[i])}

+ ans = count/(length(y0)*length(y1))

+ return(ans)

+ }

>

Suppose, in contrast to the perfect classifier indicated by the green line in Figure 16.2, that the
risk score actually contains no information about the outcome. In this case, a randomly selected
positive subject is equally likely to have a higher or lower risk score than a randomly selected

16.10. ARTIFICIAL NEURAL NETWORKS 185

negative subject. In this case we would expect AUC = 0.5, and the ROC curve would therefore
lie on the indentity. For this reason, the identity line is often included in an ROC curve graphic,
and the degree to which the ROC curve lies above the identity gives a direct assessment of the
predictive value of the risk score (the green lines are usually not given). What would you conclude
if the ROC curve lay significantly below the identity?

Finally, we explain the p-value. It may be shown mathematically that the AUC is equivalent
to the Wilcoxon rank sum statistic for a comparison of the risk score between the two outcome
groups. This means the Wilcoxon rank sum test is interpretable as a test against the null hypothesis
Ho : AUC = 0.5. For this reason the p-value may be used to confirm that the risk score is
significantly predictive of the outcome in a formal statistical sense.

16.10 Artificial Neural Networks

We can briefly discuss the use of the artificial neural network (ANN) in classification and prediction,
a method which is currently at the center of much machine learning. What is referred to as a deep
learning network is really an especially complex variant of the ANN. It is worth noting, then, that
the ANN was originally proposed as a computational method in the 1940’s (McCulloch and Pitts,
1943). It is, in fact, a function, which maps an input to an output in an entirely deterministic
manner, and which depends on a usually large number of parameters (or weights). Of course, this
is also a perfectly reasonable description of the object

g(x1, . . . , xp) = β0 + β1x1 + . . .+ βpxp,

which defines the linear model. So, from the point of view of our stated goals, the object g(x1, . . . , xp)
could be replaced with an ANN. Instead of estimating the βj coefficients using paired observations
of response and predictors, we would estimate the weights of the ANN using the same data, in
much the same way. The potential for this type of procedure has been long recognized by statis-
tical methodologists. An excellent reference would be Ripley (1994), and the R package nnet has
been long available for this purpose.

To take just one example, we have seen how linear predictor terms can be the medium by which
predictor variables are used to predict survival times, using the Cox proportional hazards model
(Section 11.3.3). However, it is possible to replace the linear terms with an ANN, and has been
used in exactly this way to predict breast cancer prognosis (Ripley et al., 1998) and time loss due
to injury in worker’s compensation management (Almudevar, 2006).

16.11 Postscript

The range of classifiers considered in this chapter (with logistic regression in Chapter 10) is relatively
limited. We do not discuss a number of widely used methods, such as classification/regression trees,
random forests or support vector machines. There are also a number of associated techniques for
constructing compound or aggregate classifiers, such as bagging or boosting . We otherwise offer
a brief discussion of artificial neural networks in Section 16.10. Given the prominence of such
methods in the field of machine learning, the reader will want to explore this subject further, the
texts James et al. (2013), Friedman et al. (2001) offering ideal points of departure. See also Ripley
and Hjort (1996) (www.stats.ox.ac.uk/~ripley/PRbook/).

186 CHAPTER 16. BAYES THEOREM AND CLASSIFICATION

This lack of comprehensiveness can, however, be justified by the purpose of these notes, which is
to establish a statistical foundation for machine learning. More advanced classification techniques
require a development which is, as a practical matter, beyond the scope of what is essentially a
second course in statistical theory. For this reason, we develop classification in a Bayesian context,
and so place more emphasis on foundational Bayesian ideas than on computational algorithms.

However, there is a larger issue. The Bayesian formulation permits a definitive resolution to
what would seem to be a rather important question: which classifier minimizes classification error?
The answer is the Bayes classifier, without qualification (see Equation (16.12) of Section 16.6). So,
why don’t we use only Bayes classifiers? In fact, as far as classical statistical theory is concerned,
we almost always do. Referring again to Equation (16.12), we can see that the entire basis of the
Bayes classifier is the conditional density f(ẋ | y = j), which is simply the distribution of the
available data on which classification is to be based, conditional on class y = j. The Bayes classifier
also depends on the prior probabilities πj , but the predictive ability of a Bayes classifier can be
evaluated independently of their values (Section 16.2).

Of course, as a practical matter, the conditional densities f(ẋ | y = j) are not known, but can be
estimated from data. In fact, in many cases, “learning” is nothing more than this process. And the
KNN, LDA and QDA classifiers are nothing more than approximate Bayes classifiers, which work
well because they estimate f(ẋ | y = j) (LDA and QDA classifiers make the simplifying assumption
that the data is normally distributed, while the KNN classifier is essentially a nonparametric
estimate of P (y = j | ẋ) ∝ f(ẋ | y = j)πj).

A number of the practice problems on classification (Chapter 28) involve comparison of various
classification methods. It may seem to the reader who explores them that the competing methods
tend not to differ too greatly in their accuracy. This should be expected when all classifiers are
simply different forms of approximate Bayes classifiers, which may each be close to achieving the
theoretical upper bound on accuracy which holds for all classifiers, Bayes or otherwise. For an
interesting exception to this tendency, see Problem 28.12.

We note also that while logistic regression (Chapter 10) is often used as a classifier technique, its
purpose is to estimate a probability that is allowed to depend on predictor variables. The response
variable is a modeled as a random outcome, not a class assignment, and this should be kept in
mind.

Practice problems on classification can be found in Chapter 28 (problems on logistic regres-
sion are collected in Chapter 23). The demonstration software files CLASSIFICATION-A.R and
CLASSIFICATION-B.R contain further extended examples.

Classification and prediction share much of the same theoretical basis. For example, while
cross-validation was introduced in Chapter 15 in the context of prediction, it is easily extended
to classification simply by selecting the appropriate goodness of fit score (Section 15.8). Support
for cross-validation tends to be embedded within R classification functions. KNN classification is
implemented in the knn() function of the library class, which also includes the function knn.cv()

for cross-validation support. LDA and QDA classification is implemented in library MASS, and each
includes a cross-validation option.

In Section 16.9.2 on ROC curves, supporting code was written from scratch. However, a good
implementation of this and related methods can be found in the package ROCR, which is introduced
in demonstration software file CLASSIFICATION-B.R.

Chapter 17

Unsupervised Learning

In supervised learning , data consists of responses are paired with predictor variables. The “learn-
ing” consists in discerning the mathematical relationship between response and predictor, which is
possible because of the paired structure of the data. A successful application of supervised learn-
ing follows when this relationship can be used to predict unseen responses associated with newly
sampled predictor variables within a controlled error. These notes are primarily concerned with
supervised learning, which includes prediction and classification.

In unsupervised learning there is no response (with which to supervise the learning). The goal is
to discern structure within the predictor variables. These predictor variables tend to have the same
nature as those used in supervised learning, although they no longer function as predictor variables
(in these notes, the term used in that case is features). The goal is usually to discern clusters within
these variables, which can be taken to be subsets of the data containing relatively homogenous
predictor variable values. A significant challenge in this type of problem is the determination of
the number of clusters, which will usually be unknown.

The reader should review the distinction between supervised and unsupervised learning dis-
cussed in Section 15.4. As in that section we have an n× p matrix of data

X =

x11 · · · x1p

...
. . .

...
xi1 · · · xip
...

. . .
...

xn1 · · · xnp

 =

ẋ1
...
ẋi
...
ẋn

 = [x1 · · ·xp] . (17.1)

The columns xj of X represent p features, or types of information. The rows ẋi of X represent
n observations associated with, for example, individual subjects in a study. Then ẋi contains the
specific value of each feature for subject i. Note that we do not have a response variable y as would
be needed for supervised learning. The object is to partition the subjects {1, . . . , n} into clusters
A1, . . . , Am, each subject belonging to exactly one of the m clusters. Sometimes, the features may
be clustered, in which case the methodology is the same. It will be important to review Section
15.3 on distances, since many unsupervised learning algorithms are based on an n × n distance
matrix D, in which element dij is a distance between observations i and j.

187

188 CHAPTER 17. UNSUPERVISED LEARNING

17.1 Hierarchical Clustering

.
We are given an n× n pairwise distance matrix D for n observations. We can used D to define

a cluster distance, that is, a way of measuring the distance between two clusters of observations
A,B, or alternatively, clusters of indices from {1, . . . , n}. Three commonly used methods are given
below:

• Single link (connected). Distance between nearest observations.

D(A,B) = min{dij : i ∈ A, j ∈ B}

• Compact. Distance between furthest objects.

D(A,B) = max{dij : i ∈ A, j ∈ B}

• Average. Average distance.

D(A,B) =
1

|A||B|
∑
i∈A

∑
j∈B

dij

Note that if A and B each consist of a single label i and j then D(A,B) = dij for each of the above
methods.

Hierarchical clustering proceeds using the following steps:

(1) Define a cluster for each observation.
(2) Form a cluster from the two observations with the smallest pairwise distance.
(3) There are now n− 1 ’clusters’, one with two observations, n− 2 with one observation each.
(4) Successively join the two clusters with the shortest distance D between them.

The resulting cluster is usually represented by a dendogram. This is a tree in which terminal
nodes represent the observations and the remaining nodes represent the cluster consolidations.
Usually, the vertical distance corresponds to the actual cluster distances. A horizontal cross-section
of a dendogram induces a partition.

Example 17.1. Single link clustering applied to the distance matrix below results in the dendogram
shown in Figure 17.1.

Distance matrix:

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 10 10 10

[2,] 1 0 10 10 10

[3,] 10 10 0 5 5

[4,] 10 10 5 0 5

[5,] 10 10 5 5 0

17.2. K-MEANS CLUSTER ANALYSIS 189

1 2

3 45

0
2

4
6

8
1

0

connected

Figure 17.1: Dendogram for Example 17.1

17.2 K-Means Cluster Analysis

K-means clustering is a method in which a fixed number K of clusters is specified, and an attempt
is made to find the partition of size K which minimizes some objective function. (We say ’attempt’
because many of these algorithms are heuristic).

• We need to define a centroid g(A) = (g1(A), . . . , gp(A)) of a cluster A of features. This may
be the component-wise average of the features, but other alternatives are sometimes used.

• In the sum of squares method the objective function for partition Ã = (A1, . . . , AK) is
the within cluster sum of squares

SSwithin =
K∑
i=1

∑
j∈Ai

d(ẋj , g(Ai))
2

where d is a distance function on the space of features.

As in linear regression models and ANOVA we can define a total sum of squares

SStotal =
n∑
i=1

d(ẋi, g(A0))2

where g(A0) is the centroid of the entire data set. By analogy, we can define a quantity similar to
the coefficient of determination:

R2 = 1− SSwithin
SStotal

.

Values of R2 close to one imply that most of the total variation is explainable by the clustering.

190 CHAPTER 17. UNSUPERVISED LEARNING

17.3 Principal Components Analysis

Mathematically, a principal components analysis (PCA) is nothing more than a linear transforma-
tion of a feature matrix:

Y = XA. (17.2)

The transformation matrix A is of course constrained to have certain properties, which in turn
force certain properties on Y. If X is an n × p matrix, A is a p × p matrix, so that X and Y
are of the same dimension. In many applications, the intention is that Y replace X as the feature
matrix. If A is invertible, which is usually the case, then Y can be thought of as an alternative
representation of X containing all of the original information. In this case, the jth column of Y is
the jth principal component.

However, the column vectors of X are usually assumed to be standardized by, at least, sub-
tracting the means, and, often, by then dividing by the standard deviation (but see Problem 29.9).
As we will see, the main R function for PCA prcomp centers (subtracts the mean) by default, but
does not scale (divide by the standard deviation) unless the by default option is changed. Note
also that R has a second PCA function princomp which uses slightly different conventions. The
examples and demonstration software here use prcomp.

PCA is a quite general method which is widely used in diverse applications. Here, we classify it
as an unsupervised learning method because it operates only on a feature matrix, without reference
to any response variable, and because it is often used in exploratory analysis to detect clusters. It
is worth considering carefully how this is done. PCA is often referred to as a dimension reduction
method. The idea is that although the matrix X nominally contains p features, it may be expected
that several features may share the same information. This would be the case when there is
significant collinearity (Section 8.6), usually, but not always, detectable by pairwise correlations.
In such cases, it may be possible to reduce the dimension of the feature matrix, or, put another
way, deduce how many dimensions are needed to express the information contained in X.

This idea is expressed by the terminology of PCA. The first principal component is the first
column of Y, and, in a sense to be described below, is the most informative principal component.
In fact, the amount of information in the successive principal components decreases by rank, and
this information can be quantified. Therefore, it is possible to say, for example, that almost
all information is contained in the first 3 principal components, that is, the feature matrix has,
approximately, 3 dimensions of data, even if p > 3. This idea is illustrated in the next example.

Example 17.2. A pair of psychometric scales measuring Anxiety and Stress (with scores in the
interval [0,1]) are applied to 20 subjects. A scatterplot of the scores is shown in Figure 17.2. As
might be expected, the two scales are highly correlated, suggesting that for this sample Anxiety
and Stress are similar constructs, and that the combined information contained in both scores
can be expressed in a single dimension. Mathematically, this idea can be expressed by a change of
coordinates. The two orthogonal axes in Figure 17.2 show the change in axes resulting from a PCA.
These are labeled PC1 and PC2 (principal components 1 and 2). The scores have been centered but
not scaled. The origin of the new axes is located at the score means. What is crucial here is that
the new axes have been rotated so that most of the variation on the data coincides with the first
principal component (PC1 in Figure 17.2). Then the second principal component is orthogonal to
the first.

17.3. PRINCIPAL COMPONENTS ANALYSIS 191

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Anxiety

S
tr

es
s

PC1

PC2

Figure 17.2: Anxiety and Stress scores, with first two principal components for Example 17.2.

To produce this change of coordinates, the feature matrix X was first centered to produce x̄
(the column means being subtracted from each column of X). Then the transformation

Y = X̄A

is calculated. The original coordinates were (x1, x2) = (Anxiety ,Stress), while the transformed
coordinates are (y1, y2) = (PC1, PC2). We consider below how the transformation matrix A is
derived.

17.3.1 Calculation of principal components

The method of calculating transformation A has already been described informally, we next make
this precise. First, A is a p× p matrix. We may then transform X through matrix multiplication

Y = XA,

so that Y is another n × p matrix, and can be interpreted in much the same way. The column
vectors of Y, y1, . . .yp are linear combinations of the original feature vectors in X, with coefficients

192 CHAPTER 17. UNSUPERVISED LEARNING

given by matrix A:

y1 = a11x1 + . . .+ ap1xp
...

yi = a1ix1 + . . .+ apixp
...

yp = a1px1 + . . .+ appxp.

The principal components y1, . . .yp are constructed using the following steps:

(i) Normalize each column of X to have zero mean and unit variance (this step might be omitted
for specific reasons).

(ii) To create the first principal component y1, determine coefficients a11, . . . , ap1 which maximize
tha variance of y1 subject to constraint

a2
11 + . . .+ a2

p1 = 1.

(iii) Successively create the remaining principal components in order. Create the ith principal
component yi by determining the coefficients a1i, . . . , api which maximize tha variance of yi
subject to constraint

a2
1i + . . .+ a2

pi = 1,

such that yi is orthogonal to previous principal components y1, . . . ,yi−1.

If dimension reduction is feasible, then the first few principal components will have significantly
greater variance than the remaining ones, so that the data set X can be approximately represented
by those.

Note that, assuming X is linearly independent, then the maximum number of distinct principal
components is min(n− 1, p).

17.3.2 Principal components and spectral decomposition

Recall from Section 15.3.3 that an m×m matrix Σ is positive definite if uuuTΣuuu > 0 for all nonzero
column vectors uuu. In this case Σ is invertible, and Σ−1 is also positive definite. If instead uuuTΣuuu ≥ 0,
then Σ is positive semidefinite, and is not invertible unless it is also positive definite.

We restate part of Theorem A.4 of Appendix A:

Theorem 17.1. A real valued square matrix Σ is symmetric if and only if there exists a real
orthogonal matrix Q and real diagonal matrix Λ for which Σ = QΛQT . The diagonal entries of
Λ are the eigenvalues of Σ, and the columns of Q are the eigenvectors of Σ. Then Σ is positive
definite (semidefinite) if and only if the minimum eigenvalue is positive (nonnegative).

The method of singular-value decomposition (SVD) is a generalization of this idea to general
matrices, in particular, if X is any real n× p matrix, there exists n×n orthogonal matrix U, p× p
orthogonal matrix V, and n× p rectangular diagonal matrix M, such that

X = UMVT . (17.3)

17.3. PRINCIPAL COMPONENTS ANALYSIS 193

All matrices in Equation (17.3) are real, however, the SVD can also be applied to complex matrices.
Furthermore, the diagonal elements of M can be chosen so that

m11 ≥ m22 ≥ . . . ≥ mss ≥ 0, s = min(n, p).

Note that a rectangular diagonal matrix M is any matrix for which elements mij = 0 unless i = j.
Then it may be shown that the transformation matrix A = V applied to Equation (17.2) yields

the principal component matrix Y, where V is one of the components of the SVD of X given in
Equation 17.3. This will then be equivalent to the construction method given in Section 17.3.1.
Since the inverse of an orthogonal matrix is equal to its transpose, the principal components can
also be obtained directly from Equation (17.3)

Y = XV = UMVTV = UM.

Thus, PCA is a direct consequence of SVD theory. However, a more direct route is possible.
By Theorem 17.1 we may construct an eigenvalue decomposition (EVD) of the form

XTX = QΛQT . (17.4)

Then apply the transformation matrix A = Q, where Q is a component of the EVD (17.4) of XTX,
giving

Y = XQ.

In this case we have

YTY = QTQΛQTQ = Λ. (17.5)

Since Λ is diagonal, we may conclude that the column vectors of Y are orthogonal, as constrained
by the construction method of Section 17.3.1. However, we can now see that the eigenvalues of
XTX play a very important role. Note that if the matrix X is centered, then Y will be as well.
Therefore, the eigenvalues are directly proportional to the variances of their associated principal
components (the empirical variance is obtained by dividing by n or n − 1. We have already
interpreted this quantity as the amount of information contained in a principal component. Thus,
when the minimum eigenvalue λmin is significantly smaller that the maximum eigenvalue λmax we
can conclude that the information in X can be expressed in strictly less than p dimensions.

Example 17.3. We will continue Example 17.2. The data used to plot Figure 17.2 is displayed
below in the R console:

> ### Display data

>

> cbind(x.anxiety, x.stress)

x.anxiety x.stress

[1,] 0.4670723 0.4188556

[2,] 0.7661788 0.5988583

[3,] 0.6891377 0.5817171

[4,] 0.8971890 0.8727328

[5,] 0.7835571 0.6497151

[6,] 0.4694058 0.5792233

194 CHAPTER 17. UNSUPERVISED LEARNING

[7,] 0.5543739 0.4864679

[8,] 0.8882472 0.7862491

[9,] 0.9027775 0.6782207

[10,] 0.7449408 0.7611479

[11,] 0.1376258 0.3060455

[12,] 0.7935094 0.6587902

[13,] 0.4241280 0.3685453

[14,] 0.9557800 0.9287993

[15,] 0.7700636 0.7212453

[16,] 0.6392427 0.6576750

[17,] 0.2980684 0.4525163

[18,] 0.2478763 0.3551216

[19,] 0.7293248 0.6704141

[20,] 0.1901021 0.3455024

>

The function prcomp() calculates the PCA.

>

> ### Calculate PCA components, store in pr.fit object

>

> pr.fit = prcomp(cbind(x.anxiety, x.stress))

> class(pr.fit)

[1] "prcomp"

> is.list(pr.fit)

[1] TRUE

>

The object pr.fit is a class prcomp object, and functions as a list. The loadings (that is, the
coefficients of transformation matrix A) are displayed as a rotation matrix

>

> ### Loadings

>

> pr.fit$rotation

PC1 PC2

x.anxiety 0.8244803 -0.5658906

x.stress 0.5658906 0.8244803

>

This means

A =

[
0.8244803 −0.5658906
0.5658906 0.8244803

]
,

equivalently

PC1 = 0.8244803× Ā+ 0.5658906× S̄
PC2 = −0.5658906× Ā+ 0.8244803× S̄,

17.3. PRINCIPAL COMPONENTS ANALYSIS 195

where Ā and S̄ are the centered Anxiety and Stress scores. As suggested by Figure 17.2 the
first principal component is a weighted average of the two scores, whereas the second principal
component measures the difference between the two scores, representing information that is not
common to both.

The standard deviations of the principal components are displayed as the sdev element of the
pr.fit object:

>

> ### Standard deviations and variances of principal components

>

> pr.fit$sdev

[1] 0.30513090 0.05828952

> pr.fit$sdev^2

[1] 0.093104866 0.003397668

>

The principal components themselves (that is, the Y matrix of Equation (17.2)) are contained
in the x element of the pr.fit object. Here, we calculate directly the variance of each principal
component:

>

> apply(pr.fit$x,2,var)

PC1 PC2

0.093104866 0.003397668

>

As would be expected, these values are equivalent to those obtained by the command pr.fit$sdev2̂
(but note that the alternative PCA function princomp) uses the denominator 1/n rather than
1/(n− 1) when calculating sample variances).

Next, we show how a PCA can be derived directly from the EVD of XTX using the eigen()

function. We first center the scores:

>

> xy = cbind(x.anxiety-mean(x.anxiety),x.stress-mean(x.stress))

>

The EVD follows:

> ### Calculate EVD

>

> eigen.fit = eigen(t(xy)%*%xy)

> eigen.fit

eigen() decomposition

$values

[1] 1.76899245 0.06455568

$vectors

[,1] [,2]

196 CHAPTER 17. UNSUPERVISED LEARNING

[1,] -0.8244803 0.5658906

[2,] -0.5658906 -0.8244803

>

Here, the eigenvalues are (1.76899245, 0.06455568) and the eigenvector matrix is

Q =

[
−0.8244803 0.5658906
−0.5658906 −0.8244803

]
.

Interestingly, Q is equal to the rotation matrix produced by application of the prcomp() function
to the data, multiplies by -1. This is entirely consistent, and points to the fact that a PCA is
not unique, since the properties defining the PCA given in Section 17.3.1 remain unchanged if any
column of loadings are uniformly multiplied by −1. In this sense, the PCA solution offered by
function eigen() is equivalent to that offered by prcomp().

Finally, as implied by Equation (17.5) we can relate the eigenvalues to the principal component
variances after dividing by n− 1:

> ### Standardize

>

> eigen.fit$values/19

[1] 0.093104866 0.003397668

>

> apply(pr.fit$x,2,var)

PC1 PC2

0.093104866 0.003397668

>

17.4 Postscript

One difficulty encountered in unsupervised learning is the lack of a probability model with which
to develop formal inference methods. As a consequence, unsupervised learning tends to be most
useful as an exploratory tool. A notable exception to this is the Gaussian mixture model (GMM)
(Fraley and Raftery, 2002) implemented in the R package mclust. For an application of GMMs to
the development of a Bayes classifier created by this author, see Pichichero et al. (2018).

The implementation of PCA in R has been introduced in Example 17.3 above, and further
examples can be found in demonstration software UNSUPERVISED-LEARNING.R. Practice problems
on PCA can be found in Chapter 29, and also in the context of model selection in Chapter 30.

Hierarchical clustering is implemented in the R function hclust. Practice problems can be
found in Chapter 29, and a number of its features are introduced in demonstration software
UNSUPERVISED-LEARNING.R.

Similarly, K-means clustering is implemented in R function kmeans() and demonstrated in
Chapter 29 in demonstration software UNSUPERVISED-LEARNING.R.

A good overview of these methods can be found in James et al. (2013), Friedman et al. (2001)
or Ripley and Hjort (1996) (www.stats.ox.ac.uk/~ripley/PRbook/).

Chapter 18

Score Based Model Selection

So far, model selection has been based on goodness of fit measures such as SSE for least squares
regression or deviance for likelihood based inference. These quantities are used to compare full and
reduced nested models, or to estimate MSEtest for alternative model families using cross-validation.

Such methods are necessary because goodness of fit scores tend to reward model complexity.
When comparing full and reduced nested models, the SSE is always smaller, and the likelihood,
and therefore the model deviance, is always larger, for the full model. Even when models are not
nested the trend is the same.

To some extent these effects are controlled by alternative scores. We have, for example,

MSE =
SSE

n− q
,

where q is the number of parameters. With addition of a new predictor, both the numerator and
denominator decrease, so MSE does not necessarily reward increasing complexity. However, as
discussed in Section 15.5 if in a linear regression model the number of predictors q = n, the sample
size, then SSE = 0 and MSE = 0. Furthermore, this bias towards zero can be observed well before
that point is reached. The same is true, for the same reason, for the adjusted R2

adj (Section 4.2.2)

R2
adj = 1− SSE/(n− p− 1)

SSTO/(n− 1)
,

for a regression model with p predictors.
In this chapter we consider alternative scores. Suppose, for example, that instead of minimizing

SSE or model deviance Dmodel, we minimize

Λ = SSE + λ(θ) or Λ = Dmodel + λ(θ) (18.1)

where λ(θ) is a complexity penalty that depends on a parameter θ which represents the model.
Possibly, λ(θ) is an increasing function of the number of model parameters q, so that the tendency
of model complexity to force SSE to zero will be balanced by the complexity penalty.

There is, in fact, a rich theory behind such score based model selection techniques, and a
number of widely used alternatives exist. Scores similar to Λ defined in (18.1) have been derived
based on specific mathematical principles. Perhaps the two most widely used are the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC) (the BIC is also known

197

198 CHAPTER 18. SCORE BASED MODEL SELECTION

as the Schwarz information criterion (SIC)). The most general definition is given in terms of the
likelihood function l(θ̂MLE):

AIC = −2 log(l(θ̂MLE)) + 2q,

BIC = −2 log(l(θ̂MLE)) + log(n)q, (18.2)

where n is the number of observations, and q is the number of model parameters (for linear regres-
sion, q is the number of predictors plus one for the intercept).

18.1 AIC and BIC for Multiple Linear Regression

There is a technical issue regarding the application of maximum likelihood estimation to linear
regression, which relates to the term −2 log(l(θ̂MLE)) appearing in (18.2). Following equation (9.1)
of Example 9.1, for linear regression we have

−2 log(l(θ̂MLE)) =
1

σ2
SSE + C, (18.3)

where C is a constant which does not depend on unknown parameters, and may be set to zero for
convenience. However, this was obtained assuming that σ2 was fixed, or equivalently, did not need
to be estimated using the data. We could also include σ2 in the maximum likelihood calculation,
in which case we would have

−2 log(l(θ̂MLE)) = n log(SSE/n) + C, (18.4)

where C is the same type of constant, and may be set to zero. The coefficient estimates β̂ββ are the
same in both cases (that is, the least squares estimates), and in both cases σ2 can be estimated in
whatever manner is most appropriate. The distinction lies in the manner in which different models
are compared.

18.1.1 Model selection algorithms based on predictor subsets

Suppose we have a total of p predictors, which gives full (or complete) model

y = β0 + β1x1 + . . .+ βpxb + εεε.

The problem is to decide which predictors to retain, assuming that all models contain the intercept.
A model M can then be defined as a subset of indices {1, . . . , p} indicating the retained predictors.
Model M = {1, 3} then denotes

y = β0 + β1x1 + β3x3 + εεε.

In principle, we can calculate

AICM =
1

σ̂2
SSEM + 2kM (18.5)

for any model M , where SSEM is the SSE for that model, kM is the number of parameters in the
model. We also need an estimate σ̂2 of σ2 which is model independent. This is usually estimated
using the MSE of the full model.

18.1. AIC AND BIC FOR MULTIPLE LINEAR REGRESSION 199

For all subsets model selection, the value AICM is calculated for all models, or equivalently, for
all subjets M of index set {1, . . . , p}. The model selected is the one that minimized AICM . Note
that this includes the empty set, representing null model

y = β0 + εεε.

If the null model is selected, the inference is that none of the predictors is significantly related to
the response.

This seemingly straightforward method suffers from a serious drawback. Using the product rule
of combinatorics, it can be seen that the total number of models is 2p. We choose a model by
deciding independently for each predictor to include or not include it. This represents p decisions
of two outcomes. Note that 210 = 1024, 215 = 32, 768, 220 = 1, 048, 576, and so on. Eventually, for
large numbers of predictors, all subsets model selection will not be computationally feasible.

A reasonable approach is to order the predictors in decreasing order of importance. Assuming
there is some basis on which to do this, we let M0 be the null model, and let Mk be the model
including the k most important predictors. The selected model is then simply

M∗ = argminMk:k=0,...,pAICMk
,

the model in the sequence with the minimum AIC.

Sometimes there is some basis for such an ordering. If not stepwise regression can be used to
empirically generate an ordering. There are a variety of such methods, most of which are based on
the following two algorithms.

Algorithm 18.1. Forward stepwise selection:

(1) Let M0 be the null model.
(2) For k = 1, . . . , p, add to Mk−1 the predictor whose addition yields the greatest reduction in

SSE. This gives model Mk.
(3) Select the model from M0,M1, . . . ,Mp with the minimum AIC.

Algorithm 18.2. Backward stepwise selection:

(1) Let Mp be the full model.
(2) For k = p − 1, . . . , 0, delete from Mk+1 the predictor with the largest p-value. This gives

model Mk−1.
(3) Select the model from M0,M1, . . . ,Mp with the minimum AIC.

Algorithms 18.1 or 18.1 may also be used with any other model selection score, such as BIC or
R2
adj .

A few technical notes are needed. Another version of the AIC, based on (18.4), is given by

AIC = n log(SSE/n) + 2k,

which does not require an independent estimate of σ2.

It is also worth noting the similarity between the AIC and BIC scores. Both are of the form

IC = −2 log(l(θ̂MLE)) + λq

200 CHAPTER 18. SCORE BASED MODEL SELECTION

where λ = 2 for AIC and λ = log(n) for BIC. Thus, the preceding remarks concerning AIC also
hold for BIC.

There is some flexibility in the definition of q. In regression applications, we get the same
minimum AIC or BIC whether q is the number of predictors p or the number of parameters p+ 1
or p+ 2 (including the intercept term and the unknown variance σ2 as appropriate).

A model selection criterion for linear regression known as Mallow’s Cp has been proposed
independently of AIC, but is equivalent to .

Finally, we note that a finite sample modification of the AIC has been proposed:

AICc = AIC +
2k(k + 1)

n− k − 1
,

which may be used when the sample size n is relatively small. Here, it does matter whether k is
the number of predictors or the number of parameters, in which case the latter should be used.

18.2 Shrinkage Methods

In the previous section, we have considered model selection methods based on subset selection.
There exist a class of methods, known as shrinkage or regularization methods, which instead con-
strain the regression coefficients directly while fitting a full model. Suppose we define a model score
for a p predictor linear regression model

Λ = SSE + λ

p∑
j=1

|βj |d, (18.6)

where λ ≥ 0 is a tuning parameter and d is a positive power. Note that the intercept β0 is not
included in the sum in the second term. We also note that such a methodology generally assumes
that predictors have been standardized to zero mean and unit variance. Otherwise, summing
coefficients in this manner would depend arbitrarily on the predictor’s units.

This score resembles the AIC and BIC scores, in the sense that a complexity penalty is added
to a standard goodness of fit measure such as SSE. However, instead of considering alternative
predictor subsets, the complete model is fit for a fixed λ by minimizing Λ instead of SSE. Then
λ is allowed to vary. If we set λ = 0, we have no complexity penalty, which yields the standard
least squares estimates. However, as λ increases, the total magnitude of the coefficients is forced
to shrink to 0, so that at λ→∞ we converge to the null model.

The usual approach is to select a relatively fine grid of λ values, λ1, . . . , λN . Then model Mi

minimizes Λ for λ = λi. Finally, the selected model M∗ of the one from the sequence M1, . . . ,MN

with the minimum value of MSEtest. If a simpler model is needed, the model for which the error
is within 1 standard error of the cross-validated estimate of the minimum may be used.

The choice of power d is of some consequence. When d = 2 the method is commonly known as
ridge regression. When d = 1, the method is commonly known as LASSO (least absolute shrinkage
and selection operator). One of the problems with ridge regression is that all predictors remain in
the model. If a predictor does not add significantly to the model, its coefficient will be very small
but not zero.

On the other hand, one of the attractive features of LASSO is that it forces some coefficients
to 0, and these tend to be the ones with smaller magnitudes in a ridge regression model.

18.3. POSTSCRIPT 201

18.3 Postscript

In the basic theory of prediction and classification, much is made of the term “over-fitting”. Suppose
in some model we had as many predictors xj as we had observations yi. As long as some fairly
general conditions were met, we would be able to devise some function g(x1, . . . , xp) so that the
available data was fit perfectly, that is,

y = g(x1, . . . , xp).

But an error term ε either exists, or it does not. If it does (meaning that its variance is greater
than zero) we cannot wish it away. The practical consequence of this is that if our predictor was
applied to a new set of data (which is presumably the intention) it would no longer fit perfectly
(there is no way it could).

Thus, the topic of model selection is a very important one, and possesses some very deep
theoretical implications. Despite this, our treatment here is based on a relatively simple idea,
expressed in Equation (18.1), that model fitting criterion, such as the SSE or the maximum
likelihood score can be usefully supplemented with a model complexity term to control overfitting.
The purpose of this is to allow comparisons of models with varying levels of complexity, in support
of model selection.

Of course, the next problem is to decide which penalty term to use, and the fact that there is
more than one in common use suggests that the solution to this problem is not straightforward. It
helps, in this regard, to clarify the goal of model selection. And although it might not seem obvious
at this point, we have encountered in these notes two very distinct (and possibly incompatible) goals.
To take one example, the purpose of the F -test for comparing full versus reduced linear models
introduced in Section 4.2.2 is model identification, simply, the identification of the correct model.
However, the purpose of cross-validation is to reduce prediction error, which is a different goal.
Obviously, model identification helps, but cross-validation also controls for the greater variation of
more complex models, which contributes to prediction error. This is expressed in the bias-variance
tradeoff (Section 15.7), in which an increase in bias represents a compromise of the goal of model
identification for the sake of prediction accuracy. Problem 30.20 is intended to clarify this issue.

As it happens, the AIC score may be thought of as a theoretical cross-validation. The original
theory is quite technical, but rewards patient reading (Akaike, 1973a,b, 1974). We will at least
note that the theoretical model described in those foundational papers considers response variables
separated into training and test data, the AIC being based on their predicted distributional prop-
erties (something similar is done in Problem 30.20). On the other hand, the BIC was developed
as an approximate Bayesian model, and is intended for model identification (Schwarz et al., 1978),
as suggested in the title of the paper in which the method was originally proposed (“Estimating
the dimension of a model”).

The use of AIC and BIC scores in model selection is introduced in the demonstration soft-
ware file MODEL-SELECTION-AIC.R, while Chapter 30 offers additional exercises. We make use
of the R library MuMIn, which offers general model selection utilities (which is introduced in
MODEL-SELECTION-AIC.R).

We also discussed shrinkage methods in this chapter. Again, the method is easy to describe
(Equation (18.6)), but their complete understanding would require considerable study. We con-
sider specifically ridge regression and LASSO . The latter method has gained especial prominence

202 CHAPTER 18. SCORE BASED MODEL SELECTION

(Tibshirani, 1996; Tibshirani et al., 2015) due to its utility in variable selection, particularly its re-
markable ability to eliminate variables from linearly models by setting their coefficient estimates to
zero (that is, β̂j = 0), using mathematically objective criterion. However, these methods differ from
the AIC or BIC method in that the choice of model is ultimately to be decided by cross-validation,
so that the penalty term is not ultimately based on some theoretical principle.

Shrinkage methods are implemented in R by the glmnet library. The main functions are
glmnet() and cv.glmnet(), the latter supporting cross-validation. The demonstration software
file MODEL-SELECTION-LASSO.R gives a comprehensive introduction to their use, while Chapter 30
contains a number of practice problems. It is interesting to note that a closed form solution for
ridge regression coefficients can be obtained after some matrix algebra, which gives some insight
into how these methods work (Problem 30.21).

Information theory has provided much of the theoretical foundation for model selection, a fact
which is not always apparent. In fact, this is true of both the AIC and BIC scores, which is why a
familiarity with the foundational papers might be recommended. The minimum description length
principle (MDL) provides a theory of model selection more explicitly based on information theory,
in the context of coding theory (the text Cover and Thomas (2012) can be highly recommended).
The MDL method is also a score based method, in which the score is the estimated length of a
code used to represent the data in compressed form (as in a zip file). The data compression makes
use of a model, which allows more efficient compression by capturing any structure the data may
contain (this is, after all, what we expect the models considered in these notes to do). The catch is
that the model must also be coded, and the more complex the model, the greater its contribution
to the code length. The MDL method then selects the model offering the optimal tradeoff between
model complexity and data compression, based on the criterion of code length. The MDL method
was first formulated by Jorma Rissanen (Rissanen, 1978). See also Rissanen (2007) and Grünwald
(2007). In Almudevar (2016), this author contributes a discussion of information theoretic methods
to Bayesian networks (Chapter 20).

Chapter 19

Basis Functions and Predictor Spaces

The term “linear” in “linear regression” is often understood to imply a linear functional relationship
between the mean µy of a response variable y and one or more predictor variables x1, . . . , xp. Put
another way, we assume the existence of some function

µy = g(x1, . . . , xp) = β0 + β1x1 + . . .+ βpxp,

which then leads to the problem of estimating the unknown coefficients β0, β1, . . . , βp. For gen-
eralized linear models, the considerable advantages of this formulation are preserved by allowing
linearity to hold for a mapping of µy:

h(µy) = g(x1, . . . , xp) = β0 + β1x1 + . . .+ βpxp,

for example, h(µy) = log(µy/(1− µy)) for logistic regression (Chapter 10).
However, we have seen in polynomial regression (Section 5.7) that a nonlinear relationship

between µy and a predictor x can be modeled in the context of linear regression. In particular, the
same inference methods are available, as long as we are willing to increase the number of coefficients
βi to be estimated.

In this chapter, we explore this technique further, using the concept of basis functions. Suppose
we have, as for simple linear regression, a response y and single predictor x, and paired observations
(xi, yi), i = 1, . . . , n. We assume the predictor x in confined to an interval Ix = [a, b]. We then
have model

yi = g(xi) + εi,

where the values εi are an iid sample from N(0, σ2). For simple linear regression we have

µy = g(x) = β0 + β1x.

But we may not be able to assume a linear relationship between x and µy. On the other hand,
we may wish to retain the quite powerful fitting and inference methodology afforded by the linear
regression model.

Basis function methods provide a quite powerful approach in this situation. Suppose we define
p ≥ 1 basis functions b1(x), . . . , bp(x), for x ∈ Ix, then set

g(x) = β0 + β1b1(x) + . . .+ βpbp(x). (19.1)

203

204 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

In a sense, we are converting a simple regression model to a multiple regression model by defining
a new n× (p+ 1) design matrix

X =

1 b1(x1) · · · bp(x1)
1 b1(x2) · · · bp(x2)
...

...
...

...
1 b1(xn) · · · bp(xn)

 (19.2)

which then defines the new regression model

y = Xβββ + εεε.

It is important to note that an intercept term β0 was included in the response function (19.1), but
was not created by the basis functions b1, . . . , bp. This could be regarded as a matter of convention.
We could have included the intercept term as a basis function itself, say b0(x) ≡ 1, then (19.1)
could be equivalently written

g(x) =

p∑
j=0

βjbj(x). (19.3)

In one sense, basis functions do not change the overall theory of linear models. However, basis
function models vary considerably in complexity (or model degrees of freedom). For this reason,
practice problems on model selection and basis function methods are collected in the single Chapter
30, with many problems involving both techniques.

19.1 Transformation Equivalence of Basis Functions

A review of Chapter 7 is highly recommended at this point. Recall that two n× p design matrices
X, X′ are equivalent from the point of view of linear least squares regression if there exists invertible
p × p matrix A such that X′ = XA (Theorem 7.1). Much of our discussion below relies on this
idea.

Suppose we consider two possible sets of basis functions B = (b1(x), . . . , bp(x)) and B′ =
(b′1(x), . . . , b′q(x)) defined on Ix. For the moment, we do not assume p and q are equal. How
can we characterize the notion of transformation equivalence for basis functions? A straightfor-
ward approach would be to assume we have predictor observations x1, . . . , xn, then construct a
design matrix such as that given in Equation (19.2). Then the theory of Chapter 7 (Theorem 7.1
in particular) may be applied directly.

However, there is nothing to be gained by allowing the analysis to depend on hypothetical
predictor observations, and the study of basis functions has greater clarity without reference to
them. Recall that in Chapter 7, although the vector spaces discussed were subsets of some Euclidean
space Rm, this was not specifically stated in their formal definition (Definition 7.2). A vector space
V may also be a subset of functions g : Ix → R. In fact, it is easily verified that the set of all
functions

g(x) =

p∑
j=1

βjbj(x), βj ∈ R, j = 1, . . . , p, (19.4)

19.1. TRANSFORMATION EQUIVALENCE OF BASIS FUNCTIONS 205

denoted V, is a vector space. Note that V contains the zero function g(x) = ~0 ≡ 0 for all x ∈ Ix,
since we may set βj = 0 for all j.

Note, at this point, that we have so far created vector spaces as the span of a set of basis
functions, but we have not yet used the term basis as defined in Definition 7.2. Formally, a set of
basis functions is a basis for the vector space spanned by those vectors only if those functions are
linearly independent, that is,

0 =

p∑
j=1

βjbj(x), x ∈ Ix implies βj = 0 for all j.

Equivalently, no basis function is a linear combination of the remaining basis functions.
Thus, we can equate the vector space V generated by (19.4) with the span of a set of vectors,

given in Equation (7.1). In turn, this allows us to define the equivalence of two sets of basis
functions, that is, they are equivalent if the vector spaces generated by the respective “spans” (via
(19.4)) are equal.

As in the linear transformations of design matrices X′ = XA described in Chapter 7 equivalence
of sets of basis functions can be characterized by essentially the same linear transformations, except
that the basis functions play the role of the column vectors of the predictor matrix. Suppose the
sets of basis functions are related by the linear combinations:

b′1(x) =

p∑
k=1

ak1bk(x)

b′2(x) =

p∑
k=1

ak2bk(x)

...

b′q(x) =

p∑
k=1

akqbk(x).

If the preceding coefficients aij are also the coefficients defining p× q matrix A, the transformation
can also be expressed in matrix notation as

[b′1(x) · · · b′q(x)] = [b1(x) · · · bp(x)] A, (19.5)

each side interpretable as a 1× q matrix, with equality holding for all x ∈ Ix.
We next present an equivalence theorem for basis functions analogous to Theorem 7.1.

Theorem 19.1. Suppose we consider two possible sets of basis functions b1(x), . . . , bp(x) and
b′1(x), . . . , b′q(x) defined on Ix (q and p need not be equal).

(i) Suppose each function bj(x) is a linear combination of the basis functions b′1(x), . . . , b′q(x),
and each function b′j(x) is a linear combination of the basis functions b1(x), . . . , bp(x). Then
the two sets of basis functions are equivalent if and only if this condition holds.

(ii) Suppose p = q, and transformation (19.5) holds for some invertible transformation matrix A.
Then the two sets of basis functions are equivalent.

206 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

Proof. We consider the two claims in turn.

(i) Let V, V ′ be the vector spaces generated by the respective sets of basis functions. Suppose
g(x) ∈ V. Then g(x) is a linear combination of basis functions b1(x), . . . , bp(x). But each
basis function bj(x) is, by hypothesis, a linear combination of basis functions b′1(x), . . . , b′q(x).
This in turn implies that g(x) is also a linear combination of basis functions b′1(x), . . . , b′q(x).
Therefore g(x) ∈ V ′, and we conclude V ⊂ V ′. By an identical argument V ′ ⊂ V, and therefore
V = V ′, so that the two sets of basis functions are equivalent.

Next, suppose the condition does not hold. Then there exists a basis function, say bj , which is
not a linear combination of basis functions b′1(x), . . . , b′q(x). Then bj(x) ∈ V, but bj(x) /∈ V ′,
therefore V 6= V ′, so that the two sets of basis functions are not equivalent.

(ii) If A is invertible, then the hypothesis of Part (i) holds, therefore the two sets of basis functions
are equivalent.

Theorem 19.1 does not require that the sets of basis functions satisfy the formal definition
of a basis. However, for linear regression analysis, the column vectors of design matrix X are
usually assumed to be linearly independent. We will impose the same requirement on a set of basis
functions, in which case they form a basis for the vector space which they span. This is necessary
if the design matrix used in fitting the model is to possess linearly independent columns. The
set of predictor observations must also be large enough (n ≥ p), and must also possess sufficient
variability. This means that no column of the design matrix X generated by (19.2) can be entirely
zero. However, if this occurs, it usually means that the basis being used is not appropriate for the
particular data set, and can be modified accordingly.

The next theorem verifies that basis equivalence implies equivalence of the least squares linear
regression model, in the same sense as Theorem 7.1.

Theorem 19.2. Suppose we have model

yi = g(xi) + εi,

with paired observations (xi, yi), i = 1, . . . , n, xi ∈ Ix. Suppose we consider two possible bases
B = (b1(x), . . . , bp(x)) and B′ = (b′1(x), . . . , b′p(x)) defined on Ix, and transformation (19.5) holds
for some invertible transformation matrix A. Assume also that the respective design matrices X,
X′ defined by (19.2) are linearly independent. This leads to proposed models

yi =

p∑
j=1

βjbj(xi) + εi, and

yi =

p∑
j=1

β′jb
′
j(xi) + εi.

Then the respective fitted value vectors satisfy equality ŷ = ŷ′. Furthermore, the least squares
estimates of the coefficients βββ and βββ′ satisfy

β̂ββ
′
= A−1β̂ββ.

19.1. TRANSFORMATION EQUIVALENCE OF BASIS FUNCTIONS 207

Proof. The first step is to construct respective n× p design matrices X, X′ as in Equation (19.2).
Then the transformation X′ = XA follows from transformation (19.5). Then Theorem 7.1 can be
applied, which completes the proof.

Example 19.1. Consider basis functions

b1(x) = 1,

b2(x) = x,

b3(x) = x2

and a second set of basis functions from the centering transformation

b′1(x) = 1,

b′2(x) = x− x̄,
b′3(x) = (x− x̄)2,

where x̄ is the sample mean of the available predictor variables. Clearly, the basis functions B =
(b1, b2, b3) are linearly independent, and span a vector space V of dimension 3. Thus, if B is
equivalent to the set of basis functions B′ = (b′1, b

′
2, b
′
3), we can conclude that B′ is also a basis for

V, since is contains exactly 3 basis functions. Expanding the polynomials we have

b′1(x) = b1(x),

b′2(x) = x− x̄ = b2(x)− x̄b1(x),

b′3(x) = x2 − 2x̄x+ x̄2 = b3(x)− 2x̄b2(x) + x̄2b1(x).

We can see that the two sets of basis functions obey transformation (19.5), with

A =

 1 −x̄ x̄2

0 1 −2x̄
0 0 1

 .
This matrix is invertible, which implies, by Theorem 19.1 (ii), that the two sets of basis functions
are equivalent, and both form bases for a common vector space V.

Example 19.2. [Triangular Transformations] One way to construct a transformation that
preserves equivalence is to consider what we may refer to as a triangular transformation. These
are transformations for which, in the notation of Theorem 19.1, p = q and A is upper or lower
triangular, with nonzero diagonal entries. This guarantees that A is invertible. This is easily done
by (i) allowing b′k to depend only on bj for which j ≥ k; and (ii) ensuring that b′k does depend on
bk. We would therefore have

b′k(x) =

p∑
j=k

ajkbj(x),

with ajj 6= 0 (any other coefficient may be zero). Then A will be lower triangular and invertible.
Alternatively, we may (i) allow b′k to depend only on bj for which j ≤ k; and (ii) ensurie that

b′k does depend on bk. We would then have

b′k(x) =
k∑
j=1

ajkbj(x),

and A will be upper triangular and invertible.

208 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

19.2 Polynomial Regression

Polynomial regression (Section 5.7) is an example of the basis function technique. The simplest
way of expressing polynomial regression is to simply set basis functions to be increasing powers of
x:

bj(x) = xj , j = 0, 1, . . . , p, (19.6)

to yield an order p response function (again, whether or not to regard b0(x) ≡ 1 as a basis function
is a matter of convention). As polynomials of strictly increasing degree, they must be linearly
independent, therefore B = (b0, b1, . . . , bp) forms a basis for the vector space Pp of all polynomials
of degree no greater than p.

If we include the intercept we have design matrix

X =

 1 x1 x2
1 . . . xp1

...
...

...
...

...
1 xn x2

n . . . xpn

Then consider the linear transformation

X′ = XA =

 z10 z11 z12 . . . z1p
...

...
...

...
...

zn0 zn1 zn2 . . . znp

 (19.7)

where A is a (p + 1) × (p + 1) matrix of coefficients. Note that the first column of X′ has been
relabelled j = 0. The coefficient matrix A is usually upper triangular, so the transformed predictor
variables become

zi0 = a00

zi1 = a01 + a11xi

zi2 = a02 + a12xi + a22x
2
i

...

zip = a0p + a1pxi + a2px
2
i + . . .+ appx

p
i (19.8)

noting that the first row and column of A are here labeled i = j = 0. The model is now

yi = β′0zi0 + β′1zi1 + β′2zi2 + . . .+ β′pzip. (19.9)

Thus, if all diagonal elements of A are nonzero, this defines a transformation either of the design
matrix X (Equation (19.7)) or of the basis B to an alternative basis B′ for Pp defined by Equation
(19.5).

Thus, by Theorem 19.2, polynomial regression need not be based on the original basis B.
Any transformation based on an invertible transformation matrix A will yield exactly the same
fitted model. In practice, A is often chosen so that the transformed design matrix X possesses
orthonormal column vectors (see Section 7.4). It is worth spending some time understanding how
this is done in R.

19.2. POLYNOMIAL REGRESSION 209

19.2.1 Polynomial regression in R

One of the strengths of R is a comprehensive but unified language for the definition of linear
regression formula (Chapter 5). This is especially true for linear models defined by basis functions.
Recall that if within the R environment there exists response vector y and predictor vectors x1 and
x2, the least squares estimate of the model

y = β0 + β1x1 + β2x2 + ε

is obtained by including the formula object

y ~ x1 + x2

as an argument in the lm() function:

lm(y ~ x1 + x2)

Note that the intercept term is included by default, and can be removed by including the term -1

in the formula object.
Suppose instead we have a single predictor x, and which to fit a polynomial regression model of

degree 3. The most direct approach would be to create the terms separately by applying the basis
transformations directly to x:

x.squared = x^2

x.cubed = x^3

lm(y ~ x + x.squared + x.cubed)

A more compact alternative would be to use the AsIs function I() (which inhibits interpretation
or conversion of objects):

lm(y ~ x + I(x^2) + I(x^3))

Both preceding methods will fit a basis function model using basis (19.6). In particular, the
coefficient estimates β̂ββ will be identical.

However, R also supports functions which construct design matrices from function bases of the
form (19.2) without the need to construct each column vector explicitly. Furthermore, these design
matrices may be placed directly in formula objects, which may also contain additional predictor
terms.

For polynomial regression, this function is poly(). The arguments and options important to us
at this point are x (the single predictor variable), degree (the degree of the polynomial regression)
and raw (basis to be used). For option raw = TRUE, the basis functions used will be those given
in (19.6). If raw = FALSE (the default option) a basis is selected which will yield orthonormal
column vectors in the design matrix (19.2). However, it is important to understand that while
poly(), under either option, does not include the intercept term in the design matrix, when the
orthonormalization option raw = FALSE is selected, all column vectors will be orthogonal to the
intercept term.

The three R commands:

> lm(y ~ x + x.squared + x.cubed)

> lm(y ~ x + I(x^2) + I(x^3))

> lm(y ~ poly(x, 3, raw = TRUE))

210 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

will produce the same regression fit, as well as the same coefficient estimates β̂j . The R command:

> lm(y ~ poly(x, 3, raw = FALSE))

will produce the same regression fit, but because the basis is a transformation of Braw the coefficient
estimates β̂′j will differ from β̂j . They can, however, be related by Equation (7.10) (see below).

In order to understand the orthonormalization process used by R, it is helpful to understand it as
a linear transformation of the “raw” polynomial basis Braw of Equation (19.6), expressed either as
transformation (19.5) to basis Bortho, or transformation X′ = XA, where X is given by (19.2), using
basis Braw. It must be remembered that although the intercept column is not included in the design
matrix output by poly(), it is an indispensable component of the orthonormalization operation,
and so we must assume both bases Braw and Bortho include the constant intercept function (for
example, the basis function b0(x) ≡ 1 of the basis defined in (19.6)).

Finally, note that we have so far only considered univariate polynomial regression. If more than
one predictor is to be transformed, x can be a matrix with one column for each predictor. In this
case, the basis functions can be defined as the terms of a suitable multivariate polynomial.

19.2.2 Demonstration of R function poly()

Consider as an example the univariate predictor variable defined in the R environment by

x = seq(-1,1,0.1)

n = length(x)

We will produce design matrices for polynomial regression of degree 3 using both the raw basis
Braw (raw = TRUE), and the orthogonal option (the default raw = FALSE). This may be done using
the following code:

>

> ### Create mathematical notation for basis function plots

>

> ex0 = expression(italic(x))

> exb1 = expression(italic(b)[1])

> exb2 = expression(italic(b)[2])

> exb3 = expression(italic(b)[3])

> exbp1 = expression({italic(b)^{scriptscriptstyle("/")}}[1])

> exbp2 = expression({italic(b)^{scriptscriptstyle("/")}}[2])

> exbp3 = expression({italic(b)^{scriptscriptstyle("/")}}[3])

>

> ### Create the design matrices

>

> x.ortho = poly(x, degree = 3)

> x.raw = poly(x, degree = 3, raw = TRUE)

>

> ### Display some of the matrix

>

> head(x.ortho)

19.2. POLYNOMIAL REGRESSION 211

1 2 3

[1,] -0.3603750 0.42285541 -0.43329786

[2,] -0.3243375 0.29599879 -0.17331914

[3,] -0.2883000 0.18249549 0.01824412

[4,] -0.2522625 0.08234553 0.14899365

[5,] -0.2162250 -0.00445111 0.22653116

[6,] -0.1801875 -0.07789442 0.25845837

>

> ### Plot the basis functions

>

> par(mfrow=c(1,2),pty=’s’)

> matplot(x,x.raw,type=’l’,lwd=2,xlab=ex0)

> legend(’bottomright’,legend=c(exb1,exb2,exb3),col=1:3,lty=1:3,cex=1,lwd=2)

> abline(h=0,col=’lightgray’)

> matplot(x,x.ortho,type=’l’,lwd=2,xlab=ex0)

> legend(’bottomright’,legend=c(exbp1,exbp2,exbp3),col=1:3,lty=1:3,cex=1,bg=NA,lwd=2)

> abline(h=0,col=’lightgray’)

The design matrices (excluding intercept) are stored in objects x.ortho (orthogonal) and x.raw

(raw). The command head(x.ortho) displays the first six rows of the design matrix x.ortho. The
vector space P3 spanned by bases Braw and Bortho has 4 dimensions, so, excluding the intercept
column, x.ortho is interpretable as a matrix with 3 columns, as would be expected.

The code above also plots the basis functions of Braw and Bortho, shown in Figure 19.1. The
“raw” basis functions b1(x) = x, b2(x) = x2, b3(x) = x3 are easily recognized in the left plot. The
basis functions of Bortho appear to conform to the upper triangular transformation of Braw given
in (19.8), so that b′j(x) is a polynomial of degree j.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

x.
ra

w

b1

b2

b3

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

x

x.
or

th
o

b /
1

b /
2

b /
3

Figure 19.1: Plot of basis functions described in Section 19.2.2.

212 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

We may then deduce the actual transformation matrix A using the method of Section 7.2.1
(extracting A directly from poly() is an interesting technical exercise, here we make the point
that an understanding of the underlying mathematics also suffices for this task). This allows us to

fit the model using the orthogonal basis Bortho, calculating least squares coefficients β̂ββ
′

using that
basis, then to express the response function in simple polynomial form

g(x) = β̂0 + β̂1x+ β̂2x
2 + β̂3x

3

using transformation β̂ββ = Aβ̂ββ
′
.

Of course, we must add the intercept term for each design matrix. For the design matrix X
associated with basis Braw, this is a column of 1’s. However, for the design matrix X associated
with basis Bortho each column is a unit vector, so the intercept column contains the entry 1/

√
n.

Then, since X′ has orthonormal column vectors, we may use Equation (7.10) to obtain

A =
(
[X′]TX

)−1
.

We next perform this calculation:

>

> ### Add the appropriate intercept column to each design matrix

>

> x.ortho.intcpt = cbind(1/sqrt(n),x.ortho)

> x.raw.intcpt = cbind(1, x.raw)

>

> ### calculate transformation matrix A

>

> solve(t(x.ortho.intcpt)%*%x.raw.intcpt)

1 2 3

2.182179e-01 -4.141667e-17 -2.448110e-01 4.022340e-17

1 4.612709e-17 3.603750e-01 2.347001e-16 -8.336549e-01

2 -1.132291e-16 5.342622e-17 6.676664e-01 -7.663380e-17

3 -7.673633e-17 -5.069035e-17 -4.304390e-16 1.266953e+00

>

> ### Round off

>

> round(solve(t(x.ortho.intcpt)%*%x.raw.intcpt),4)

1 2 3

0.2182 0.0000 -0.2448 0.0000

1 0.0000 0.3604 0.0000 -0.8337

2 0.0000 0.0000 0.6677 0.0000

3 0.0000 0.0000 0.0000 1.2670

>

Matrix inversion is often a challenging numerical computation, and values of a matrix inverse which
are in reality equal to zero are often given as very small, but nonzero, values (for example, here we
have a0,3 = 4.022340e-17). It may aid clarity to round off to, say, 4 significant digits. If we do so,
it is clear that A is essentially an upper triangular matrix.

19.2. POLYNOMIAL REGRESSION 213

Finally, we may perform the orthogonalization itself using QR decomposition. From Section
7.4.2, we may write

X = QR

where Q is an n × p matrix of orthonormal columns, and R is a p × p matrix, which can be
constructed to be upper triangular. We then equate X′ = Q and A = R−1. The following code
performs the calculations. The R function qr() evaluates a QR decomposition. Here, it is applied
to the design matrix x.raw.intcpt associated with the basis Braw. Then functions qr.Q() and
qr.R() are used to extract the components of the decomposition from the class qr object output
by function qr().

>

> ### QR decomposition

>

> qr.raw = qr(x.raw.intcpt)

>

> ### extract Q

>

> head(qr.Q(qr.raw))

[,1] [,2] [,3] [,4]

[1,] -0.2182179 -0.3603750 -0.42285541 0.43329786

[2,] -0.2182179 -0.3243375 -0.29599879 0.17331914

[3,] -0.2182179 -0.2883000 -0.18249549 -0.01824412

[4,] -0.2182179 -0.2522625 -0.08234553 -0.14899365

[5,] -0.2182179 -0.2162250 0.00445111 -0.22653116

[6,] -0.2182179 -0.1801875 0.07789442 -0.25845837

>

> ### compare to x.ortho.intcpt

>

> head(x.ortho.intcpt)

1 2 3

[1,] 0.2182179 -0.3603750 0.42285541 -0.43329786

[2,] 0.2182179 -0.3243375 0.29599879 -0.17331914

[3,] 0.2182179 -0.2883000 0.18249549 0.01824412

[4,] 0.2182179 -0.2522625 0.08234553 0.14899365

[5,] 0.2182179 -0.2162250 -0.00445111 0.22653116

[6,] 0.2182179 -0.1801875 -0.07789442 0.25845837

>

> ### extract R (then take inverse)

>

> round(solve(qr.R(qr.raw)),4)

[,1] [,2] [,3] [,4]

-0.2182 0.0000 0.2448 0.0000

1 0.0000 0.3604 0.0000 0.8337

2 0.0000 0.0000 -0.6677 0.0000

3 0.0000 0.0000 0.0000 -1.2670

214 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

>

> ### compare to A

>

> round(solve(t(x.ortho.intcpt)%*%x.raw.intcpt),4)

1 2 3

0.2182 0.0000 -0.2448 0.0000

1 0.0000 0.3604 0.0000 -0.8337

2 0.0000 0.0000 0.6677 0.0000

3 0.0000 0.0000 0.0000 1.2670

>

As can be seen, Q differs from X′ only by column-wise changes of sign, which does not change the
transformation in any important way. Similarly, R−1 differs from A only by column-wise changes
in sign, which yields essentially the same transformation.

19.3 Splines

The method of splines are a particularly powerful application of basis functions in linear regression.
Formally, a spline is system of piecewise polynomials which may be constructed from basis functions,
and therefore used to fit regression models defined by response functions of the form (19.1). The
definition is straightforward. We will set g(x) be the piecewise polynomial. Let Ix be the range of
the predictor variable x. The first step is to define the number of “pieces”. This is done indirectly
by defining K knots ξ1 < ξ2 < . . . < ξK−1 < ξK , which are within the range Ix. Then g(x) is taken
to be a polynomial between each pair of consecutive knots, below ξ1, and above ξK :

g(x) =

a1,0 + a1,1x+ . . .+ a1,d1x
d1 ; x < ξ1

a2,0 + a2,1x+ . . .+ a2,d2x
d2 ; ξ1 ≤ x < ξ2

... ;
...

aK,0 + aK,1x+ . . .+ aK,dKx
dK ; ξK−1 ≤ x < ξK

aK+1,0 + aK+1,1x+ . . .+ aK+1,dK+1
xdK+1 ; ξK ≤ x

. (19.10)

We have defined K + 1 polynomials on K + 1 contiguous left-closed intervals. The degree of
the polynomials is allowed to vary, the degree of the kth polynomial being dk. Note that Equation
(19.10) yields a right-continuous piecewise polynomial. This is because polynomials themselves are
continuous, and the segments are defined on left-closed intervals, for example [ξk, ξk+1). This is
a convention which can be altered. Of course, if the piecewise polynomial is constrained to be at
least continuous at the knots, the distinction has no effect.

There are three components required to define a family of spline functions intended to model a
response function g(x) defined on interval Ix:

(i) K knots ξ1 < ξ2 < . . . < ξK−1 < ξK , with ξk ∈ Ix.
(ii) K + 1 polynomials of degrees d1, . . . , dK+1, which define the polynomial segments between

the knots.
(iii) Continuity conditions are optionally imposed at the knots. In particular, at knot ξk, the

piecewise polynomial may be constrained to be continuous up to the skth derivative.

19.3. SPLINES 215

Note that the zeroth order derivative of a function f(x) is conventionally defined as the function
itself.

Properties (i) and (ii) are expressed directly in Equation (19.10), while property (iii) is an
additional constraint. This is because there is nothing in the spline construction of (19.10) which
forces any type of continuity. Of course, all order derivatives of a polynomial are continuous, so
continuity constraints only need to be considered at the knots.

Usually, splines are constrained to be continuous everywhere. In addition, continuity may be
imposed on higher order derivatives, which causes the spline to become smoother. This is a quite
natural constraint. Recall, for example, that velocity is a first order derivative, and acceleration is
a second order derivative, which we expect to change smoothly (a discrete change in velocity would
require infinite acceleration, which is a physical impossibility).

In particular, when continuity of all derivatives up to the second order is imposed, the piecewise
structure of a spline is usually difficult to detect visually, and this type of spline is widely used (in
particular, various classes of cubic splines, which we will introduce below).

As a rule of thumb, continuity constraints can be relaxed for exploratory analyses, when the
objective is to visualize the general shape of response function g(x). However, it must also be
considered when a response function can be expected to be smooth, and to understand how this
constraint can be imposed.

Formally, in order for a function f(x) to have an order s > 0 derivative at x0, it must possess
continuous derivatives of all orders less than s, including order 0, that is, f(x) must be continuous
at x0. However, this does not mean that forcing order s continuity on a spline will, by itself, force
continuity of all lower order derivatives. This is made clear in the next example.

Example 19.3. Suppose in the spline construction of (19.10) we set K = 1, ξ1 = 3, and d1 = d2 =
1. This is a spline with a single knot at x = ξ1 = 3, and linear polynomial segments. We may impose
equality of any derivative evaluated at a knot of the seqments joined there in a direct manner. For
example, to impose continuity (the zeroth order derivative) we obtain with this method the linear
constraint

a1,0 + a1,1ξ1 = a2,0 + a2,1ξ1,

equivalently

a1,0 + 3a1,1 = a2,0 + 3a2,1. (19.11)

The first order derivatives of each segment are the constants a1,1, a2,1 respectively, so equality of
the first order derivatives at the knot is expressed as the linear constraint

a1,1 = a2,1. (19.12)

The spline contains 4 parameters (a1,0, a1,1, a2,0, a2,1). However, if we were to impose only
constraint (19.11) the number of parameters would effectively be reduced by 1. This could be
expressed by simple substitution. Suppose these parameters are denoted α, β, γ. We might set

α = a1,0, β = a1,1, γ = a2,1.

Then constraint (19.11) forces the remaining substitution

a2,0 = a1,0 + 3a1,1 − 3a2,1 = α+ 3(β − γ).

216 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

This spline is now

g(x) =

{
α+ βx ; x < ξ1

α+ 3(β − γ) + γx ; ξ1 ≤ x
.

It is easily verified that this spline is continuous at the knot.

What happens is we impose only the first order constraint (19.12)? Mathematically, there is no
reason we can’t, and Figure 19.2 gives an example of what such a spline might look like. Clearly,
both segments have the same first order derivative (equal to 1), but the spline itself is not continuous
at the knot. Nor does it have a first order derivative at the knot by any evaluation method (the
right-derivative is 1, while the left-derivative would be ∞ using the usual limit method). Thus,
constraint (19.12) is not sufficient by itself to force first order continuity. In general, continuity
of the order s derivative requires continuity of all lower order derivatives, and each of these is
represented by a separate linear constraint.

2.0 2.5 3.0 3.5 4.0

0
1

2
3

4
5

6

x

g
(x

)

●

Figure 19.2: Spline used in Example 19.3.

Boundary knots

It will sometimes be convenient to explicitly define boundary knots ξ0, ξK+1, where ξ0 < ξ1 and
ξK+1 > ξK . These do not appear in (19.10), so we must remember that g(x) has domain Ix. In
practice, all numerical computation is bounded, so the boundary knots are sooner or later required.
In particular, the first and last polynomial segments are defined on respective intervals [ξ0, ξ1) and
[ξK , ξK+1], so that Ix = [ξ0, ξK+1].

In much of the discussion of this section, the domain Ix plays no role, and we need only assume
that it contains all knots. Furthermore, continuity constraints are not applied at the boundary
knots, so there is little to be gained by introducing them into most of the analysis (although some
applications, not considered here, do introduce some form of boundary constraint).

19.3. SPLINES 217

However, much of the study of splines concerns their representation by basis functions (which we
will discuss below), and the design of such functions with desirable computational properties. Some
such representations do make use of boundary knots. When these are required by R functions, the
usual convention is to set the boundary knots to be the minimum and maximum observed predictor
variables xi, when available. It may be possible, however, for the user to specify alternative values.
This is further discussed in Section 19.3.5.

19.3.1 Degrees of freedom of a spline

The moral of Example 19.3 is that equality at a knot of the order s derivatives of the adjoining
spline segments is not sufficient to guarantee the existence of an order s derivative of the spline
itself. Therefore, we can assume that when continuity of an order s derivative is imposed at a given
knot, continuity of all lower order derivatives will also be imposed. Since each derivative constraint
generates a distinct linear constraint of the type developed in Example 19.3, order s continuity will
require s+ 1 such constraints. Furthermore, each knot generates a separate set of constraints.

Suppose for a piecewise polynomial of the form (19.10) we set K = 1 knot ξ1, and d1 = 1,
d2 = 2. The polynomial segments are linear and quadratic, respectively, so that

g(x) =

{
a1,0 + a1,1x ; x < ξ1

a2,0 + a2,1x+ a2,2x
2 ; ξ1 ≤ x

.

When used in regression models, the knots of a spline are usually considered fixed, but the polyno-
mial coefficients are to be estimated. In this example, there are five coefficients a1,0, a1,1, a2,0, a2,1, a2,2.
Without any further constraint, this model therefore has five independent parameters, or, the spline
has five degrees of freedom.

Next, suppose we impose continuity at the knot ξ1. This can be written explicitly as a linear
constraint on the parameters:

a1,0 + a1,1ξ1 = a2,0 + a2,1ξ1 + a2,2ξ
2
1 .

Thus, (as in Example 19.3) we can eliminate one parameter by expressing it as a function of the
remaining ones,

a1,0 = −a1,1ξ1 + a2,0 + a2,1ξ1 + a2,2ξ
2

so that when the continuity constraint is imposed, the spline now has four degrees of freedom. We
have already seen that an equality constraint imposed on any order derivative at a knot can be
expressed as a linear constraint on the coefficients of the polynomial segments joined at that knot.
Thus, we can see that the spline degrees of freedom is simply the total number of coefficients minus
the total number of constraints.

Then let ck be the number of constraints at knot ξk. This will be

ck =

{
sk + 1 ; sk is defined
0 ; sk is undefined

where sk is the order derivative constrained to be continuous at knot ξk. If no continuity constraints
are imposed, sk is undefined. If only continuity of the spline is imposed, we have sk = 0.

218 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

We then have the formula for the model degrees of freedom of a spline:

model DF =

K+1∑
k=1

(dk + 1)−
K∑
k=1

ck. (19.13)

If the spline is continuous sk is always defined, and we may equivalently write

model DF = 1 +

K+1∑
k=1

dk −
K∑
k=1

sk. (19.14)

Note that to apply (19.13) we must assume that sk ≤ max{dk, dk+1} at each knot. Other-
wise, the order sk derivative at that knot will already be constrained to be zero, and there is
no need to impose any further continuity conditions. As a practical matter, we further expect
sk < max{dk, dk+1} (what is g(x) if dk = 1, sk = 1 for all knots and segments?).

Example 19.4. We wish to fit the model

yi = g(xi) + εi, i = 1, . . . , n, (19.15)

where εi ∼ N(0, σ2) are independent error terms, and xi is a predictor variable. The function g(x)
has the following properties:

(i) There are three knots ξ1 < ξ2 < ξ3.
(ii) g(x) is continuous at the knots.

(iii) g(x) possesses a continuous first derivative at the knots.
(iv) g(x) is linear g(x) = a0 + b0x for x < ξ1.
(v) g(x) is a second order polynomial g(x) = a1 + b1x+ c1x

2 for x ∈ (ξ1, ξ2).
(vi) g(x) is a second order polynomial g(x) = a2 + b2x+ c2x

2 for x ∈ (ξ2, ξ3).
(vii) g(x) is linear g(x) = a3 + b3x for x > ξ3.

Continuity of g(x) and continuity of the first derivative each represent a single linear constraint
at each knot, so there are 6 linear constraints. These are

a0 + b0ξ1 = a1 + b1ξ1 + c1ξ
2
1

a1 + b1ξ2 + c1ξ
2
2 = a2 + b2ξ2 + c2ξ

2
2

a2 + b2ξ3 + c2ξ
2
3 = a3 + b3ξ3

for continuity, and

b0 = b1 + 2c1ξ1

b1 + 2c1ξ2 = b2 + 2c2ξ2

b2 + 2c2ξ3 = b3

for continuity of the first derivative. The three polynomials together have 10 coefficients. With 6
constraints, this leaves 10 - 6 = 4 degrees of freedom.

Applying (19.14) directly, we have d1 = d4 = 1, d2 = d3 = 2, s1 = s2 = s3 = 1, so

model DF = 1 + (1 + 2 + 2 + 1)− (1 + 1 + 1) = 4.

19.3. SPLINES 219

19.3.2 Basis function representation of a spline

Without continuity constraints, the space of all piecewise polynomials of the form (19.10) forms a
vector space Vpp with dimension equal to the model degrees of freedom. Then note that continuity of
any order is preserved under addition and scalar multiplication. This means the set of all piecewise
polynomials with a fixed set of continuity constraints is also a vector space, say V∗pp ⊂ Vpp, and will
also have dimension equal to the model degrees of freedom. This leaves the problem of determining
a basis for V∗pp. In fact, this field is a very rich component of many areas of applied mathematics,
especially numerical analysis, computer graphics and physics. Apart from enabling many important
computational methods, it is also yields important theory. We will get a glimpse of this later in
this chapter.

We must also consider here the issue raised in Section 19.1 (Theorem 19.2 and the preceding
discussion). Although some of the theory of basis functions does not refer to any particular observed
predictor values x1, . . . , xn, when used in linear regression models to define a response function such
as

g(x) =

p∑
k=1

βkbk(x),

it must be ensured that a design matrix of the form (19.2) have linearly independent columns. To
ensure this, there must a some minimum number of observed predictors xi between each pair of
knots ξk, ξk+1, below ξ0, and above ξK . This minimum depends on the degrees of the segments,
and the constraints at the knots. If the total number of observations n equals the model degrees of
freedom, it will be possible under general conditions to determine parameters which force g(xi) = yi
for all i, yielding SSE = 0. Of course, it is good modeling practice to ensure that n is much larger
than the model degrees of freedom, and in the case of splines, to ensure that the each of the
segments partitioned by the knots contains a sufficient number of observations xi. A good strategy
is to select the knots based on sample quantiles of the observed predictors. For example, if K = 1,
ξ1 would be a median, or for K = 4, the knots would be quintiles. See, for example, James et al.
(2013) for more on the selection of knots.

Step functions

First consider the step function (for example, Spline (a) of Figure 19.3). This is a particularly
simple spline, with dk = 0 for each segment in Equation (19.10), and no continuity constraints, so
that ck = 0 at each knot. This type of function is easily defined as any function that is constant
between knots, and has model degrees of freedom

model DF =
K+1∑
k=1

(dk + 1)−
K∑
k=1

ck = K + 1.

Here, we may define basis functions

b0(x) = I{x < ξ1}
b1(x) = I{ξ1 ≤ x < ξ2}

... (19.16)

bK−1(x) = I{ξK−1 ≤ x < ξK}
bK(x) = I{ξK ≤ x}. (19.17)

220 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

Then any left-continuous step function with knots ξ1 < ξ2 < . . . < ξK−1 < ξK can be represented
as

g(x) =
K∑
k=0

βkbk(x),

and linear regression may be used to estimate the coefficients βk. Of course, with this representation,
an intercept term would not be included.

It is clear that the basis functions B = (b0, b1, . . . , bK) are linearly independent, and therefore
form the basis of a vector space Vstep consisting of all step functions with discontinuities at the
given knots (recall Definition 7.2).

Then consider the following set of basis functions B′ = (b′0, b
′
1, . . . , b

′
K) defined by

b′0(x) = 1

b′1(x) = I{ξ1 ≤ x}
... (19.18)

b′K−1(x) = I{ξK−1 ≤ x}
b′K(x) = I{ξK ≤ x}, (19.19)

We can use Theorem 19.1 to verify that B and B′ are equivalent. Then, because B is a basis for
V, and B and B′ have the same number of basis functions, B′ must also be a basis for V, and can
be used to fit an equivalent least squares regression model. It is easy to verify that the following
equalities hold:

b′0(x) =

K∑
k=0

bk(x),

b′1(x) =
K∑
k=1

bk(x),

...

b′K(x) = bK(x),

in fact, we may more compactly write

b′j(x) =
K∑
k=j

bk(x),

for all indicies j = 0, 1, . . . ,K. It follows that the bases B and B′ can be related by the linear
transformation (19.5), with (K + 1)× (K + 1) transformation matrix

A =

1 0 · · · 0
1 1 · · · 0
...

...
... 0

1 1 · · · 1

 .

19.3. SPLINES 221

−1.0 0.0 1.0 2.0

0
1

2
3

4
5

6

x

g(
x) ●

●

●

●

●

Spline (a)

−1.0 0.0 1.0 2.0

0
1

2
3

4
5

6

x

g(
x) ●

Spline (b)

−1.0 0.0 1.0 2.0

0
1

2
3

4
5

6

x

g(
x)

●

●

Spline (c)

−1.0 0.0 1.0 2.0

0
1

2
3

4
5

6
x

g(
x)

●

●

α

β

Spline (d)

Figure 19.3: Four examples of splines.

This is a lower triangular matrix with nonzero diagonal entries, and is therefore invertible. We
conclude from Theorem 19.1 (ii) that B and B′ are equivalent, and therefore B′ is a basis for V.

We next give an example.

Example 19.5. We wish to fit a model of the form

yi = g(xi) + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent error terms, and xi ∈ [0, 10] is a predictor variable. We will
assume that g(x) is a step function with two discontinuities at ξ = 2, 5. We may use the basis

b1(x) = I{x < 2}
b2(x) = I{x ∈ [2, 5)}
b3(x) = I{x ≥ 5}.

Then set

g(x) = β1b1(x) + β2b2(x) + β3b3(x)

and use least squares regression to estimate β1, β2 and β3 (no intercept term will be added here).

222 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

Alternatively, we could use basis

b′1(x) = 1

b′2(x) = I{x ≥ 2}
b′3(x) = I{x ≥ 5},

Then set

g(x) = β′1b
′
1(x) + β′2b

′
2(x) + β′3b

′
3(x)

and use least squares regression to estimate β′1, β
′
2 and β′3 (again, no intercept term will be added

here).

Then suppose, using basis (b1(x), b2(x), b3(x)), least squares estimates β̂1, β̂2 and β̂3 of coeffi-
cients β1, β2 and β3 are obtained. We can derive the least squares estimates of β′1, β

′
2 and β′3 (using

basis (b′1(x), b′2(x), b′3(x))) as a function of β̂1, β̂2 and β̂3.

We relate the two sets of basis functions as follows:

b1(x) = b′1(x)− b′2(x)

b2(x) = b′2(x)− b′3(x)

b3(x) = b′3(x).

Then write explicitly the least squares fit, and substitute the basis functions:

g(x) ≈ β̂1b1(x) + β̂2b2(x) + β̂3b3(x)

= β̂1[b′1(x)− b′2(x)] + β̂2[b′2(x)− b′3(x)] + β̂3b
′
3(x)

= β̂1b
′
1(x) + [β̂2 − β̂1]b′2(x) + [β̂3 − β̂2]b′3(x)

= β̂′1b
′
1(x) + β̂′2b

′
2(x) + β̂′3b

′
3(x).

This gives

β̂′1 = β̂1

β̂′2 = β̂2 − β̂1

β̂′3 = β̂3 − β̂2.

Piecewise linear splines

A piecewise linear spline is usually taken to be a continuous piecewise polynomial with linear
polynomial segments. Thus, given K knots we set dk = 1, k = 1, . . . ,K + 1, sk = 0, k = 1, . . . ,K.
The model degrees of freedom is therefore

model DF = 1 +

K+1∑
k=1

dk −
K∑
k=1

sk = K + 2. (19.20)

19.3. SPLINES 223

If, for the moment, we disregard the continuity constraint, the class of piecewise linear polynomials
constructed from (19.10) will be the vector space spanned by the 2K basis functions

b1(x) = I{x < ξ1}
b2(x) = xI{x < ξ1}
b3(x) = I{ξ1 ≤ x < ξ2}
b4(x) = xI{ξ1 ≤ x < ξ2}

...

b2K+2(x) = I{ξK ≤ x}
b2K+2(x) = xI{ξK ≤ x}. (19.21)

Furthermore, these basis functions are clearly linearly independent, and therefore form a basis for
the vector space Vlin of all piecewise linear polynomials for a given set of knots.

However, the continuity constraint complicates the problem of constructing a basis for the class
of continuous piecewise linear splines. It may help at this point to compare an unconstrained
linear spline and a continuous linear spline (Splines (b) and (c) in Figure 19.3). Spline (b) can be
constructed directly from the basis (19.21), setting K = 1,

g(x) =
4∑
j=1

βjbj(x)

so that β1 + β2x and β3 + β4x are the two polynomial segments.
As for the continuous piecewise linear spline, Spline (c), it turns out that a basis transformation

similar to that between bases (19.17) and (19.19) will prove useful in deducing how to constrain the
βj coefficients to induce continuity. This yields equivalent basis (by an argument similar to that
used above for the step function basis)

b′1(x) = 1

b′2(x) = x

b′3(x) = I{ξ1 ≤ x}
b′4(x) = xI{ξ1 ≤ x}

...

b′2K+1(x) = I{ξK ≤ x}
b′2K+2(x) = xI{ξK ≤ x}. (19.22)

Now Spline (c) can be written

g(x) =

6∑
j=1

βjb
′
j(x) (19.23)

or, equivalently,

g(x) =

β1b
′
1(x) + β2b

′
2(x) ; x < ξ1

β1b
′
1(x) + β2b

′
2(x) + β3b

′
3(x) + β4b

′
4(x) ; ξ1 ≤ x < ξ2

β1b
′
1(x) + β2b

′
2(x) + β3b

′
3(x) + β4b

′
4(x) + β5b

′
5(x) + β6b

′
6(x) ; ξ2 ≤ x

.

224 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

For basis (19.22) it is much easier to determine how to apply the continuity constraints to the βj
coefficients. First note that by Equation (19.20) this spline has 4 model degrees of freedom. Denote
the associated independent parameters α1, . . . , α4. For x below the first knot, the only contribution
to g(x) are the terms β1b

′
1(x)+β2b

′
2(x). But these terms contribute to g(x) over the entire domain,

so we will set the first two independent parameters:

α1 = β1

α2 = β2.

Note that when x reaches the first knot ξ1 from below, the terms β3b
′
3(x) + β4b

′
4(x) are added to

g(x). If g(x) is continuous at ξ1 we must therefore have

β3b
′
3(ξ1) + β4b

′
4(ξ1) = 0

or equivalently

β3 + β4ξ1 = 0.

This becomes the linear constraint induced by continuity at ξ1, and by a similar argument for knot
ξ2 we have additional constraint

β5 + β6ξ2 = 0.

then set

α3 = β4

α4 = β6.

After a bit of algebra spline (19.23) can now be written

g(x) = α1 + α2x+ α3(x− ξ1)+ + α4(x− ξ2)+,

using the notational convention

(x)+ = I{x ≥ 0}.

We can now identify a basis of K + 2 functions for the vector space of continuous piecewise linear
polynomials with K knots:

h1(x) = 1

h2(x) = x

h3(x) = (x− ξ1)+

...

hK+2(x) = (x− ξK)+. (19.24)

Essentially this method can be used to construct a basis for important classes of splines, which we
demonstrate next.

19.3. SPLINES 225

19.3.3 Splines of degree d

The reader should be aware that the term “spline” is not used consistently in the literature. We
have used the term here to describe any piecewise polynomial function. This might be seen as
reasonable, up to a point. The discussion surrounding Example 19.3 suggests that the properties of
such a “spline” do not follow directly from the polynomial segments, and can only be characterized
when the segments are aggregated into a single function, now called a “spline”.

However, in practice the term “spline” often refers specifically to a piecewise polynomial with
segments of degree d and continuity of all derivatives up to and including order d − 1. We refer
to this as a spline of degree d. The step function (by default) and the continuous piecewise linear
polynomial are thus splines of degree d = 0 and d = 1, respectively. Then (19.24) is a basis for the
class of splines of degree d = 1, and is easily generalized to form bases for splines of any degree d:

h1(x) = 1

h2(x) = x

...

hd(x) = xd−1

hd+1(x) = xd

hd+2(x) = (x− ξ1)d+
...

hK+d+1(x) = (x− ξK)d+. (19.25)

The number of basis functions. K + d+ 1 must equal the model degrees of freedom, which is easily
verified for any d ≥ 1, setting dk = d, sk = d− 1:

model DF = 1 +
K+1∑
k=1

dk −
K∑
k=1

sk = 1 + (K + 1)d−K(d− 1) = K + d+ 1. (19.26)

Lower order splines are useful for exploratory analysis, otherwise, the cubic spline (d = 3) is
commonly used, in part because it possesses some remarkable properties (Section 19.3.4 below).

Of course, this type of uniformity of degree and continuity can be relaxed, and there are often
good reasons to do so. Consider Spline (d) of Figure 19.3. The outer polynomial segments are
of degree d = 0, the remaining segment of degree d = 3. There are 6 coefficients, which bounds
the number of linear constraints by 6 (or, the total order continuity across all knots by 4). We
may impose order 0 or 1 continuity at both knots, which yield distinct models. As an exercise,
the reader might describe the spline when order s1 = 3, s2 = 0 continuity is imposed, or order
s1 = s2 = 2 continuity (for the latter example, describe a vector space containing only one vector).
This example is further considered in Practice Problem 30.6.

19.3.4 Natural cubic splines and smoothing splines

A natural cubic spline is simply a cubic spline for which the two outer segments (below the first
knot and above the last knot) are constrained to be linear. This may be done by forcing the second
and third degree coefficients of these segments to zero, reducing the total number of parameters by

226 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

4. However, order 2 continuity must still be imposed at all knots, since, even after the linearization
of the outer segments, at least one adjoining segment of each knot is a polynomial of degree 3. So
the model degrees of freedom of a natural spline is 4 less than that of a cubic spline, that is,

model DF = K.

There are a number of reasons to consider the natural cubic spline. The cubic spline itself
offers continuity up to the second derivative, while only requiring K + 4 parameters (4 for a cubic
polynomial, and 1 more for each knot). Thus, there is considerable flexibility in modeling the
predictor function g(x) for a modest price in increased model complexity.

However, as a practical matter, cubic splines tend to exhibit undesirable properties at the
extreme regions of the predictor domain Ix, particularly outside the range of the knots. These
include large standard errors of the fitted values (see Section 6.3), as well as counterintuitive
behavior of the response function g(x) itself. These problems can usually be controlled by using a
natural cubic spline.

In addition, the natural cubic spline possesses a remarkable property. Consider the following
optimization problem. Suppose we are given paired observations of predictor and response variables
(xi, yi), i = 1, . . . , n. Assume for the moment that the predictor observations are distinct. Then
consider the following penalized least squares function

Λ(g) =

n∑
i=1

(yi − g(xi))
2 + λ

∫
Ix

g′′(u)2du, (19.27)

for some fixed λ ≥ 0. Here, g is any twice-differentiable function on Ix, and g′′ is the second order
derivative of g. It is interesting to note that since the purpose of the second term is to bound
the curvature of g, we could also relax the twice-differentiable assumption on g. Then if we claim,
reasonably, that the lack of a second derivative implies unbounded curvature, we could eliminate
from consideration all such functions.

It may be proven that the function g which minimizes Λ(g) for any λ ≥ 0 is a natural cubic
spline with knots located at the predictor observations x1, . . . , xn. However, this optimal spline
depends on λ, which is therefore denoted gλ. This is referred to as a smoothing spline. The natural
cubic spline, outside of the context of this optimization problem, has K model degrees of freedom.
However, the curvature penalty in Equation (19.27) has the effect of imposing further constraints
on gλ, so it is worth considering what happens as λ ranges from 0 to ∞.

For λ = 0, we have the error sum of squares SSE that is minimized in least squares regression
models. There is an important difference, however. We have assumed that the xi values are unique.
In addition, a natural spline with K = n knots has n model degrees of freedom. It is therefore
possible to introduce the n constraints

g(xi) = yi, i = 1, . . . , n,

attaining the minimum possible value of Λ(g):

Λ(g) =
n∑
i=1

(yi − g(xi))
2 + 0×

∫
Ix

g′′(u)2du =
n∑
i=1

(yi − g(xi))
2 = 0. (19.28)

Then, we note that as λ approaches ∞, the curvature penalty in Equation (19.27) becomes in-
creasingly dominant. Of course, if g(x) is linear, g′′(x) = 0, so the increasing weight placed on

19.3. SPLINES 227

the penalty can be compensated for by reducing the aggregate curvature of g(x) by any required
amount. This means that as λ → ∞, gλ(x) approaches a linear function, specifically, the least
squares fit for the simple linear regression model for the predictor/response pairs.

Finally, we note that the assumption that the observed predictors are unique can be relaxed,
and the algorithm will remain well defined. This is implemented in R by the smooth.spline()

function.

Effective degrees of freedom (EDF)

For λ = 0, gλ(x) is an unpenalized natural cubic splines, which has n model degrees of freedom,
while for λ =∞ gλ(x) is a linear function with 2 model degrees of freedom. However, since all gλ
are nominally natural cubic splines, an alternative to model degrees of freedom must be used to
quantify model complexity.

To this end, suppose we have linear model y = Xβββ + εεε, where X is the n × p design matrix.
Recall from Chapter 6 that the least squares fit may be expressed

ŷ = Hy, (19.29)

where H is the n× n“hat matrix”
H = X(XTX)−1XT (19.30)

It turns out that the model degrees of freedom may be calculated from H as

p = trace(H) (19.31)

However, models which are not calculated by the least squares method may nonetheless be express-
ible in the form (19.29), even if H has a calculation method other than (19.30). As it happens,
the smoothing spline is such a model (with H relying on both X and λ). So, we may define the
effective degrees of freedom (EDF) as

EDF = trace(H).

The EDF conforms to the model degrees of freedom for linear least squares regression, but is also
able to extend this definition of model complexity to a much larger class of modeling techniques. For
smoothing splines, the EDF of gλ(x) decreases from n to 2, as λ ranges from 0 to λ. We therefore
have an important example of the bias/variance tradeoff induced by varying model complexity
(Section 15.7). Practice Problem 30.23 discusses the EDF in some depth, providing a proof of
Equation (19.31), as well as examples of the evaluation of EDF for fitting methods that do not rely
on the least squares method. See also James et al. (2013) or Friedman et al. (2001) for more on
this topic.

19.3.5 B-splines

One of the points made throughout this section is that bases can be equivalent while having very
different properties from a more practical point of view. For example, the two bases (19.17) and
(19.19) for a vector space of step functions are equivalent. While (19.19) is analytically simpler,
the basis functions of (19.17) have much smaller support (the subset of the domain on which the
function is nonzero). This can be a considerable advantage, especially for large data sets. When

228 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

large portions of a matrix can be assumed to be zero, specialized algorithms can reduce computation
time by an order of magnitude.

How then, can this idea be extended to splines of higher degree? Equivalently, what basis for a
spline of degree d possesses minimum support? To develop a basis for (continuous) splines of degree
1 we first transformed (unconstrained) basis (19.21) to (19.22), then directly derived the continuity
constraints from the latter basis, yielding (19.24). So, we may try to find a linear transformation
of basis (19.24) which reduces basis function support.

First, note that basis function support can be expressed as the number of domain segments
separated by the knots. Then, for example, basis function h2(x) of basis (19.24) covers all segments.
However, suppose we take ξ1 = 2, ξ2 = 4. At this point we will introduce the boundary knot ξ0 = 0
(Section 19.3). Then consider the linear combination

h′2(x) = h2(x)− 2h3(x) + h4(x). (19.32)

The basis functions h2 and h′2 are shown in Figure 19.4, assuming knots ξ1 = 2, ξ2 = 4 (the reader
may wish to verify this as an exercise). Clearly, h′2(x) is easy to describe. It is a “triangle function”
with base [ξ0, ξ2], and peak at knot ξ1. Crucially, it is zero outside the segments [ξ0, ξ1) and [ξ1, ξ2).
In other words, its support consists of only two segments.

The total number of knots K ≥ 2 is not important. If we take K to be arbitrarily large, we can
continue this process, defining transformed basis functions

h′k(x) = ak,khk(x) + ak+1,khk+1(x) + ak+2,khk+2(x). (19.33)

selecting coefficients ak,k, ak+1,k, ak+2,k so that h′k(x) has the same triangle structure, with base
[ξk−1, ξk+1] and peak at knot ξk. This can always be done (again, the reader may verify this).

Clearly, this generates a triangular transformation (Example 19.2), so that the basis functions
{hk, k ≥ 2} and {h′k, k ≥ 2}, are equivalent (K may be finite, but its value is still not important at
this point).

We then note that the intercept term h1(x) ≡ 1 is not included in the vector space spanned
by {hk, k ≥ 2}, since (19.24) is a basis, and its basis functions are therefore linearly independent.
Therefore ,h1 is not included in the vector space spanned by {h′k, k ≥ 2}, since it is equivalent to
{hk, k ≥ 2}.

The class of degree 1 splines includes h1, so the vector space {h′k, k ≥ 2} must be extended to
include it. This can be done by simply adding h1(x) to the set {h′k, k ≥ 2}. However, the point
of the exercise is to minimize the basis function support. To this end, note that we may always
multiply basis functions by a nonzero scalar without changing the vector space they span. This
means we may assume that the coefficients in (19.33) are be selected so that the maximum of h′k(x)
equals one. In this case, these basis functions will possess a remarkable property, in that there sum
has a quite simple form: ∑

k≥2

h′k(x) =

{
h′2(x) ; x < ξ1

1 ; x ≥ ξ1
(19.34)

for all x ∈ Ix. Then suppose we define the remaining basis function

h′1(x) = (1− h′2(x))I{x < ξ1} (19.35)

Then ∑
k≥1

h′k(x) = 1, (19.36)

19.3. SPLINES 229

h1(x) is in the vector space spanned by {h′k, k ≥ 1}, and the support of h′1 consists only of the
single segment (−∞, ξ1).

We have, in fact, just constructed what is known as a B-spline (or the basis thereof) for the
class of degree 1 splines. This can be done for any degree d ≥ 0 and can be defined as a basis
B = (b1, . . . , n) possessing the following properties:

(i) The basis spans the class of splines of degree d, and therefore has dimension K + d+ 1.
(ii) The support of any basis function never exceeds d+ 1 segments.
(iii) The basis functions satisfy the identity

∑n
j=1 bj(x) ≡ 1.

With the exception of some number of basis functions with support near the boundary knots
(this number depends on d) all basis functions of a B-spline have support of exactly d+1 segments,
and have the same shape. In this sense, they resemble the simplest spline basis considered in this
section, that given in Equation (19.17) (which is a B-spline of degree 0). And it is this resemblance
that yields their advantageous properties.

0 1 2 3 4 5 6

0
1

2
3

4
5

6

x

B
a

si
s

F
u

n
ct

io
n

s

h2

h /
2

ξ1 ξ2

Figure 19.4: Transformed basis function h′2 for degree d = 1 spline (Section 19.3.5).

19.3.6 Using B-splines in R

R provides a number of functions which support least squares spline regression using basis functions.
The function bs() calculates design matrices of the form (19.2) based on B-spline basis functions.
It is used much like the polynomial regression function poly() (Section 19.2.2), in particular, it can

230 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

be used directly in formula objects. The function accepts as an argument x, a vector containing
the predictor observations; degree, the degree of the spline (with default degree = 3); and knots,
a vector of spline knots.

The option intercept specifies whether or not the intercept is included in the span of the
basis functions. The default is intercept = FALSE. If the option intercept = TRUE is used, the
additional function will not be the constant b0(x) ≡ 1, but a basis function more like h′1(x) of
Equation (19.35).

Boundary knots can be specified as a vector of length 2 using the Boundary.knots argument.
The default is Boundary.knots = range(x) (see Section 19.3).

It is also possible to specify df, the model degrees of freedom. Suppose a value of D is selected.
Since a spline of degree d has K+d+1 model degrees of freedom, the bs() function will automatically
select K = D − d − 1 knots with option intercept = TRUE, or K = D − d knots with option
intercept = FALSE. The knots will be selected as suitable quantiles. However, this option will be
ignored if a vector of knots is provided. If neither knots or df are given, bs() assumed K = 0,
which is equivalent to polynomial regression.

Natural cubic splines (Section 19.3.4) are implemented using the ns() function. The arguments
are similar to those used by bs(), except that only splines of degree 3 are produced (with outer
segments constrained to be linear).

The following code demonstrates the bs() function, producing Figure 19.5. Splines of degree
d = 1, 2, 3 are shown, on interval Ix = [0, 10], with K = 9 equally spaced knots.

> library(splines)

> par(mfrow=c(3,1),mar=c(4,6,5,3),cex.lab=1.5)

> x = seq(0,10,0.1)

> matplot(x,bs(x,degree=1,knots=1:9),type=’l’,ylab=’Basis Functions’)

> title("Degree 1 B-spline")

> abline(v=1:9,col=’gray’)

> matplot(x,bs(x,degree=2,knots=1:9),type=’l’,ylab=’Basis Functions’)

> title("Degree 2 B-spline")

> abline(v=1:9,col=’gray’)

> matplot(x,bs(x,degree=3,knots=1:9),type=’l’,ylab=’Basis Functions’)

> title("Degree 3 B-spline")

> abline(v=1:9,col=’gray’)

Finally, it should be noted that the B-spline basis is not orthonormal (except for d = 0).
However, the resulting matrix XTX is still well behaved, and has zero entries at elements more
than d+ 1 rows or columns from the diagonal. The following code demonstrates this.

>

> ### (X^T)X matrix for degree 1 B-spline

>

> X = bs(x,degree=1,knots=1:4)

> t(X)%*%X

1 2 3 4 5

1 6.70 1.65 0.00 0.00 0.00

2 1.65 6.70 1.65 0.00 0.00

19.4. POSTSCRIPT 231

3 0.00 1.65 6.70 1.65 0.00

4 0.00 0.00 1.65 6.70 1.65

5 0.00 0.00 0.00 1.65 3.85

>

> ### (X^T)X matrix for degree 2 B-spline

>

> X = bs(x,degree=2,knots=1:4)

> t(X)%*%X

1 2 3 4 5 6

1 3.333250 2.083375 0.083325 0.000000 0.000000 0.00000

2 2.083375 5.499950 2.166700 0.083325 0.000000 0.00000

3 0.083325 2.166700 5.499950 2.166700 0.083325 0.00000

4 0.000000 0.083325 2.166700 5.499950 2.083375 0.16665

5 0.000000 0.000000 0.083325 2.083375 3.333250 1.15005

6 0.000000 0.000000 0.000000 0.166650 1.150050 2.53330

>

> ### (X^T)X matrix for degree s B-spline

>

> X = bs(x,degree=3,knots=1:4)

> t(X)%*%X

1 2 3 4 5 6 7

1 2.214053125 1.562530833 0.345235417 0.002976875 0.000000000 0.000000000 0.0000000

2 1.562530833 3.267869931 2.246027917 0.237102986 0.001984583 0.000000000 0.0000000

3 0.345235417 2.246027917 4.793658333 2.363090972 0.237102986 0.002976875 0.0000000

4 0.002976875 0.237102986 2.363090972 4.793658333 2.246027917 0.345235417 0.0119075

5 0.000000000 0.001984583 0.237102986 2.246027917 3.267869931 1.562530833 0.1844837

6 0.000000000 0.000000000 0.002976875 0.345235417 1.562530833 2.214053125 0.8502038

7 0.000000000 0.000000000 0.000000000 0.011907500 0.184483750 0.850203750 1.9784050

>

19.4 Postscript

We have already discussed in some detail how basis function models are supported in R. Fur-
ther examples are given in demonstration software files NONLINEAR-MODELS-POLYNOMIAL.R and
NONLINEAR-MODELS-SPLINES.R, with more exercises in Chapter 30. An excellent specialized treat-
ment of this topic is offered in Ramsay et al. (2009).

One limitation of the material in this chapter is that it only anticipates one predictor variable,
which precludes the development of more complex predictive models. However, a class of models
known as general additive models extends spline regression models to multivariate models, allowing
splines built from distinct predictor variables to be used additively in a single linear model (Hastie
and Tibshirani, 1990). This model is implemented in the R package gam, which is introduced in
demonstration software file NONLINEAR-MODELS-SPLINES.R

In general the topics in this chapter are discussed in James et al. (2013) or Friedman et al.
(2001).

232 CHAPTER 19. BASIS FUNCTIONS AND PREDICTOR SPACES

0 2 4 6 8 10

0
.0

0
.4

0
.8

x

B
a

s
is

 F
u

n
c
ti
o

n
s

Degree 1 spline

0 2 4 6 8 10

0
.0

0
.4

0
.8

x

B
a

s
is

 F
u

n
c
ti
o

n
s

Degree 2 spline

0 2 4 6 8 10

0
.0

0
.4

0
.8

x

B
a

s
is

 F
u

n
c
ti
o

n
s

Degree 3 spline

Figure 19.5: B-splines of degree 1,2 and 3 (Section 19.3.6).

Chapter 20

Bayesian Network Models

Bayesian network models are a widely used means of modeling causal relationships using observa-
tional data. It does this by constructing a coherent system of conditional independence constraints
among any number of random variables. It is described as a type of graphical model because the
set of conditional independence constraints is explicitly represented by a class of graphs known
as directed acyclic graphs (DAGs). Thus, a Bayesian network is formally a joint distribution
g(x1, . . . , xn) on random variables X1, . . . , Xn which satisfies conditional independence constraints
imposed by a DAG G.

Much of the theoretical foundation of Bayesian networks was formulated by Judea Pearl (Pearl,
1985, 1986b,a; Pearl et al., 1989; Pearl, 2014). In addition, comprehensive treatments of graphical
models can be found in, for example, Lauritzen (1996), Cowell et al. (2006) or Koller and Friedman
(2009). A more informal discussion which emphasizes applications in the R statistical computing
environment is offered in Højsgaard et al. (2012) or Nagarajan et al. (2013). The R package bnlearn
is a remarkably comprehensive collection of functions and utilities supporting Bayesian network
modeling, and is a highly recommended resource for the study of this topic (Scutari, 2010).

20.1 Basic Graph Theory

The study of Bayesian networks requires a familiarity with some basic concepts of graph theory.
We first motivate the use of graphs by an example.

Example 20.1. Suppose an individual visits a hospital. It is conceivable that this affects the
probability that this individual will miss work the following day. We may isolate a relevant set
of events or states-of-nature which have some bearing on the matter, and represent them by the
following variables:

X1 = V isits Hospital

X2 = Exposure to Bacteria

X3 = Immunity to Bacteria

X4 = Acquires Infection

X5 = Resistance to Antibiotics

X6 = Misses Work.

233

234 CHAPTER 20. BAYESIAN NETWORK MODELS

We leave as an open question the variable types of X1, . . . , X6. They may be categorical, binary
(TRUE/FALSE), quantitative, or some combination of these. For example, X1 or X6 could simply
be TRUE if the individual visits the hospital, or misses work, respectively. However, in a more
refined model X1 might be a quantitative variable equal to the length of the visit, or X6 might be
a probability of missing work. As will be seen, in general graphical modeling admits considerable
flexibility on this question.

However, the first step in understanding graphical models and causality is in understanding
the forms of dependence between X1, . . . , X6. In the present example, this dependence is induced
by a natural cause and effect sequence. For example, Visits Hospital precedes Exposure to

Bacteria, since in this model we are interested in exposures which are caused by the hospital
visit (and which could not have taken place otherwise). Similarly, Acquires Infection precedes
Misses Work, since it would be a cause of missing work.

It seems a simple matter, then, to represent our model graphically by assigning a node to each
variable, and to draw a directed edge (or an arrow) between nodes with a causal relationship, with
the arrow orientation signifying the causal relationship directionally. This is shown in Figure 20.1.

Visits
Hospital

[X1]

Exposure to
Bacteria

[X2]

Immunity to
Bacteria

[X3]

Acquires
Infection

[X4]

Resistance to
Antibiotics

[X5]

Misses
Work
[X6]

Figure 20.1: Graphical representation of hospital visit (Example 20.1).

20.1.1 Mathematical definition of a graph

We now give the mathematical definition of a graph, and introduce some terminology to be used
throughout these notes.

Definition 20.1 (Definition of a Graph and its Components). Formally, a graph is a pair G =
(V,E), where V is a set of nodes or vertices, and E is a set of edges, or pairs of nodes. The pairs
may be ordered (resulting in a directed edge) or unordered (resulting in an undirected edge). Nodes

20.1. BASIC GRAPH THEORY 235

are usually labeled , in which case they are considered to be distinguishable. A directed (undirected)
graph contains only directed (undirected) edges. The theory of Bayesian networks is sometimes
concerned with graphs that contain both kinds of edges (an example of this is given in Figure
20.11). The graph of Figure 20.1 is a directed graph.

We then introduce the following terminology:

• A subgraph of G = (V,E) is any graph G′ = (V ′, E′) such that V ′ is a nonempty subset of V ,
and E′ is a subset of E containing only edges which join nodes in V ′.

• A directed edge points from a parent to a child .

• In any graph, a path is a sequence of edges which join a sequence of nodes, which, except
possibly for the first and last, are distinct. These nodes may be considered to be a component
of the path. If a and b are the first and last nodes of the sequence, we say the path joins a
and b, or is a path between a and b.

• In a directed path consecutive nodes (left-to-right) form parent/child pairs, and the edges are
those which define that relationship. An example from Figure 20.1 is X3 → X4 → X6. In
contrast, X4 → X6 ← X5 is not a directed path, since X6 is not a parent of X5. If a and b
are the first and last nodes of a directed path, we say the path is from a to b, or joins a to b.

• In an undirected path, or arc, the edges may be in either direction. A directed path is also an
arc. From Figure 20.1, X4 → X6 ← X5 is an arc.

• A directed path joins an ancestor to a descendant .

• A node with no parent is a founder or source. A node with no children is a terminal node
or sink . The in-degree of a node is the number of parents, and the out-degree of a node is
the number of children. A node is a founder if and only if it has in-degree 0. A node is a
terminal node if and only if it has out-degree 0.

• Let Pj be the set of parents of node j. If node j is a founder, it has no parents, which which
case we write Pj = {} = ∅. Similarly, let Cj be the set of children of node j. If node j has
no children we may write Cj = {} = ∅. Finally, let Dj be the set of all descendants of node j
(this does not include node j itself). If node j has no descendants we may write Dj = {} = ∅.
(∅ is the conventional symbol for an empty set.)

• A path is a cycle if the first and last node are the same, with all other nodes appearing at
most once. A cycle is either directed or undirected according to the path defining it.

• A directed acyclic graph (DAG) is a directed graph that contains no directed cycle (it may
contain an undirected cycle). A DAG must contain at least one source and one sink. Figure
20.1 is a DAG.

Note that the theory of Bayesian networks is primarily concerned with graphs consisting of nodes
labeled with random variables. It will be convenient, therefore, to sometimes refer to the nodes by
their random variable labels. Any indices can refer to both a node and to its labeling random
variable. For example, random variable X3 will label a node with index 3. We might then refer to
“node X3”, or node j = 3. Alternatively, nodes may be labeled with standard variable symbols, such
as a, b and c.

Example 20.2. The following is a partial list of the relationships given in Figure 20.1:

236 CHAPTER 20. BAYESIAN NETWORK MODELS

• Nodes X1, X3, X5 are founders.

• X5 is a parent of X6; X6 is a child of X5.

• X1 is an ancestor of X4; X6 is a descendant X2.

In addition we have the parent sets

P1 = {}, P2 = {X1}, P3 = {}, P4 = {X2, X3}, P5 = {} and P6 = {X4, X5},

and child sets

C1 = {X2}, C2 = {X4}, C3 = {X4}, C4 = {X6}, C5 = {X6} and C6 = {}.

20.1.2 Sequential structure and causality - The directed acyclic graph (DAG)

If an arrow denotes causality, as it seems to do, and if in Example 20.1 a visit to a hospital may
cause one to miss work, why is there no edge joining node Visits Hospital [X1] to node Misses

Work [X6]? Put another way, why is node X6 not a child of node X1, if a causal relationship clearly
exists? This is because a parent-child relationship is not the only means of expressing causality.
Note that X6 is a descendant of X1, which also implies causality. However, the dependence of node
X6 on node X1 relies on at least one other intervening node. This is known as transitive causality .

Distinguishing between transitive and direct causality is a crucial part of causal modeling and
inference.Visits

Hospital
[X1]

Exposure to
Bacteria

[X2]

Immunity to
Bacteria

[X3]

Acquires
Infection

[X4]

Resistance to
Antibiotics

[X5]

Misses
Work
[X6]

Figure 20.2: Section of Figure 20.1 (parallel sequences).

A DAG represents not just a single sequential process, but possibly several parallel sequential
processes, which are only partially synchronized (Figure 20.2). Regarding Example 20.1 and Figure
20.1 we make the following observations:

20.1. BASIC GRAPH THEORY 237

• We can, at least conceptually, assign a time Tj to each node j, representing the first time Xj

is observable. Even without knowing their exact values, they can, to some degree, be ordered.

• In particular, we can claim the following:

T1 < T2 < T4 < T6 and T3 < T4 and T5 < T6.

• However, the times Ti are only partially ordered . Informally this means: (1) we cannot have
both Ti < Tj and Ti > Tj ; and (2) the orderings are transitive, so that if Ti < Tj and Tj < Tk,
we must also have Ti < Tk.

• For example, we can say that the statements T4 < T6 and T5 < T6 are true, but we cannot
say whether T4 < T5 or T5 < T4 is true.

The role played by founders

Note that T6 is the time at which it can be established that “work is missed”. This time can,
at least in principle, be precisely identified. On the other hand, the presence, or absence, of a
resistance to antibiotics (node X5) is more of a fixed state-of-nature. What is important to the
model is the identity of this state prior to T6. So T5 can be interpreted as any point of time at
or before which the state might be relevant to the outcome. In particular, T5 < T6. In this case,
T5 cannot be precisely identified, but it is still subject to ordering, which is all that is needed to
ensure that this component of the model is positioned coherently. Such nodes, which represent
states-of-nature, tend to appear in Bayesian networks as founders.

It is useful to see a graph formed by a pedigree as an example of a DAG (Figure 20.3). The
conventional terms parent, child, ancestor and descendant used for DAGs conform to their intuitive
meanings with respect to a pedigree.

Figure 20.3: A pedigree graph is a DAG.

238 CHAPTER 20. BAYESIAN NETWORK MODELS

Definition 20.2. A topological ordering of a DAG is an ordering of the nodes with the following
property: If node a is a parent of node b, then a precedes b in the topological ordering. (In some
definitions of a topological ordering the ordering may be reversed.)

Example 20.3. For the DAG of Figure 20.1, the following is a topological ordering:

X1, X2, X3, X4, X5, X6.

However,
X3, X5, X1, X2, X4, X6

is also a topological ordering of the same DAG. In general, topological orderings are not unique.

Example 20.4. Describe the type of DAG for which (a) the topological ordering is unique; (b) all
node orderings are topological orderings.

(a) A DAG can consist of a single directed path from a founder to a terminal node (an example
is given in Figure 20.6). The topological ordering of such a DAG is unique.

(b) At the other extreme, a DAG defined on nodes V may possess no edges. In this case, all node
orderings satisfy the definition of a topological ordering.

Example 20.5. For a pedigree, a topological ordering is easily created by ordering the nodes in
decreasing order of the age of the individuals represented by the nodes.

20.2 Conditional Independence

For Bayesian networks, and other causal models based on observational data, causality is a conse-
quence of conditional independence. To introduce the idea, we will review the Markov chain model,
since it embodies a simplified form of the type of causality captured by a Bayesian network.

20.2.1 The Markov chain model

The probabilistic structure of the Bayesian network can perhaps be made clear by comparison to a
Markov chain (which, as we will see, is actually a an example of a Bayesian network). Recall that
a Markov chain is sequence of random variables Z1, Z2, Z3, . . . possessing the memoryless property :

P (Zn = an | Zn−1 = an−1, Zn−2 = an−2, . . . , Z1 = a1)

= P (Zn = an | Zn−1 = an−1). (20.1)

The process Z1, Z2, Z3, . . . is usually understood to unfold in time, so that Z3 cannot be observed
until Z2 is observed, which cannot be observed until Z1 is observed. Note that in some definitions
of a Markov chain Zi assumes a value from a discrete set, but the distinction is not important here.
See Ross (2014) (introductory) or Ross (1996) (more advanced) for excellent introductions to this
topic.

20.2. CONDITIONAL INDEPENDENCE 239

Prediction Problem

Suppose we wanted to predict the value of Zn, assuming that all previous historyHn−1 = (Z1, . . . , Zn−1)
is available. In particular, we want to develop some function ofHn−1, say S, such that S(Z1, . . . , Zn−1) ≈
Zn in some appropriate sense. The prediction will be statistical, and therefore include stochastic
error. The best we can do is to make use of the distribution of our target Zn conditional on all
available information, which is in this case Hn−1. This distribution is P (Zn | Hn−1), which is
equivalent to the left side of Equation (20.1).

However, because of the memoryless property, expressed mathematically as Equation (20.1), all
information in the historyHn−1 which can be used to predict Zn is contained in the observation Zn−1

alone. So the prediction can be based on the simpler distribution P (Zn | Zn−1) = P (Zn | Hn−1).
This means we would lose nothing by using a simpler predictor of the form S′(Zn−1) ≈ Zn that
depends only on Zn−1.

Does this mean that Zn is dependent on Zn−1, but independent of all other observations
Zn−2, Zn−3, . . . , Z1? No. It means that Zn is conditionally independent of observations Zn−2, Zn−3, . . . , Z1,
given Zn−1.

This idea will be made precise in the next section.

20.2.2 Formal definition of conditional independence

We now formally define conditional independence.

Definition 20.3. Random events A and B are unconditionally independent , or simply independent ,
if

P (A ∩B) = P (A)P (B).

This condition can be alternatively given by the identity

P (A | B) =
P (A ∩B)

P (B)
= P (A).

This may be written A ⊥⊥ B.

Random events A and B are conditionally independent, given event C, if

P (A ∩B | C) = P (A | C)P (B | C).

This may be written (A ⊥⊥ B) | C.

Random variables X and Y are unconditionally independent, or simply independent, if

FX,Y (x, y) = FX(x)FY (y),

where FX,Y , FX , FY are the joint and marginal cumulative distribution functions (CDF) of X,Y .
This may be written X ⊥⊥ Y .

Random variables X and Y are conditionally independent, given Z, if

FX,Y |Z(x, y | z) = FX|Z(x | z)FY |Z(y | z),

240 CHAPTER 20. BAYESIAN NETWORK MODELS

where FX,Y |Z , FX|Z , FY |Z are the joint and marginal cumulative distribution functions (CDF) of
X,Y conditional on Z = z. This may be written (X ⊥⊥ Y) | Z.

Furthermore, the definition extends to groups of random variables. Let X = {X1, . . . , Xn1},
Y = {Y1, . . . , Yn2} and Z = {Z1, . . . , Zn3} be three groups of random variables, where n1, n2, n3

are three positive integers. Then X and Y are conditionally independent, given Z, if

FX,Y|Z(x1, . . . , xn1 , y1, . . . , yn2 | z1, . . . , zn3)

= FX|Z(x1, . . . , xn1 | z1, . . . , zn3)FY|Z(y1, . . . , yn2 | z1, . . . , zn3),

where FX,Y|Z, FX|Z, FY|Z are the joint and marginal cumulative distribution functions (CDF) of
X,Y conditional on (Z1, . . . , Zn3) = (z1, . . . , zn3). This may be written (X ⊥⊥ Y) | Z.

We also allow Z = {}, that is, n3 = 0. In this case, (X ⊥⊥ Y) | Z implies that X and Y are
unconditionally independent, formally,

FX,Y(x1, . . . , xn1 , y1, . . . , yn2) = FX(x1, . . . , xn1)FY(y1, . . . , yn2),

where FX,Y, FX, FY are the unconditional joint and marginal cumulative distribution functions
(CDF) of X,Y. This may be written (X ⊥⊥ Y) | {}, or simply X ⊥⊥ Y.

We finally note that we may say, for example, that A and B are conditionally independent given
C; or equivalently, that A and B are independent conditional on C (when (A ⊥⊥ B) | C).

We offer a few examples illustrating conditional independence.

Example 20.6. Suppose N is a positive random integer. Once N is observed, it is considered fixed,
then X,Y are sampled independently from a binomial distribution with probability parameter p
and sample size N .

When we say X,Y are independent, once N is considered fixed, we mean (X ⊥⊥ Y) | N . But
if we do not condition on N , X and Y are not independent. Suppose we do not know the value
of N . Then an observation of X gives us some information about N . At the very least, we would
know that N ≥ X. This in turn gives us information about Y . So X and Y are not independent
unless we condition on N .

Example 20.7. A dice is tossed independently three times. Let S1, S2, S3 be the cumulative totals.
For example, if the three outcomes are, in order, 3, 1, 5, then S1 = 3, S2 = 4 and S3 = 9. Clearly,
S1 and S3 are not independent. For example, the reader may verify the counter-example:

P (S3 = 18 | S1 = 6) = 1/36, but

P (S3 = 18 | S1 = 5) = 0.

On the other hand (S1 ⊥⊥ S3) | S2. Once S2 is known, the distribution of S3 will not depend on
the outcome of S1.

20.2. CONDITIONAL INDEPENDENCE 241

20.2.3 Conditional independence and the Bayesian network model

What defines a Bayesian Network? Despite the term graphical model, the graph need not be
the most important object defining the Bayesian network model. It is sometimes helpful to think
of this model primarily as a type of joint distribution g = g(x1, x2, . . . , xn) of random variables
X1, X2, . . . , Xn that satisfies certain constraints imposed by a graph G.

Then what role is played by the graph? A joint distribution g does not define a Bayesian
network unless it satisfies certain constraints. Those constraints are imposed by a graph G (a
DAG, to be precise) which has n nodes labeled by the random variables X1, X2, . . . , Xn. Moreover,
these constraints take the form of conditional independence statements. A DAG, therefore may be
equivalently thought of as a list of conditional independence statements.

Example 20.8. The DAG in Figure 20.4 imposes the indicated list of conditional independence
statements (this list is not exhaustive). The rules governing this will be discussed below.

X2 X3

X1

X5

X4

Figure 20.4: DAG used in Example 20.8. Conditional independence statements generated by the
DAG are shown to the right.

So far, our discussion has been purely descriptive, so the following questions must be answered
next:

Question 1 According to what rules does a DAG such as the one shown in Figure 20.4 generate
a set of conditional independence statements?

Question 2 How can we construct a joint distribution g(x1, x2, . . . , xn) which is constrained to
conform to a specific set of conditional independence statements?

We next discuss in Sections 20.2.4 and 20.2.5 two methods which provide an answer to the first
question. The second question will be answered in Section 20.3.

242 CHAPTER 20. BAYESIAN NETWORK MODELS

20.2.4 Markov blankets

The Markov blanket provides one method by which conditional independence statements are im-
posed by a DAG. The key is in the following definition.

Definition 20.4. Given a DAG G, the Markov blanket of a node j is the union of

(a) The set Pj of all parents of node j;
(b) The set Cj of all children of node j;
(c) The set of all parents of children of node j, other than node j itself.

Denote this set of nodes Bj .

Note that a more general concept of the Markov blanket exists for a broader class of probabilistic
graphical models (see Example 20.14 below). Definition 20.4 gives the definition of a Markov blanket
for Bayesian networks. The definition of a Markov blanket may differ for other types of graphical
models. See, for example, Koller and Friedman (2009).

Conditional Independence Statements [Markov Blankets] The rules for generating the
conditional independence statements for the DAG of Figure 20.4 can now be stated. Let V be the
set of all nodes. Using the notation of Definition 20.4, the conditional independence statements are
then

({Xj} ⊥⊥ V − {Xj} −Bj) | Bj , j = 1, . . . , n. (20.2)

In other words, each node is conditionally independent of all nodes outside its Markov blanket,
given the Markov blanket.

Example 20.9. Suppose a Bayesian network model can be represented graphically as

a→ c→ b.

We can recognize this as a DAG. Furthermore, b has parent c, no children, and shares no children
with another node. The Markov blanket of b is therefore Bb = {c} (Definition 20.4), and the
following conditional independence statement is imposed:

(a ⊥⊥ b) | c.

Clearly, a and b will be dependent, but transiently so, being independent conditionally on c. Given
our understanding of chemical reactions, we might conclude that c, and not a, is the direct cause
of b.

Example 20.10. Consider node X3 of Figure 20.4. The parent set is P3 = {X1}. The child
set is C3 = {X5}. There are no other parent of children in C3. So B3 = {X1, X5}. Then
V = {X1, X2, X3, X4, X5}, so this leads to conditional independence statement

({X3} ⊥⊥ V − {X3} −B3) | B3, equivalent to (X3 ⊥⊥ {X2, X4}) | {X1, X5}.

20.2. CONDITIONAL INDEPENDENCE 243

20.2.5 D-separation

Markov blankets provide an intuitive way of deriving conditional independence statements from a
DAG, and they make clear the connection between Bayesian networks and Markov chains. However,
we will see that they will not exhaust all relevant conditional independence statements. A more
comprehensive method involves the idea of d-separation (Pearl et al., 1989; Koller and Friedman,
2009). The advantage of this method is that it can be used to test whether or not any putative
conditional independence statement (X ⊥⊥ Y) | Z is imposed by the DAG.

Definition 20.5 (D-separation). Suppose a and b are distinct nodes of a DAG. Let L be an arc
between a and b. Then a node v on L is a collider if two edges on L are directed towards it (note
that neither a nor b can be a collider on L). Let C be a subset of nodes. Then the arc L is active
given C if both of the following rules hold:

Rule 1: If z is any collider on L, then either z or one of its descendants is in C.

Rule 2: If z is on L and is not a collider, then it is not in C.

Conversely, we say that an arc between a and b is blocked by C if at least one of the two rules does
not hold (that is, the arc L is not active given C).

Then let A, B, C be three disjoint subsets of nodes. We say C d-separates A and B if there are
no arcs joining any pair of nodes a ∈ A, b ∈ B which are active given C. If C does not d-separate
A and B, then C d-connects A and B.

Conditional Independence Statements [D-separation] The rule for generating conditional
independence statements via d-separation is now simply:

If C d-separates A and B, then (A ⊥⊥ B) | C. (20.3)

Example 20.11. We will repeat Example 20.9 using d-separation. To do this, we need to show
that {c} d-separates {a} and {b}. There is only one arc L from a to b, namely a→ c→ b. This arc
contains a node which is not a collider, but is in {c}. Therefore, by Definition 20.4, L is not active
given {c}, {c} d-separates {a} and {b}, and the conditional independence statement (a ⊥⊥ b) | c is
imposed by the DAG.

Example 20.12. Consider the DAG of Figure 20.1.

(a) Let A = {X6} and B = {X1, X2, X3}. What set of nodes C d-separates A and B? Let
C = {X4}. Every arc from a node in A to a node in B passes through X4. Is X4 a collider?
Although this node has in-degree 2 (two edges are directed to X4), a node is defined as a
collider only with respect to a specific arc. Then it is easily verified that X4 is not a collider
on any arc joining any node in A to any node in B, so Rule 2 of Definition 20.5 is violated,
since X4 ∈ C. Thus, since there are no arcs joining a ∈ A and b ∈ B which are active given C,
we conclude that C d-separates A and B, which imposes conditional independence statement

({X6} ⊥⊥ {X1, X2, X3}) | {X4}.

244 CHAPTER 20. BAYESIAN NETWORK MODELS

(b) Let A = {X5} and B = {X1, X2, X3, X4}. What set of nodes C d-separates A and B? Let
C = {}, the empty set (this is a valid set for this type of analysis). Every arc L from a node
in A to a node in B passes through X6, which will be a collider. But neither X6, nor any of its
descendants, is in C. Thus, since there are no arcs joining a ∈ A and b ∈ B which are active
given C, we conclude that C d-separates A and B, which imposes conditional independence
statement

({X5} ⊥⊥ {X1, X2, X3, X4}) | {},

or, equivalently
{X5} ⊥⊥ {X1, X2, X3, X4}.

Remark 1. There are a few comments regarding Example 20.12 worth making.

• Regarding Example (a), we note that node X4 is a collider on some path (for example,
X1 → X2 → X4 ← X3), but is not a collider on any of the paths joining nodes in A to nodes
in B.

• Regarding Example (b), it is worth drawing attention to the peculiar wording required to
make the argument. The statement

But neither X6, nor any of its descendants, is in C ...

is true because X6 has no descendants, and C does not contain any nodes.

The conditional independence structure imposed by a DAG might sometimes seem complex
and unintuitive. A careful study of the concepts of Markov blankets and d-separation is therefore
needed for a thorough understanding of the Bayesian network model.

Example 20.13. Consider the DAG of Figure 20.5. If we set A = {X1}, B = {X3}, then for what
sets of nodes C does the DAG impose the conditional independence statement (A ⊥⊥ B) | C?

X2X1 X3

X4 X5

Figure 20.5: DAG used in Example 20.13.

20.2. CONDITIONAL INDEPENDENCE 245

(a) First note the child set C1 = {X4}, and the one child of node X1, namely X4, also has parent
X2. By Definition 20.4 the Markov blanket of X1 is therefore B1 = {X2, X4}. This imposes
conditional independence statement

(X1 ⊥⊥ X3) | {X2, X4}.

(b) A similar argument shows that the Markov blanket of X3 is B3 = {X2, X5}, so the DAG also
imposes conditional independence statement

(X1 ⊥⊥ X3) | {X2, X5}.

(c) Then set C = {X4}. Does C d-separate A and B? There is only one arc joining X1 and X3.
There is a collider, X5, which is not in C, and which has no descendants. Therefore, Rule 1 of
Definition 20.5 is violated, the arc is not active given C, and we conclude that C d-separates
A and B. The DAG therefore imposes conditional independence statement

(X1 ⊥⊥ X3) | {X4}.

(d) Next, set C = {X5}. Does C d-separate A and B? Essentially the same argument used to
show that {X4} d-separates A and B can be used to show that {X5} also d-separates A and
B. The DAG therefore imposes conditional independence statement

(X1 ⊥⊥ X3) | {X5}.

(e) Next, set C = {X4, X5}. Does C d-separate A and B? There are two colliders on the arc
joining X1 and X3, and both are in C, so that Rule 1 of Definition 20.5 is satisfied. There is
an additional node on the arc which is not a collider and which is not in C, so that Rule 2
is satisfied. Thus, the arc is active given C, and we conclude that C does not d-separate A
and B. For more on this example, see Example 20.16 below.

(f) Finally, set C = {X2, X4, X5}. Does C d-separate A and B? There is only one arc joining
X1 and X3. Rule 2 of Definition 20.5 is violated, since the arc joining X1 and X3 contains a
node, X2, which is not a collider, but which is in C (although Rule 1 still holds). Thus, the
arc is not active given C, and we conclude that C d-separates A and B. The DAG therefore
imposes conditional independence statement

(X1 ⊥⊥ X3) | {X2, X4, X5}.

Example 20.14 (Relationship of Markov Blankets to D-separation). The Markov blanket can be
defined in terms of d-separation. In particular, following Definition 20.4, it may be shown that Bj is
the minimal set of nodes which d-separates node j from all remaining nodes of a DAG. This means
that the set of all conditional independence statements generated by Markov blankets (Equation
(20.2)) is a strict subset of those generated by d-separation (Equation (20.3)).

See Pearl (1988), as well as Section 2.1.4 of Nagarajan et al. (2013) for a more informal discussion
of Markov blankets.

246 CHAPTER 20. BAYESIAN NETWORK MODELS

20.3 Formal Definition of the Bayesian Network Model

So far, we have discussed how a DAG can imply a collection of conditional independence statements.
The next problem is to develop a method of constructing joint densities for the nodes which conform
to those statements. The theory of Bayesian networks provides a rigorous solution to this problem.
However, it worth considering first how this may be done in an informal but intuitive way. We do
so in the next example.

Example 20.15 (Constructing a Bayesian network). In this example we will attempt to build
directly a model which conforms to the set of conditional independence statements imposed by the
DAG in Figure 20.4. To do this we will follow the graph’s sequential structure. Let ε1, . . . , ε5 be
five independent random variables, of any kind. Consider the following rules:

Rule 1: Node X1 is the “first” node in what appears to be a sequential process. Set

X1 = ε1.

Rule 2: Each of the remaining nodes have exactly one parent, say pj . The rule is simple. Each
node inherits the value of its parent, plus an independent noise term. That is,

Xj = Xpj + εj ,

where pj is the parent of node Xj .

If we apply Rules 1 and 2, we have the following system of linear equations:

X1 = ε1 = ε1

X2 = X1 + ε2 = ε1 + ε2

X3 = X1 + ε3 = ε1 + ε3

X4 = X1 + ε4 = ε1 + ε4

X5 = X3 + ε5 = ε1 + ε3 + ε5.

Does this model satisfy the conditional independence statements listed in Figure 20.4? To
answer this question, remember that when we condition on a random variable, we are regarding its
value as fixed, or constant. We will adopt a notational device to represent this, putting in square
brackets any random variable or expression on which we are conditioning, and which we therefore
wish to regard as fixed. For example, if we condition on X1, we replace X1 in any expression with
[X1], or alternatively, ε1 with [ε1].

(a) Consider the conditional independence statement:

(X2 ⊥⊥ {X3, X4, X5}) | X1. (20.4)

We are conditioning on X1, so write, following the preceding equations:

X2 = [X1] + ε2

X3 = [X1] + ε3

X4 = [X1] + ε4

X5 = X3 + ε5 = [X1] + ε3 + ε5.

20.3. FORMAL DEFINITION OF THE BAYESIAN NETWORK MODEL 247

Once we condition on X1, [X1] is interpreted as a constant. Then X2 depends only on ε2.
The remaining nodes X3, X4, X5 depend exclusively on ε3, ε4, ε5, which are independent of ε2.
So the conditional independence statement of Equation (20.4) holds.

(b) Consider the conditional independence statement:

(X5 ⊥⊥ {X1, X2, X4}) | X3. (20.5)

As in the previous example, write:

X1 = ε1

X2 = ε1 + ε2

X4 = ε1 + ε4

X5 = [X3] + ε5.

Once we condition on X3, [X3] is interpreted as a constant. Then X5 depends only on ε5.
The remaining nodes X1, X2, X4 depend exclusively on ε1, ε2, ε4, which are independent of ε5.
So the conditional independence statement of Equation (20.5) holds.

Example 20.16 (Example 20.13 Continued). We can use the approach of Example 20.15 to un-
derstand why, in Example 20.13, the conditional independence statement (X1 ⊥⊥ X3) | {X4} holds
but (X1 ⊥⊥ X3) | {X4, X5} does not (parts (c) and (e)). Using the two rules of Example 20.15
would give here

X4 = X1 +X2 + ε4,

X5 = X2 +X3 + ε5, (20.6)

where ε4, ε5 are independent random variables associated with nodes 4 and 5. We can express the
joint distribution conditional on {X4, X5} by setting [X4] = s and [X5] = t for two fixed constants
s, t. This imposes the two linear constraints

[X4] = [X1 +X2 + ε4] = s,

[X5] = [X2 +X3 + ε5] = t.

At this point, it is instructive to subtract [X5] from [X4], noting that the term X2 will cancel, which
results in the following constraint:

(X1 + ε4)− (X3 + ε5) = s− t. (20.7)

How can we interpret Equation (20.7)? We can take s− t to be constant, and then interpret (20.7)
as a “noisy” linear constraint on the random variables X1 and X3, with ε4, ε5 playing the role of
“noise”. We lose no generality by making the variance of ε4, ε5 as small as we like, and so we can
accept, approximately, the linear constraint:

X1 −X3 ≈ s− t. (20.8)

248 CHAPTER 20. BAYESIAN NETWORK MODELS

It is easily verified that two independent random variables are no longer independent when condi-
tioned on a constraint such as Equation (20.8).

On the other hand, the conditional independence statement (X1 ⊥⊥ X3) | {X4} holds, since X3

does not appear in the constructive definition of X1 or X4 (Equation (20.6)).

Example 20.15 suggests that the construction of a joint distribution which conforms to the
conditional independence statements imposed by a DAG largely involves mimicking its flow in
some say. In the next section, we will see that this is the case.

20.3.1 Factorization and the local and global Markov properties

Recall that any joint density of random variables X1, . . . , Xn can be decomposed in the following
way:

g(x1, xn+2, . . . , xn) = g(xn | xn−1, . . . , x1)× g(xn−1, . . . , x1)

= g(xn | xn−1, . . . , x1)× g(xn−1 | xn−2, . . . , x1)× g(xn−2, . . . , x1)

=

n−1∏
j=1

g(xn−j+1 | xn−j , . . . , x1)

× g(x1).

This is referred to as the chain rule. This expression simplifies considerably for a Markov chain,
since by the memoryless property we have

g(xj | xj−1, . . . , x1) = g(xj | xj−1),

and so we have the much simpler form

g(x1, xn+2, . . . , xn) =

n−1∏
j=1

g(xn−j+1 | xn−j)

× g(x1). (20.9)

This type of simplification also occurs for a Bayesian network, which will be built from condi-
tional densities of the form g(xj | Pj), interpretable as the distribution of node Xj conditional on
that node’s parents.

Example 20.17. For the DAG in Figure 20.1 the conditional distribution

g(x6 | P6) = g(x6 | x4, x5)

will play an important role. It would give, for example, the probability of missing work for an
individual who has acquired an infection, and has resistance to antibiotics.

Example 20.18 (Founders). Founders are an important special case. Suppose X1 is a founder.
Then P1 = {}, and we have

g(x1 | P1) = g(x1 | {}) = g(x1).

Here we are interpreting the distribution of a random variable conditional on an empty collection
of random variables as the unconditional distribution. It turns out that this convention may be
applied generally.

20.3. FORMAL DEFINITION OF THE BAYESIAN NETWORK MODEL 249

X2 Xn-1X1 Xn

Figure 20.6: DAG representation of a Markov Chain.

A Markov chain (of a finite number of transitions) is also a Bayesian network, representable by
the DAG shown in Figure 20.6. Then note that Equation (20.9), which gives the joint distribution
of a Markov chain, can be rewritten using the parent sets:

g(x1, xn+2, . . . , xn) =

n∏
j=1

g(xj | Pj), (20.10)

noting that the term g(x1) appearing in Equation (20.9) is represented in Equation (20.10) as

g(x1 | P1) = g(x1 | {}) = g(x1),

since X1 is a founder in the representational DAG of Figure 20.6.

At this point, we have enough to formally define a Bayesian network supported by a rigor-
ous mathematical foundation. We first define the method by which Bayesian networks may be
constructed.

Definition 20.6 (Factorization over a DAG). Let X = (X1, . . . , Xn) be n random variables which
label n nodes of a DAG, say G = (V,E). We say a joint distribution g on X can be factorized over
G if it may be expressed in the following way:

g(x1, x2, . . . , xn) =

n∏
j=1

g(xj | Pj), (20.11)

where Pj is the parent set of node Xj according to the DAG G.

The essential point of the theory of Bayesian networks is that a distribution which factorizes
over a DAG G also satisfies the conditional independence statements imposed by G. This idea can
be expressed using the local and global Markov properties.

Definition 20.7 (Local and Global Markov Properties). Let X = (X1, . . . , Xn) be n random
variables which label n nodes of a DAG, say G = (V,E).

We say a joint distribution g on X satisfies the local Markov property with respect to G if it
satisfies all conditional independence statements of the form:

(Xj ⊥⊥ Dc
j − {Xj}) | Pj , j = 1, . . . , n, (20.12)

250 CHAPTER 20. BAYESIAN NETWORK MODELS

where Pj is the set of all parents of node j, and Dc
j −{Xj} is the set of all non-descendants of node

j, excluding node j itself.
We say a joint distribution g on X satisfies the global Markov property with respect to G if it

satisfies all conditional independence statements of the form:

(X ⊥⊥ Y) | Z, (20.13)

where X,Y,Z are disjoint sets of node labels such that X and Y are nonempty, and X and Y are
d-separated by Z.

Remark 2. Note that in the conditional independence statement of Equation (20.12), the set
Dc
j includes the parents Pj of node j. This is not a contradiction. When we condition on the

random variables in Pj , they become constant in the resulting distribution. Formally, a constant
is independent of any other random variable (similarly, for two events A,B, if P (A) = 1, then
P (AB) = P (B) = 1× P (B) = P (A)P (B)).

However, for this reason some texts express the conditional independence statement (20.12) in
the equivalent form

(Xj ⊥⊥ Dc
j − {Xj} − Pj) | Pj , j = 1, . . . , n,

for greater clarity.

Example 20.19 (The Global Property Implies the Local Property). A good question to ask at
this point might be why both the local and global Markov properties are needed. We will discuss
this later in this section, but we first show that the global property implies the local property, or
equivalently, that a conditional independence statement of the form (20.12) is simply a special case
of the class of conditional independence statements of the form (20.13) (compare this to Example
20.14).

In turn, this may be shown by verifying that a node j is d-separated from any non-parental,
non-descendant k by the parent set Pj . Clearly, any arc L joining nodes j and k must pass though
a node from the parent set Pj . Therefore, if Pj = {}, then there are no arcs joining j and k, in
particular, there are no active arcs joining j and k, so by Definition 20.5 j and k are d-separated
by Pj .

Next, assume that Pj is not empty. Suppose node z ∈ Pj is on L. The edge joining z and
j points to j, so z cannot be a collider on L. Rule 2 of Definition 20.5 is violated, so L is not
active given Pj . This is true of all arcs joining nodes j and k, so we may conclude that j and k are
d-separated by Pj .

The global Markov property (Definition 20.7) and the factorization property (Definition 20.6)
are shown to be equivalent (with an important caveat) in the following theorem:

Theorem 20.1 (Factorization Theorem). Let X = (X1, . . . , Xn) be n random variables which
label n nodes of a DAG, say G = (V,E). Let g be the joint distribution of X. Then

(i) The following three statements are equivalent:

(A) The distribution g can be factorized over G (Definition 20.6);
(B) The distribution g satisfies the local Markov property with respect to G (Definition

20.7);

20.3. FORMAL DEFINITION OF THE BAYESIAN NETWORK MODEL 251

(C) The distribution g satisfies the global Markov property with respect to G (Definition
20.7).

(ii) Suppose X,Y,Z are disjoint sets of node labels such that X and Y are not d-separated by
Z, with respect to G. Then there exists a distribution which factorizes over G, but for which
the conditional independence statement (X ⊥⊥ Y) | Z does not hold.

Remark 3. Theorem 20.1 follows from, for example, Theorems 3.1-3.4 of Koller and Friedman
(2009) or Theorem 5.14 of Cowell et al. (2006).

Remark 4. We consider the importance of Part (ii) of Theorem 20.1. Example 20.19 makes clear
that the conditional independence statements of Equation (20.12) enumerated by the local Markov
property are a strict subset of those enumerated by the global Markov property (Equation (20.13)).

However, both the local and global Markov properties suffice to characterize a joint distribu-
tion g which can be factorized over G, as stated by Part (i) of Theorem 20.1. Each formulation
has its advantages. The local Markov property is the simpler, more intuitive and more compact
representation, which has obvious advantages in mathematical analysis.

On the other hand, the global Markov property comes closer to defining an exhaustive list of
conditional independence statements needed to characterize the Bayesian network. However, the
strongest possible statement of this equivalence does not hold. In particular, it is not true that
if g factorizes over G, it follows that (X ⊥⊥ Y) | Z holds if and only if Z d-separates X and Y.
A counter-example is easy to construct. If all node labels X1, . . . , Xn are mutually independent,
then all possible conditional independence statements are satisfied by g, yet g will factorize over
any DAG G.

The wording of Part (ii) of Theorem 20.1 needs to be carefully considered. Assume g factorizes
over G. If Z d-separates X and Y, then (X ⊥⊥ Y) | Z must hold. If Z does not d-separates X
and Y, then (X ⊥⊥ Y) | Z may hold, but there will be some g′ which factorizes over G for which
(X ⊥⊥ Y) | Z does not hold. In other words, Z d-separates X and Y if and only if (X ⊥⊥ Y) | Z
holds for all g which factorize over G.

This formally defines the Bayesian network model:

Definition 20.8 (Bayesian Network). Given a set of nodes V = {1, . . . , n} labeled by random
variables X1, . . . , Xn, a Bayesian network is a pair (G, g), where G is a DAG defined on nodes V ,
Pj is the parent set of node j with respect to G, and g = g(x1, x2, . . . , xn) is a joint density for the
random variable labels which factors according to Equation (20.11).

In this case, g satisfies the local and global Markov properties of Definition 20.7.

The mathematical justification for Definition 20.8 is described in, for example, Pearl et al.
(1989) and is summarized by Theorem 20.1 above.

20.3.2 Parametric models and estimation

The inference of Bayesian networks can be decomposed into subproblems of one of two types:

Problem 1: Estimation of DAG G;

252 CHAPTER 20. BAYESIAN NETWORK MODELS

Problem 2: Estimation of the conditional distributions g(xi | Pj), j = 1, . . . , n, which define the
factorization of Equation (20.11).

From the point of view of statistical theory, Problem 1 concerns the inference of conditional
independence statements (those imposed by G). This is, in fact, a well defined inference problem.
Tests for conditional independence have been proposed as early as 1924 by R. A. Fisher (Fisher,
1924).

Problem 2 concerns the form of the conditional distributions g(xj | Pj), which describe the
probabilistic relationships implied by the edges. So far, we have been primarily concerned with the
DAG G. This is entirely appropriate, since it is the DAG that gives the Bayesian network model
its distinguishing properties. However, the conditional distributions g(xj | Pj) will usually depend
on unknown parameters which must be estimated using the same data used to estimate G. This
is a significant estimation problem, which will be discussed in future chapters. For now, the next
example will give a sense of what this involves.

X2X1 X3

X4

Figure 20.7: DAG used in Example 20.20 (Gaussian Bayesian network).

Example 20.20 (Gaussian Bayesian Networks). In a Bayesian network model, the form of the con-
ditional distributions g(xj | Pj) of Equation (20.11) will depend on the properties of the random
variables X1, . . . , Xn used to label the nodes of the DAG G. These may be continuous, discrete, or
some combination of the two. When all Xi are approximately normally distributed (perhaps after
a logarithmic transformation), a Gaussian Bayesian network is commonly used, and (X1, . . . , Xn)
becomes a multivariate normal random vector constrained by the conditional independence state-
ments imposed by G.

One significant advantage of the Bayesian network model is that it simplifies the construction
of joint densities of potentially very high dimension (see also Example 20.21 below). Consider the
DAG in Figure 20.7. Suppose X1, X2, X3, X4 are normally distributed. We saw in Example 20.15
how the conditional independence statements imposed by a DAG can be captured by the simple
device of building a functional relationship between a node Xj and its parents Pj . In that example
each node had no more than one parent, but the method is much the same when this is not the

20.3. FORMAL DEFINITION OF THE BAYESIAN NETWORK MODEL 253

case. For example, for the DAG in Figure 20.7 this relationship could be expressed

X4 = β0 + β1X1 + β2X2 + β3X3 + ε4, (20.14)

where ε4 is an independent normal random variable with mean zero; and β0, . . . , β3 are constant
but unknown coefficients to be estimated using the available data. Equation (20.14) can be recog-
nized as a multiple linear regression model with dependent variable X4 and independent variables
X1, X2, X3. This means the coefficients βj can be estimated using any conventional statistical
software. Furthermore, this procedure remains the same when the DAG is a subgraph of a larger
graph in which X4 retains the same parent set P4 = {X1, X2, X3}.

We next introduce another type of Bayesian network model which will be discussed in later
chapters.

Example 20.21 (Dependence Trees). It is worth noting a type of precursor of the Bayesian network
described in Chow and Liu (1968), referred to as a dependence tree. It has the same type of
conditional independence structure as a Bayesian network, but this is expressed using a spanning
tree, which is an undirected graph in which all nodes are connected by a path, but which contains
no cycles. It may be shown that a dependence tree is equivalent to a Bayesian network associated
with a DAG in which no node has more than one parent. We will see in later chapters that this
constraint results in considerable computational efficiency.

20.3.3 Model identifiability

So far, we have seen:

(1) Various methods of determining conditional independence statements imposed by a DAG
(Markov blankets and d-separation);

(2) A method of constructing a joint distribution on the nodes of a DAG which conforms to those
conditional independence statements (the Factorization Theorem).

Clearly, there is a very important third step. The motivation for using graphical models is typically
the insight into a process offered by the graph. But we have claimed that the Bayesian network
model may not be able to identify a single graph as correct. It is important to emphasis that we
are not referring to the statistical error inevitable in any inference. We are referring to something
more fundamental.

Definition 20.9 (Identifiability and Consistency). Suppose we are given a class of putative models
indexed by Θ. For each θ ∈ Θ there exists a distribution gθ for a random vector X. Let d(θ1, θ2) ≥ 0
be a distance function on Θ, such that d(θ1, θ2) = 0 if and only if θ1 = θ2. Suppose θ∗ is the true
model, and let X1,X2, . . . be an unbounded sample from distribution gθ∗ . We say the model
is identifiable if there exists a sequence of estimators θ̂n = θ̂n(X1, . . . , Xn), n ≥ 1, such that
limn→∞ P (d(θ̂n, θ

∗) < ε) = 0 for all ε > 0 and θ∗ ∈ Θ. We then say such an estimator is consistent .

The reader may wish to consult a good introduction to the theory of statistical inference for
more on the concept of consistency, for example Hogg et al. (2018) or Casella and Berger (2002).

In our case Θ would be the class of Bayesian network models on a given set of nodes. A
parameter θ ∈ Θ might specify the DAG G, but also additional parameters (which we will call

254 CHAPTER 20. BAYESIAN NETWORK MODELS

auxiliary parameters) defining the conditional distributions used in the factorized distribution of
Equation (20.11) (see Example 20.20).

To understand the issue of identifiability as it relates to Bayesian networks, two facts are crucial:

(1) Conditional independence statements can be consistently tested, and conditional distributions
g(xj | Pj) can be consistently estimated;

(2) However, the totality of conditional independence statements imposed by a DAG do not
uniquely determine that DAG.

Thus, the lack of identifiability of the DAG G in a Bayesian network model is not related to the
issue of consistency, and so can not be overcome with a large enough sample size. The conditional
distributions g(xi | Pj) and the conditional independence statements can be consistently estimated.
Thus, the entire joint distribution g defining a Bayesian network (G, g) can be consistently esti-
mated. The issue is that multiple DAGs may impose exactly the same conditional independence
statements. These, in turn, will lead to equivalent factorizations (Equation (20.11)), although this
may not be readily apparent.

To make this idea precise, we need the concept of equivalence classes, which we discuss next.

20.4 Equivalence Classes

Suppose for a Bayesian network model with nodes a, b, c we consider six possible hypotheses:

a→ b→ c

a→ c→ b

b→ a→ c

b→ c→ a

c→ a→ b

c→ b→ a.

It was claimed in that example that a Bayesian network model (G, g) would be able to reduce the
number of hypotheses from six to two (by identifying the middle agent), but would not be able to
resolve those final two. For example, if c was identified as the middle agent, we would still be left
with the problem of resolving the remaining hypotheses:

a→ c→ b

b→ c→ a.

Clearly, we need to understand to what degree the Bayesian network model is able to resolve
multiple hypotheses concerning G. The notion of equivalence classes is central to this problem.

Question Suppose we can consistently estimate all conditional independence statements and
auxiliary parameters. Does this imply that the Bayesian network model is identifiable?

Answer The density of the Bayesian network given in Equation (20.11) of the Factorization
Theorem can be consistently estimated. But because multiple DAGs can impose the same set of
conditional independence statements, the underlying DAG itself is not in general identifiable.

20.4. EQUIVALENCE CLASSES 255

It is worth examining this question in detail for a few specific models.

DAG 2

X1

DAG 1

X1X2 X2

Figure 20.8: Examples of DAGs (two nodes and one edge).

Example 20.22. To explore this issue, it helps to start with the simplest Bayesian network model
that still retains some interesting structure. If we apply the Factorization Theorem, the joint
density for (X1, X2) imposed by DAG 1 of Figure 20.8 would be, using Equation (20.11),

g(x1, x2) = g(x1 | P1)g(x2 | P2)

= g(x1 | {})g(x2 | x1)

= g(x1)g(x2 | x1)

= g(x1, x2).

What do we conclude from this? That any joint distribution on (X1, X2) is compatible with DAG

1. If we repeat the exercise for DAG 2 of Figure 20.8, we similarly have

g(x1, x2) = g(x1 | P1)g(x2 | P2)

= g(x1 | x2)g(x2 | {})
= g(x1 | x2)g(x2)

= g(x1, x2).

The structure is the same as for DAG 1. Either model admits any form of dependence between X1

and X2, and are therefore not distinguishable.

Clearly, we need to examine a more complex model to discern any variety of causal structure,
and we only need to add one more node to do so.

Example 20.23. If we apply the Factorization Theorem to DAG 1 of Figure 20.9 we have a joint
distribution for (X1, X2, X3) of the form

g(x1, x2, x3) = g(x1 | P1)g(x2 | P2)g(x3 | P3)

= g(x1 | x2)g(x2 | {})g(x3 | x2)

= g(x1 | x2)g(x2)g(x3 | x2). (20.15)

256 CHAPTER 20. BAYESIAN NETWORK MODELS

X2DAG 1 DAG 2

DAG 3 DAG 4

X2

X2X2

X1 X3 X1 X3

X1 X3 X1 X3

Figure 20.9: Examples of DAGs (three nodes and two edges).

If we divide this expression by g(x2) we have the equivalent expression:

g(x1, x2, x3)

g(x2)
= g(x1, x3 | x2) = g(x1 | x2)g(x3 | x2). (20.16)

It is not hard to verify that when this expression is compared to Definition 20.3 (of conditional
independence) we may claim

(X1 ⊥⊥ X3) | X2. (20.17)

We can reach the same conclusion by determining the Markov blanket of node X1. For DAG 1

we have P1 = {X2}, C1 = {}, and node X1 shares no children with other parents (Definition 20.4).
The Markov blanket for node X1 is therefore B1 = {X2}, so that DAG 1 imposes the conditional
independence statement

(X1 ⊥⊥ X3) | X2,

which conforms to the same conclusion implied by the Factorization Theorem via Equation (20.16).

The structure of DAG 2 and DAG 3 is essentially the same as for DAG 1. The reader can verify
that the Markov blanket for X1 is also B1 = {X2} for both, and a complete analysis would reveal
that the conditional independence structure is exactly the same for DAG 1, DAG 2 and DAG 3. In
other words, we could not distinguish between them using observational data.

This leaves DAG 4. If we construct the joint distribution for (X1, X2, X3) using the Factorization

20.4. EQUIVALENCE CLASSES 257

Theorem we obtain the form:

g(x1, x2, x3) = g(x1 | P1)g(x2 | P2)g(x3 | P3)

= g(x1 | {})g(x2 | x1, x3)g(x3 | {})
= g(x1)g(x2 | x1, x3)g(x3). (20.18)

How is this related to the conditional independence statements imposed by DAG 4? We will first
determine the Markov blanket for X1, as we did for DAG 1, DAG 2 and DAG 3. Here, we have
P1 = {} and C1 = {X2}. However, recall from Definition 20.4 that a Markov blanket of a node j
includes

The set of all parents of children of node j, excluding node j.

X2 is a child of X1, X3 is a parent of X2, therefore X3 is included in the Markov blanket of X1,
which is therefore B1 = {X2, X3}. This differs from the Markov blanket of X1 in DAG 1, DAG 2

and DAG 3 (B1 = {X2}), so we cannot use Markov blankets to test whether or not DAG 4 imposes
the conditional independence statement (X1 ⊥⊥ X3) | X2 given in (20.17).

Fortunately, we can use d-separation to resolve the matter. In particular, we need to determine
whether or not the node subset C = {X2} d-separates X1 and X3. There is only one arc joining X1

and X3, namely X1 → X2 ← X3. Furthermore, on this arc X2 is a collider, and is also contained in
C. In addition, there are no other nodes on the arc which are not colliders (other than X1 and X3),
so both Rule 1 and Rule 2 of Definition 20.5 hold, and the arc is active given C. This means X2

d-connects X1 and X3, meaning that X2 does not d-separate X1 and X3. So, we may conclude that
DAG 4 does not impose the conditional independence statement (X1 ⊥⊥ X3) | X2given in (20.17).

It is worth asking how the factorization of Equation (20.18) for DAG 4 compares to that of
Equation (20.15), which will hold for DAG 1, DAG 2 and DAG 3. Note than any density for three
variables may be decomposed as

g(x1, x2, x3) = g(x2 | x1, x3)g(x1, x3).

Therefore, the characteristic constraint imposed by the factorization of Equation (20.18) is precisely
that

g(x1, x3) = g(x1)g(x3), (20.19)

or, equivalently, that X1 and X3 are independent. Is this constraint imposed by DAG 4? Recall
from the definition of conditional independence (Definition 20.3) that independence conditional on
an empty set is equivalent to unconditional independence, which is implied for X1, X3 by Equation
(20.19). Then DAG 4 imposes this constraint if X1 and X3 are d-separated by the empty set C = {}.
As already noted, there is one arc joining X1 and X3, on which X2 is a collider. Then consider
Rule 1 of Definition 20.5. Neither X2 nor any of its descendants is in C, so Rule 1 is violated, the
arc is not active given C, and so X1 and X3 are d-separated by C = {}. This means X1 ⊥⊥ X3,
as implied by Equation (20.19). See Example 20.12, Part (b), for further comment on this type of
argument.

258 CHAPTER 20. BAYESIAN NETWORK MODELS

20.4.1 Equivalence classes and v-structures

In the context of Bayesian networks, “causality” is a consequence of conditional independence
structure, and must derive its interpretation there. Furthermore, in Examples 20.22 and 20.23 we
have seen distinct DAGs imposing exactly the same conditional independence structure.

This point is essential to understand if we are going to use observational data to infer the
graphical structure of a Bayesian network model. To be sure, this is a useful and viable estimation
problem, provided its limitations are understood. Fortunately, there is a very simple rule for
determining when two DAGs impose the same conditional independent statements. Furthermore,
this rule is a necessary and sufficient condition, which we now state.

Definition 20.10. Let G be a DAG. A v-structure is a subgraph consisting of three nodes, say a, b
and c, such that a, b are parents of c, and there is no edge in G joining a and b (that is: a→ c← b).
The skeleton or topology of G is the undirected graph obtained by replacing all edges in G with
undirected edges.

Two DAGs G and G′ are equivalent if the following two conditions hold

(a) G and G′ possess the same skeleton.

(b) G and G′ possess the same v-structures.

The set of all DAGs which are equivalent to some DAG G forms an equivalence class. Any DAG G
is equivalent to itself. Note that equivalent DAGs are necessarily defined on the same set of nodes
V .

Example 20.24. We will apply Definition 20.10 to Examples 20.22 and 20.23.

In Figure 20.8, DAG 1 and DAG 2 are equivalent, since the skeletons are identical and neither
DAG has a v-structure. In addition, no other DAG possesses the same skeleton, so DAG 1 and DAG

2 constitute a complete equivalence class (that is, there are no other DAGs equivalent to DAG 1).

In Figure 20.9, all four DAGs possess the same skeleton. Then DAG 1, DAG 2 and DAG 3 are
equivalent, since none of these has a v-structure. On the other hand, DAG 4 does have a v-structure,
and so is not equivalent to the other three DAGs. There are no other DAGs which are equivalent
to DAG 1 (since only the DAGs shown in Figure 20.9 possess the same skeleton), so DAG 1, DAG 2

and DAG 3 constitute a complete equivalence class.

The consequence of the equivalency of DAGs is quite profound.

Theorem 20.2 (Pearl et al. (1989)). Two DAGs G and G′ defined on nodes V are equivalent
(Definition 20.10) if and only if the following condition holds:

• Let g be any joint density on the nodes V which factors according to G. Then there exists a
density g′ on nodes V which factors according to G′, and which satisfies g = g′.

Essentially, two equivalent DAGs impose the same set of conditional independence statements.
Furthermore, suppose we use data to fit a density ĝ which factors according to G, according to any
optimal criteria. Then ĝ will also factor according to any equivalent DAG G′, meaning that we will
have no basis on which to distinguish between G and G′.

20.5. TWO EXAMPLES 259

20.5 Two Examples

In this section we present two extended examples illustrating the various concepts introduced in
this chapter.

20.5.1 A simple gene regulatory network

Bayesian network models are often used to discern regulatory relationships in gene regulatory net-
works. Suppose observational data is used to fit a Bayesian network for 8 genes labeled a, b, . . . , g, h,
resulting in the DAG shown in Figure 20.10. We say a gene y is downstream from gene x if x is
an ancestor of y (see Definition 20.1). In this case, x regulates y, possibly transitively. We will
consider the following exercises.

a

h

g

fe

d

c

b

Figure 20.10: Sample DAG representing a gene regulatory network (Section 31.4).

(a) We first list all v-structures of the DAG, of which there are four:

b→ c← d

b→ c← h

d→ c← h

g → e← c.

(b) Next, suppose a DAG is accepted as a true model of regulatory control. In this context, this
means that all genes y which are downstream of any given gene x can be identified, assuming
the inferred Bayesian network is correct. However, recall that observational data can only be

260 CHAPTER 20. BAYESIAN NETWORK MODELS

used to infer an equivalence class of DAGs. This means that all DAGs in an equivalence class
are equally compatible with the data. This being the case, any statement about regulatory
order may be one of following three types:

Type A: Implied by the Bayesian network model (true of all equivalent DAGs).

Type B: Compatible with the Bayesian network model (true of some but not all equivalent
DAGs).

Type C: Not compatible with the Bayesian network model (not true of any equivalent DAG).

Note that a DAG is equivalent to itself. As an exercise, we will determine the type (A, B or
C) of each the following statements:

(i) c is downstream from h.
(ii) g is downstream from c.
(iii) h has no parents.
(iv) b has no parents.
(v) c has exactly three parents.
(vi) f is downstream from a.

Technically, to solve this type of problem it is important to understand how a DAG can be
modified to produce a distinct but equivalent DAG, or to understand whether or not this
operation is possible. First note that by Definition 20.10, two equivalent DAGs must have
the same skeleton. This means that the direction of an edge can be changed, but other than
this, no edges can be added or removed. In addition, a switch in the direction of an edge
cannot result in the removal or addition of a v-structure (otherwise, the DAG would not
be equivalent, according to Definition 20.10). This is why it will be useful to identify all
v-structures, as we have done in Part (a).

(i) In the original DAG, c is downstream from h, so the statement is not Type C. If there
is an equivalent DAG in which c is not downstream of h, then the statement will be
Type B. However, such a DAG could only be produced by reversing edge h→ c, which
is part of a v-structure (two v-structures, actually). Since this operation would remove a
v-structure, the resulting DAG will not be equivalent. Therefore, the statement is Type
A.

(ii) g is not downstream from c in the original DAG, so the statement cannot be Type A.
Furthermore, g can only be downstream of c if the edge e → g is reversed. However,
this edge is part of the v-structure g → e← c, and so cannot be reversed to produce an
equivalent DAG. Therefore the statement is Type C.

(iii) h has no parents in the original DAG. Furthermore, h shares an edge with node c only.
However, the edge h→ c is part of a v-structure, and cannot be reversed to produce an
equivalent DAG. Therefore, the statement is Type A.

(iv) b has one parent, a, in the original DAG, so the statement cannot be Type A. Suppose
edge a → b is reversed (so that now b has no parents). This edge is not part of a v-
structure, and so none are removed. Furthermore, reversing edge a→ b does not create
any new v-structures, since a is not a child of another node. This means the equivalence
class contains at least one DAG for which the statement is true, and at least one DAG
for which the statement is false. Therefore the statement is Type B.

20.5. TWO EXAMPLES 261

(v) All parents of c are part of v-structures pointing to c. Deletion or addition of any other
parent would add or delete a v-structure. Since c has three parents in the original DAG,
the statement is Type A.

(vi) f is downstream of a in the original DAG. In the discussion of statement (iv) above, it
was argued that edge a→ b could be reversed to produce an equivalent DAG. However,
f would no longer be downstream from a in this DAG, so the statement is Type B.

20.5.2 Mid-Atlantic wage data

DAG

Age

Marital_Status

Race

Education

Job_Class

Health

Health_Insurance

Log_Wage

Equivalence Class

Age

Marital_Status

Race

Education

Job_Class

Health

Health_Insurance

Log_Wage

Figure 20.11: Bayesian network model fit with Mid-Atlantic Wage Data (Section 20.5.2). The
original DAG is shown, as well as a schematic representation of the equivalence class

262 CHAPTER 20. BAYESIAN NETWORK MODELS

We make use of the data set Wage included in the ISLR R-package
(https://cran.r-project.org/). Subtitled Mid-Atlantic Wage Data, it contains wage and
other data for 3000 male workers in the Mid-Atlantic region. See James et al. (2013) for more
details. Eight variables from this data were used to fit a Bayesian network model, using the
hc(...) function from the bnlearn R-package (Scutari, 2010). We will discuss methods of fitting
Bayesian networks in later chapters, but for now we will simply show the resulting DAG (Figure
20.11, top plot).

The log-transformed wage is given in the node labeled Log Wage. The remaining nodes are of
various types. Age is the worker’s age in years. Marital Status is a categorical variable with levels
Never Married, Married, Widowed, Divorced and Separated. Education is a categorical variable
with levels < HS Grad, HS Grad, Some College, College Grad and Advanced Degree. Race is a
categorical variable with levels White, Black, Asian and Other. Job Class is a categorical variable
with levels Industrial and Information.

We note that Bayesian network models are flexible with regard to data type, and a single model
often contains multiple types. This does not greatly affect their structure or interpretation.

In Section 31.4 it was made clear that the interpretation of a Bayesian network must take into
account the entire equivalence class of a DAG. In Figure 20.11 a schematic representation of this
equivalence class is shown in the bottom plot. This is constructed by replacing any edge of the
original DAG with an undirected edge if there exists an equivalent DAG in which that edge is
reversed. This is obtainable by converting any edge to an undirected edge if it is not part of a
v-structure.

Thus, the undirected edges of the equivalence class representation are those edges which can
be reversed in the original DAG to produce an equivalent DAG, following the technique used in
Section 31.4. It must be stressed, however, that the choices of which edges to reverse cannot be
made independently. For example, the original DAG contains edges

Race→ Education and Education→ Job Class.

Both of these edges are converted to undirected edges in the equivalent class representation, so
each are represented in the equivalence class in both the original and reversed directions. However,
suppose we reverse the edge Education→ Job Class. We will have then created a new v-structure:

Race→ Education← Job Class,

and the resulting DAG will not be equivalent to the original DAG. Of course, if we also reverse the
edge Race→ Education we now have path

Race← Education→ Job Class,

which is not a v-structure, and the resulting DAG will be equivalent to the original.

Interpreting Causality We now consider what the DAG tells us about the causal relationships
among the nodes.

(a) First consider the node Race. From Figure 20.11 we can see it has child Education, no
parents, and no other parents of its child. Its Markov blanket is therefore (by Definition

20.5. TWO EXAMPLES 263

20.4):
BRace = {Education}.

This means that conditional on Education, Race is independent of all remaining nodes. In
particular, we have conditional independence statement:

(Race ⊥⊥ Log Wage) | Education.

In other words, Log Wage depends on Race, but that dependence disappears once Education

is taken into account. This means that wages are determined not by race but by education
level. Thus, if there is a difference in wages between races, this is because there is a difference
in education levels between races.

(b) We can reach a similar conclusion about the node Job Class. It has one parent, Education,
no children, and therefore no other parents of children. By Definition 20.4 the Markov blanket
is therefore

BJob Class = {Education},
and, as for Race, we have the conditional independence statement

(Job Class ⊥⊥ Log Wage) | Education.

(c) When we examine the DAG, it appears as though the node Education is very influential. It
has child and parent sets

CEducation = {Health Insurance, Log Wage, Health, Job Class},
PEducation = {Race}.

In addition, the node Log Wage is a child of Education, and has parents Health Insurance

and Age. While Health Insurance is already included in CEducation, Age is included in neither
CEducation or PEducation, but by Definition 20.4 is included in the Markov blanket. This gives
Markov blanket:

BEducation

= {Health Insurance, Log Wage, Health, Job Class, Race, Age},

which includes all nodes except for Marital Status and Education itself. This suggests that
Education is in some sense a highly influential node.

(d) The node Marital Status has no parents; one child, Age; and one parent of a child, Health.
The Markov blanket of Marital Status is therefore

BMarital Status = {Age, Health}.

This imposes the conditional independence statement

(Marital Status ⊥⊥ Log Wage) | {Age, Health}. (20.20)

This has an interesting interpretation. It has been observed that higher wages tend to be
positively associated with marriage. However, conditional independence statement (20.20)
suggests that this is simply because married people tend to be older than single people, and
wages almost universally increase with age.

Part III

Practice Problems

264

Chapter 21

Practice Problems - ANOVA

21.1 Exercises

Problem 21.1. Independent samples for k = 3 treatments are summarized in the table below.
Assume sample j is from a normally distributed population with mean µj and fixed variance σ2.

1 2 3 4 5 X̄i Si ni
Treatment 1 13.13 15.16 10.60 16.41 17.99 14.66 2.88 5
Treatment 2 9.04 6.94 9.30 9.00 10.69 8.99 1.34 5
Treatment 3 20.55 16.37 20.20 14.39 21.89 18.68 3.16 5

(a) Construct an ANOVA table (fill in the 9 spaces in the ANOVA table below).

SS DF MS F

Treatment
Error
Total

(b) Use an F -test for null hypothesis Ho : µi = µj for all i, j. Use significance level α = 0.05.

SOLUTION:

(a) ANOVA table is

ANOVA Table

SS DF MS F

Treatment 236.83 2.00 118.42 17.70
Error 80.27 12.00 6.69
Total 317.11 14.00

265

266 CHAPTER 21. PRACTICE PROBLEMS - ANOVA

(b) F = 17.702. Reject Ho if

F ≥ Fk−1,n−k,α = 3.885.

Therefore, reject the null hypothesis at a signficance level α = 0.05 (P -value = 0.0002631).

Problem 21.2. A new type of insecticide was tested against 3 standard alternatives. Each of the
four insecticides was tested in 6 separate plots (requiring 24 separate plots). The percentage crop
loss was recorded for each of the 24 plots at the end of the experiment. For each insecticide, the
sample mean and sample standard deviation of the 6 outcomes is given in the following table (for
example, the average percentage crop loss for the six plots using Standard Insecticide B was 9.91).
The ANOVA table for the data is also given. Using a Bonferroni multiple comparison procedure,
determine whether or not the new insecticide resulted in the lowest average percentage crop loss of
all the insecticides tested. Use a family-wise error rate of αFWE = 0.05.

X̄i Si ni
New Insecticide 5.17 3.34 6

Standard Insecticide A 10.65 3.04 6
Standard Insecticide B 9.91 3.20 6
Standard Insecticide C 9.88 2.51 6

SS DF MS F

Treatment 113.69 3 37.90 4.10
Error 184.65 20 9.23
Total 298.35 23

SOLUTION:
We need m = 3 comparisons, to compare µ1 − µi, i = 2, 3, 4. Since ni = 6 for i = 1, 2, 3, 4, the CIs
take form

CI = X̄i − X̄j ± tn−k,αFWE/(m2)

√
MSE

(
1

ni
+

1

nj

)

= X̄i − X̄j ± t20,0.05/6

√
9.23

(
1

6
+

1

6

)

= X̄i − X̄j ± 2.613

√
9.23

(
1

6
+

1

6

)
= X̄i − X̄j ± 4.58.

The CIs are given in the following table. We can conclude with confidence 1− αFWE = 0.95 that
µ1 is the smallest mean, since µ1 − µi < 0 for i = 2, 3, 4 within each comparison.

21.1. EXERCISES 267

Multiple comparisons (Bonferroni procedure) for Problem 21.2.

Treatment 1 Treatment 2 Difference Margin of Error LB UB

Comp 1 1 2 -5.48 4.58 -10.06 -0.90
Comp 2 1 3 -4.73 4.58 -9.32 -0.15
Comp 3 1 4 -4.71 4.58 -9.30 -0.13

Problem 21.3. An ANOVA model is analyzed based on data for 4 treatments, of which each
have nj observations. An observation from treatment j = 1, . . . , 4 has distribution N(µj , σ

2), the
variance being assumed constant. Observations are independent. The treatment means, standard
deviations and sample sizes are given in a table below. The sum of squares (SS), mean sum of
squares (MSS) and degrees of freedom for treatment and error sources of variation are given in the
subsequent table.

Using a Bonferroni multiple comparison procedure, with a family-wise error rate of αFWE =
0.15, can we conclude that µ4 is the minimum treatment mean?

Treatment j X̄j Sj nj
1 10.03 1.39 7
2 10.24 1.31 7
3 13.22 1.21 7
4 6.92 2.06 7

Source of Variation DF SS MSS

Treatment 3 139.50 46.50
Error 24 56.15 2.34

SOLUTION:
We need m = 3 comparisons, to compare µ4 − µi, i = 1, 2, 3. Since ni = 7 for i = 1, 2, 3, 4 and
n = 28, the CIs take form

CI = X̄i − X̄j ± tn−k,αFWE/(m2)

√
MSE

(
1

ni
+

1

nj

)

= X̄i − X̄j ± t24,0.15/6

√
2.34

(
1

7
+

1

7

)

= X̄i − X̄j ± 2.064

√
2.34

(
1

7
+

1

7

)
= X̄i − X̄j ± 1.684.

The CIs are given in the following table. We can conclude with confidence 1− αFWE = 0.85 that
µ4 is the smallest mean, since µ4 − µj < 0 for j = 1, 2, 3 within each comparison.

268 CHAPTER 21. PRACTICE PROBLEMS - ANOVA

Comparison Estimate ME LB UB

µ4 − µ1 -3.11 1.69 -4.80 -1.42
µ4 − µ2 -3.32 1.69 -5.01 -1.63
µ4 − µ3 -6.30 1.69 -7.99 -4.61

21.2 Data Analysis

Problem 21.4. For this question, use the Carseats data set from the ISLR package. This data
set is simulated, but is intended to represent sales data from 400 different stores. We will make use
of the variables:

• Sales = Unit sales (in thousands) at each location.

• Population = Population size in region (in thousands).

• ShelveLoc = A factor with levels Bad, Good and Medium indicating the quality of the shelving
location for the car seats at each site.

• Urban = A factor with levels No and Yes to indicate whether the store is in an urban or rural
location.

The objective is to determine how important shelf location is to sales volume, since securing ad-
vantageous shelf position requires considerable effort. Suppose µbad, µmed, µgood are the respective
mean sales volumes for each shelf location category. Two hypotheses might be

H1 : µgood > µmed > µbad

or
H2 : µgood > µmed = µbad.

If H1 were true, then it would be worth securing good shelf space, and if that were not possible, it
would be worth securing medium shelf space over bad shelf space. On the other hand, if H2 were
true, then there would be nothing to gain by attempting to secure medium shelf space if good shelf
space were not available.

Fit an ANOVA model then perform a post-hoc analysis using the following steps:

(a) The analysis will be done for rural stores only. Create a subset of the data including only
records with factor level Urban==’No’. You can use the subset() function.

(b) An analysis should examine any association between the response and other variables. For
example, it is possible that Sales is associated with Population, and should therefore be
adjusted. Construct a scatterplot of the two variables and test for correlation (you can use
the cor.test() function). What do you conclude?

(c) Construct side-by-side boxplots of Sales for the factor levels of ShelveLoc. Do a Bartlett’s
test for equality of variance of Sales across these factor levels (use bartlett.test()). Are
the standard assumptions of normality and equality of variance reasonable in this case? You
can draw your conclusions from the equality of variance test and the boxplots alone.

21.2. DATA ANALYSIS 269

(d) Fit an ANOVA model, and report a p-value for the rejection of the null hypothesis

Ho : µgood = µmed = µbad.

Describe precisely the test statistic, and its distribution under the null hypothesis.
(e) Using Tukey’s pairwise procedure (function TukeyHSD()) report confidence intervals for each

pairwise difference in the means µgood, µmed, µbad. Use a family-wise error rate of αFWE =
0.01. You will have to use the conf.level option. What can be said about the rankings of
the means with confidence level 99%?

(f) Suppose, anticipating that better shelf location will never result in lower sales volume, we
attempt to resolve the problem by constructing confidence intervals for the differences µgood−
µmed and µmed − µbad only, using Bonferroni’s procedure to attain a family-wise error rate of
αFWE = 0.01. What can be said about the rankings of the means with confidence level 99%,
using this procedure? Does this contradict the conclusion of Part (e)?

SOLUTION:
The analysis is given in the following code. Comments follow.

> par(mfrow=c(1,2),pty=’s’,oma=c(2,2,2,2),cex=1,cex.axis=0.85,cex.lab=0.85)

>

> library(ISLR)

>

> ### (a)

>

> Carseats2 = subset(Carseats, Urban==’No’)

>

> ### (b)

>

> plot(Carseats2$Population,Carseats2$Sales,xlab=’Sales’,ylab=’Population’)

> cor.test(Carseats2$Population,Carseats2$Sales)

Pearson’s product-moment correlation

data: Carseats2$Population and Carseats2$Sales

t = 0.80446, df = 116, p-value = 0.4228

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.1077250 0.2518532

sample estimates:

cor

0.07448475

>

> ###(c)

>

270 CHAPTER 21. PRACTICE PROBLEMS - ANOVA

> boxplot(Sales~ ShelveLoc, data = Carseats2,xlab=’Sales’,ylab=’Population’)

> bartlett.test(Sales~ ShelveLoc, data = Carseats2)

Bartlett test of homogeneity of variances

data: Sales by ShelveLoc

Bartlett’s K-squared = 0.53081, df = 2, p-value = 0.7669

>

> ### (d)

>

> fit = aov(Sales~ ShelveLoc, data = Carseats2)

> summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)

ShelveLoc 2 253.5 126.75 21.83 9.16e-09 ***

Residuals 115 667.6 5.81

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

>

> ### (e)

>

> TukeyHSD(fit,conf.level=0.99)

Tukey multiple comparisons of means

99% family-wise confidence level

Fit: aov(formula = Sales ~ ShelveLoc, data = Carseats2)

$ShelveLoc

diff lwr upr p adj

Good-Bad 4.384156 2.34383768 6.424474 0.0000000

Medium-Bad 1.693610 -0.06293306 3.450152 0.0136136

Medium-Good -2.690546 -4.29861786 -1.082475 0.0000069

>

> ### (f)

>

> # Get the treatment sample size

>

> ni = table(Carseats2$ShelveLoc)

>

> # We need MSE, get this from the ANOVA table

>

> mse = summary(fit)[[1]][2,3]

>

> # We can get the estimated difference from the TukeyHSD object

21.2. DATA ANALYSIS 271

>

> tr.diff = TukeyHSD(fit)$ShelveLoc[,1]

>

> # Assemble the margins of error

>

> t.crit = qt(1-0.01/4,df=sum(ni)-3)

> nh = c(1/ni[1]+1/ni[2],1/ni[1]+1/ni[3],1/ni[2]+1/ni[3])

> me = t.crit*sqrt(mse*nh)

>

> # We only need the last two comparisons

>

> cbind(tr.diff,tr.diff-me,tr.diff+me)[2:3,]

tr.diff

Medium-Bad 1.693610 0.002130126 3.385089

Medium-Good -2.690546 -4.239054118 -1.142038

>

(a) See code.
(b) The correlation is r = 0.07448475. The p-value against the null hypothesis Ho : ρ = 0

is P = 0.4228, so there is no significant correlation. The scatter plot otherwise shows no
apparent association between Sales and Population (Figure 21.1).

(c) Bartlett’s test for equality of variance has p-value P = 0.7669 against the null hypothesis of
equal variances. The boxplots suggest that the distributions for each treatment are symmetric,
and of equal variances (Figure 21.1). Based on these diagnostics, the assumptions of normality
and equal variance are reasonable.

(d) See code. The test is based on the statistic F = MST/MSE = 21.83 (from the ANOVA
table). Under Ho, F has an F -distribution with 2 numerator and 115 denominator degrees
of freedom. The p-value is P = 9.16e-09, so we have very strong evidence to reject Ho.

(e) See code. Assuming the confidence intervals are correct (ie contain the true difference in
means), we can conclude that µgood > µmed and µgood > µbad. To summarize, with 99%
confidence we can conclude that µgood is the uniquely largest mean. Otherwise, we cannot
claim anything regarding the ordering of µmed and µbad.

(f) See code. To the Bonferroni procedure, construct confidence intervals for mean differences
µgood − µmed and µmed − µbad of the form

ȳi − ȳj ± tα/(m2),n−k

√
MSE

(
1

ni
+

1

nj

)
where m = 2, α = 0.01, k = 3, ngood = 28, nmed = 68, nbad = 22, n = 28 + 68 + 22 = 118.
Assuming the confidence intervals are correct (ie contain the true difference in means), we
can conclude that µmed > µbad and µmed < µgood. To summarize, with 99% confidence we can
conclude that µgood > µmed > µbad. This does not contradict the conclusion of Part (e). If a
confidence interval for a difference in means contains zero, it means that the ordering cannot
be resolved, and not that the means are equal. So, the conclusion of Part (f) is simply more
precise.

272 CHAPTER 21. PRACTICE PROBLEMS - ANOVA

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●
●

0 100 300 500

0
5

1
0

1
5

Sales

P
o

p
u

la
tio

n

●●

Bad Good Medium

0
5

1
0

1
5

Sales

P
o

p
u

la
tio

n
Figure 21.1: Plots for Problem 21.4.

Chapter 22

Practice Problems - Linear Regression

22.1 Exercises

Problem 22.1. Two variables Y and X are believed to have the following relationship:

Y = aXb

for two constants a, b. According to a certain conjecture, Y is proportional to the square root of
X. In order to resolve this question paired observations (X1, Y1), . . . , (Xn, Yn) are sampled, where
n = 51. The simple linear regression model

log(Y) = β0 + β1 log(X) + ε

is fit, with the following output:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3137646 0.02512828 92.078108 1.447613e-56

log(x) 0.4985705 0.05774591 8.633867 2.084971e-11

Formulate appropriate null and alternative hypotheses for this question in terms of the regression
coefficients β0 and/or β1. Is there evidence at an α = 0.05 significance level with which to reject
the conjecture?

SOLUTION:
The hypotheses are

Ho : β1 = 1/2 against Ha : β1 6= 1/2.

The appropriate t-statistic is

T =
β̂1 − 1/2

SEβ̂1
=

0.4985705− 1/2

0.05774591
≈ −0.0247.

Since|T | < t49,0.025 we do not reject the conjecture at significance level α = 0.05.

273

274 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

Problem 22.2. The following full linear regression model is considered:

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε.

An all-subsets model selection procedure is to be used to determine which of the predictors and
interactions to retain. The relevant SSE values are given in the following table. The sample size is
n = 25. Which model possesses the largest coefficient of determination R2? Which model possesses
the largest adjusted coefficient of determination R2

adj?

Model SSE

1 y=1 10638.06
2 y=x1 7810.40
3 y=x2 2210.16
4 y=x1+x2 29.23
5 y=x1+x2+x1*x2 27.39

SOLUTION:
The model with the highest R2 must be model 5, since all other models are reduced models.

The total sum of squares is given by the null model (model 1):

SSTO = 10638.06

The formula is

R2
adj = 1− SSE/(n− (q + 1))

SSTO/(n− 1)
.

where q is the number of predictors. We can construct table:

Model SSE q R2
adj

1 y=1 10638.06 0 0.00000
2 y=x1 7810.40 1 0.23388
3 y=x2 2210.16 1 0.78321
4 y=x1+x2 29.23 2 0.99700
5 y=x1+x2+x1*x2 27.39 3 0.99706

Model 5 has the highest R2
adj .

Problem 22.3. Two variables Y and X are believed to have the following relationship:

Y = aXb

for two constants a, b. There is special interest in knowing whether or not this relationship is concave
(equivalently, b < 1). In order to resolve this question paired observations (X1, Y1), . . . , (Xn, Yn)
are sampled, where n = 34. The simple linear regression model

log(Y) = β0 + β1 log(X) + ε

is fit, with the following output:

22.1. EXERCISES 275

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7115358 0.09647197 7.37557 2.174990e-08

log(x) 0.8948970 0.03583328 24.97391 1.483693e-22

Formulate appropriate null and alternative hypotheses for this question in terms of the regression
coefficients β0 and/or β1. Is there evidence at an α = 0.05 significance level that b < 1?

SOLUTION:
The appropriate hypotheses are Ho : b ≥ 1 and Ha : b < 1, since we are looking for evidence that
b < 1. In terms of the regression coefficients this is equivalent to

Ho : β1 ≥ 1 and Ha : β1 < 1.

The test statistic is

T =
β̂1 − 1

Sβ̂1
=

0.8948970− 1

0.03583328
= −2.933112,

which has a t-distribution with n− 2 degrees of freedom under Ho. Since t32,0.05 = 1.69, we reject
Ho at a 0.05 significance level, and conclude that b < 1.

Problem 22.4. A client hires a consulting firm to conduct a study of two types of mutual funds
(we’ll call them simply Type A and Type B). It uses a simple regression model

Y = eβ0+β1X+ε

where X = 1 for a Type A mutual fund, and X = 0 otherwise; ε ∼ N(0, σ2); and Y is the value of
an original investment of $1 after a year (that is, if Y = 1.05, the yearly rate of return is 5%). The
model is first log-transformed, giving

log(Yi) = β0 + β1Xi + εi, i = 1, . . . , n. (22.1)

A random sample of n = 62 paired observations (Yi, Xi), i = 1, . . . , 62 is collected. A simple least
squares regression model is used to fit the model (22.11), producing the following coefficient table:

Coefficient Estimate Standard Error t-value Pr(>|t|)
β̂0 0.0745 0.0040 18.8376 2.43× 10−34

β̂1 0.0333 0.0056 5.9514 4.13× 10−8

The consultant believes Type A mutual funds have a higher average yield, but the client cur-
rently purchases mutual funds of Type B, and there would be a significant cost to switching to
Type A. Therefore, the consultant will only recommend switching to Type A if there is significant
statistical evidence that β1 > 0.015 (approximately, that the rate of return of Type A mutual finds
exceeds Type B mutual funds by more than 1.5%). Using a significance level of α = 0.05, can the
consultant recommend switching?

276 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

SOLUTION:
The hypotheses are

Ho : β1 ≤ 0.015 against Ha : β1 > 0.015.

The appropriate t-statistic is

T =
β̂1 − 0.015

SEβ̂1
=

0.0333− 0.015

0.0056
≈ 3.268.

SinceT > t60,0.05 = 1.671 we do not reject the conjecture at significance level α = 0.05.

Problem 22.5. There is often interest in determining whether or not two quantities X and Y have
a power-law relationship:

Y = aXb (22.2)

for two constants a, b. Suppose, given n = 41 independent paired observations (Xi, Yi) of these
quantities, we fit model

log(Yi) = β0 + β1 log(Xi) + β2 log(Xi)
2 + εi, i = 1, . . . , n,

assuming any relevant distributional assumption holds, and get output:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 38.33180 19.50917 1.965 0.0568 .

log.x -5.93521 2.67072 -2.222 0.0323 *

log.x.squared 0.02227 0.08868 0.251 0.8031

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) How can the output be used to assess the validity of the power-law relationship of Equation
(22.2)? What do you conclude?

(b) Give level 95% confidence intervals for parameters a and b, based on this output.

SOLUTION:

(a) If we take a log-transform of the model log(Y) = log(a) + b log(X). We can therefore equate
β0 = log(a) and β1 = b in the linear model. In addition, if the model holds we must have
β2 = 0. The 2-sided p-value for rejecting null hypothesis Ho : β2 = 0 is p = 0.8031 from the
output. We do not reject the power-law relationship, therefore.

(b) Since β0 = log(a) and a 95% CI for β0 is

β̂0 ± 2× SE = 38.33180± 2× 19.50917 = (−0.68654, 77.35014)

22.2. DATA ANALYSIS 277

a 95% CI for a is

eβ̂0±2×SE = e38.33180±2×19.50917 = (0.5033, 3.9× 1033).

Since β1 = b a 95% CI for b is identical to the 95% CI for β1:

β̂0 ± 2× SE = −5.93521± 2× 2.67072 = (−11.27665,−0.59377).

22.2 Data Analysis

Problem 22.6. For this question, use the data set UScereal from the MASS package. This data
contains ingredient quantities taken from the mandatory FDA label printed on 65 brands of cereal.
The objective is to determine the ingredient that contributes most to calorie content.

(a) Create side-by-side boxplots of calories by manufacturer (given by the categorical variable
mfr). Identify two outliers (defined as calories > 300), and delete from the data all cereals
made by the manufacturer responsible for those outliers.

(b) Fit a linear regression model using calories as the dependent variable, and all remaining
variables as independent variables. This is easily done using the formula lm(calories ∼ .,

data = myData). Which variables have regression coefficients significantly different from 0
(at a P < 0.05 significance level)?

(c) Refit the model, again with calories as dependent variable, but including as independent
variables only those with significantly nonzero coefficients reported in Part (b). Include the
intercept. Do these independent variables remain significant? Do the values of the coefficients
change significantly?

(d) Construct side-by-side boxplots for the independent variables of Part (c). In what units are
these variables (use help(UScereal))? Which regression coefficient is largest (other than the
intercept). Looking at the boxplots, does the independent variable with the largest coefficient
necessarily contribute most to calorie content?

(e) Standardize each of the independent variables of the model fit in Part (c) to have zero mean
and standard deviation one. Refit the model. Have the t-statistics reported for each inde-
pendent variable changed? Which predictor contributes most to calorie content?

SOLUTION:
The code for the analysis is given below.

(a) See Figure 22.1 for boxplots. The manufacturer responsible for those outliers is labeled P (for
Post).

(b) The significant independent variables are protein, fat, carbo and sugars.
(c) The fit is shown below. The independent variables remain significant. The respective coeffi-

cient values in the original fit for these variables are 3.983205, 9.424864, 4.002802, 4.180946.
The new values are 3.7978, 8.4661, 4.0402, 4.2139. They are not identical between fits, but
are otherwise quite close.

278 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

(d) The units used for the four independent variables are grams (in one portion). The largest
regression coefficient is associated with fat. However, from the boxplots of Figure 22.1 (right
side) the variation of fat is smaller than for the remaining independent variables. Therefore,
the independent variable with the largest coefficient does not necessarily contribute most to
calorie content.

G K N P Q R

10
0

20
0

30
0

40
0

Manufacturers

ca
lor

ies

protein fat carbo sugars

0
5

10
15

20
25

30

Ingredients

ca
lor

ies

Figure 22.1: Plots for Problem 22.6 (d).

(e) The t-statistics are identical. To compare calorie contributions, the coefficients should be
calculated with respect to a change in unit standard deviation for each ingredient. Therefore,
sugars contributes most to calorie content, with β̂sugar = 24.8079 change in calories per
standard deviation change in carbo.

> library(MASS)

> par(mfrow=c(1,2))

>

>

> ### (a)

>

> boxplot(calories~mfr,data=UScereal,ylab=’calories’,xlab=’Manufacturers’,cex.lab=1.5)

> data2 = subset(UScereal, mfr!=’P’)

>

> ### (b)

>

> fit3 = lm(calories ~ ., data=data2)

> summary(fit3)

22.2. DATA ANALYSIS 279

Call:

lm(formula = calories ~ ., data = data2)

Residuals:

Min 1Q Median 3Q Max

-14.8371 -3.1176 0.1532 3.2058 12.8722

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.667136 5.836452 -0.457 0.650

mfrK 3.706381 2.368999 1.565 0.125

mfrN 7.375987 7.187820 1.026 0.311

mfrQ -2.497673 3.474514 -0.719 0.476

mfrR -0.452942 3.567393 -0.127 0.900

protein 3.983205 0.862820 4.616 3.82e-05 ***

fat 9.424864 0.910656 10.350 5.30e-13 ***

sodium 0.005558 0.010999 0.505 0.616

fibre 0.668536 0.766720 0.872 0.388

carbo 4.002802 0.222710 17.973 < 2e-16 ***

sugars 4.180946 0.238287 17.546 < 2e-16 ***

shelf 0.427604 1.463232 0.292 0.772

potassium -0.035009 0.030312 -1.155 0.255

vitaminsenriched -0.274217 3.338727 -0.082 0.935

vitaminsnone -1.765723 7.271831 -0.243 0.809

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.992 on 41 degrees of freedom

Multiple R-squared: 0.9862,Adjusted R-squared: 0.9815

F-statistic: 209.9 on 14 and 41 DF, p-value: < 2.2e-16

>

> ### (c)

>

> data3 = data2[,c("calories","protein","fat","carbo","sugars")]

> fit3 = lm(calories ~ ., data=data3)

> summary(fit3)

Call:

lm(formula = calories ~ ., data = data3)

Residuals:

Min 1Q Median 3Q Max

-16.6047 -4.0734 0.1079 3.8670 13.4827

280 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.2281 3.3515 -0.366 0.716

protein 3.7978 0.3753 10.118 8.62e-14 ***

fat 8.4661 0.7449 11.365 1.37e-15 ***

carbo 4.0402 0.1548 26.105 < 2e-16 ***

sugars 4.2139 0.1639 25.713 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.924 on 51 degrees of freedom

Multiple R-squared: 0.9833,Adjusted R-squared: 0.982

F-statistic: 749.3 on 4 and 51 DF, p-value: < 2.2e-16

>

> ### (d)

>

> boxplot(data3[-1],ylab=’calories’,xlab=’Ingredients’,cex.lab=1.5)

>

> ### (e)

>

> data4 = data3

> for (i in 2:5) {data4[[i]] = (data4[[i]] - mean(data4[[i]]))/sd(data4[[i]]) }

> fit4 = lm(calories ~ ., data=data4)

> summary(fit4)

Call:

lm(formula = calories ~ ., data = data4)

Residuals:

Min 1Q Median 3Q Max

-16.6047 -4.0734 0.1079 3.8670 13.4827

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 142.1199 0.7916 179.53 < 2e-16 ***

protein 9.2881 0.9179 10.12 8.62e-14 ***

fat 11.6437 1.0245 11.37 1.37e-15 ***

carbo 22.4673 0.8606 26.11 < 2e-16 ***

sugars 24.8079 0.9648 25.71 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.924 on 51 degrees of freedom

22.2. DATA ANALYSIS 281

Multiple R-squared: 0.9833,Adjusted R-squared: 0.982

F-statistic: 749.3 on 4 and 51 DF, p-value: < 2.2e-16

>

Problem 22.7. For this question we will explore the influence.measures() function. The input
is a fitted model object. In our example this will be a class lm object. It returns a infl class
object, which has list elements infmat, is.inf, call. Here, infmat is a matrix with n rows, with
columns containing a number of influence measures. They are as follows:

(i) Given q predictors (including the intercept), the first q columns give the quantities
DFBETASij in row i column j.

(ii) The next column gives DFFITSi.
(iii) The remaining columns give the covariance ratio, Cook’s distance Di and leverage Hii.

Then is.inf is a logical matrix of the same dimensions as infmat. The i, jth entry of is.inf is
TRUE if the i, jth entry of inmat indicates that observation i has been flagged as an influential point
according to the diagnostic measure of column j. Finally call gives the unevaluated expression
which produced the fit (this is a type of object of mode call).

We will make use of the birthwt data set from the MASS package.

(a) Do a simple linear regression fit of response birth weight (bwt) against predictor age (age).
(b) Apply the influence.measures() function to the fit.
(c) Create a plot with the following elements (use a comparable scheme if you would rather create

a black and white graphic):

(i) The plot contains a scatter plot of bwt against age. Each point should be represented
using a solid circle (pch = 20).

(ii) The fitted regression line should be superimposed on the scatter plot.
(iii) A point should be black, unless is it flagged as a high leverage point, in which case it

should be red.
(iv) A point flagged by DFFITS should have a triangle (pointing up) surrounding it (pch

= 2). The triangle should be blue if DFFITS < 0 and green otherwise.
(v) A point flagged by the covariance ratio value should have a triangle (pointing down)

surrounding it (pch = 6). The triangle should be blue if the covariance ratio is < 1 and
green otherwise.

(d) What distinguishes high (> 0) from low (< 0) DFFITSi values?
(e) Is there any flag criterion which dominates, that is, one which is flagged when any of the

others is flagged (if the answer is yes, this might, or might not, mean that we only need that
criterion)?

(f) What distinguishes high (> 1) from low (< 1) covariance ratio values? Refer to the plot.
(g) If we can select the values of the predictor variable, we refer to this as a design, which is

ideally guided by some objective criterion. Suppose we wish to estimate the relationship
Y = β0 + β1X + ε and, under the standard assumptions for linear regression, we are able to

282 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

observe n = 10 responses Y1, . . . , Y10 for any 10 design points X1, . . . , X10 we wish, provided
Xi ∈ [0, 1]. We’ll compare two designs:

X ′ = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0),

X ′′ = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1).

The comparison can be based on the variance of the coefficient estimates β̂0, β̂1. Carry out
this comparison. Does either design yield uniformly lower variances?

(h) Examine the form of the variances σ2
β̂1

and σ2
β̂0

. What effect does the sample variance of the

predictor variable have on these quantities?
(i) Would it be a good idea to rely exclusively on the covariance ratio to flag anomalies? Justify

your answer.

SOLUTION:

(a) The following code implements parts (a)-(c). See Figure 22.2 below.
(b) etc
(c) etc

get fit and influence measures

n = dim(birthwt)[1]

fit0 = lm(bwt~age,data=birthwt)

mm = influence.measures(fit0)

this tells us how many observations are flagged by each diagnostic

apply(mm$is.inf,2,sum)

create a variable color vector

colv = rep(1,n)

colv[mm$is.inf[,6]] = 2

we can draw the plot this way (note use of the with() function)

par(mfrow=c(1,1))

main plots (note use of color vector)

with(birthwt,plot(age,bwt,col=colv,pch=20))

DFFITS diagnostic

22.2. DATA ANALYSIS 283

ind = mm$is.inf[,3]

with(birthwt,points(age[ind],bwt[ind],col= 3+(mm$infmat[ind,3] < 0),pch=2))

cov.ratio diagnostic

ind = mm$is.inf[,4]

with(birthwt,points(age[ind],bwt[ind],col= 3+(mm$infmat[ind,4] < 1),pch=6))

include legend

legend(’bottomright’,legend=c(’High Leverage’,’Low DFFITS’,

’High DFFITS’,’Low cov.ratio’,’High cov.ratio’),

pch=c(20,2,2,6,6),col=c(2,4,3,4,3))

finally, include regression fit

summary(fit0)

coef = fit0$coefficients

abline(coef[1],coef[2],col=’green’)

● ●●
●● ● ●● ●●

●● ● ●●●● ●● ● ●● ●●● ●● ●●●● ● ●●● ●●
●

● ●●● ●●●● ●● ●●● ●● ●●● ● ●●●● ● ● ●●● ● ●● ●● ●●
●● ● ● ●● ●● ●

●
●

●● ● ● ●● ●●● ●● ●●●●
●●● ●●● ● ●●●● ●● ● ●● ●● ●●● ●

●●
●

● ● ●
●

●

●

●

●

●

●

●

●●

●●
● ●

● ●● ●● ● ●
●

● ●●● ●●● ●
● ●●● ●●

●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●

15 20 25 30 35 40 45

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

age

b
w

t

● High Leverage
Low DFFITS
High DFFITS
Low cov.ratio
High cov.ratio

Figure 22.2: Figure for Problem 22.7 (c).

(d) A high (low) DFFITSi value indicates that the fitted value at the predictor values of the ith
observation is higher (lower) than would be the case if the ith observation were deleted.

284 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

(e) All flagged observations are flagged at least by the covariance ratio (this can be seen in the
plot).

(f) High (low) covariance ratio values indicate that deleting an observation increases (decreases)
the standard errors of the coefficient estimates β̂i.

(g) The covariance matrix for β̂ββ is
Σ
β̂ββ

= σ2(XTX)−1. (22.3)

Since σ2 remains unchanged for the comparison, we evaluate (XTX)−1 for X ′ and X ′′. We
can use the R code below. The diagonal elements of each matrix are proportional to σ2

β̂i
.

They are uniformly smaller for X ′′.

> ### This gives the inverse of t(x)%*%x for each design,

> which suffices to resolve the question

>

> # X’

>

> x = cbind(rep(1,11),seq(0,1,0.1))

> solve(t(x)%*%x)

[,1] [,2]

[1,] 0.3181818 -0.4545455

[2,] -0.4545455 0.9090909

>

> # X"

>

> x = cbind(rep(1,10),rep(c(0,1),each=5))

> solve(t(x)%*%x)

[,1] [,2]

[1,] 0.2 -0.2

[2,] -0.2 0.4

(h) The expressions are:

σ2
β̂0

= σ2

[
1

n
+

X̄2∑n
i=1(Xi − X̄)2

]
(22.4)

σ2
β̂1

=
σ2∑n

i=1(Xi − X̄)2
. (22.5)

In each case the variances decrease with increasing values of
∑n

i=1(Xi−X̄)2, which is directly
proportional to the sample variance of the predictor variable X.

(i) The point of parts (g) and (h) is that the standard errors of the regression coefficients is
directly affected by the distribution of the predictor variable. So, high values of the covariance
ratio may be associated with observations at the outer limits of the predictor value range,
but these need not be anomalous in any meaningful sense, and their deletion would simply
result in a less accurate estimate.

22.2. DATA ANALYSIS 285

Problem 22.8. For this question, use the data set birthwt data set from the MASS package used
in 22.7.

(a) Create a subset of this data by removing all observations flagged by the DFFITTS diagnostic
calculated in 22.7. Use the subset() function.

(b) We will examine 6 regression models, using bwt as a response and age and smoke as predictors.
Note that smoke is an binary variable. Formally, it a numeric vector, but it should be
interpreted as an indicator variable, with smoke = 1 if the subject smokes. The models are

(M1) bwt = β0 + β1 × age
(M2) bwt = β0 + β1 × smoke
(M3) bwt = β0 + β1 × smoke+ β2 × age
(M4) bwt = β0 + β1 × smoke+ β2 × smoke× age
(M5) bwt = β0 + β1 × smoke+ β2 × (1− smoke)× age
(M6) bwt = β0 + β1 × smoke+ β2 × age+ β3 × smoke× age

Model (M1) does not distiguish by smoking group. Otherwise, the remaining models essen-
tially create separate linear fits for the two groups, but with a pooled estimate for σ2. What
distinguishes the models is the inclusion or exclusion of an age term for each group. Create a
linear regression fit for each model. Construct a table with a row for each model, and columns
as follows:

(i) Columns 1-2 should contain the intercept and slope for the nonsmoking group (the slope
may be 0).

(ii) Columns 3-4 should contain the intercept and slope for the smoking group (the slope
may be 0).

(iii) Column 5 should contain R2
adj .

(iv) Columns 6-9 should contain the F statistic, numerator d.f., denominator d.f., and p-value
for a goodness-of-fit F -test comparing each model to the reduced model Y = β0 + ε.

It is recommended that the fitting of models is automated by constructing a suitable R func-
tion. Also, the quantities in columns 1-4 of the of the summary tables will be linear combina-
tions of the coefficients estimated by the lm() function. For each model a single 4× q matrix
can be constructed which will calculate all four quantities at once. A good strategy would
therefore be to construct a list of 6 model formula, and a list of 6 coefficient transformation
matrices. When creating formula, consider the following passage from the R documentation
from help(formula):

To avoid this confusion, the function I() can be used to bracket those

portions of a model formula where the operators are used in their

arithmetic sense. For example, in the formula y ~ a + I(b+c), the

term b+c is to be interpreted as the sum of b and c.

(c) For each model construct a scatter-plot of bwt against age. Use something like
par(mfrow=c(3,2)) to display all plots on a single page. Superimpose the linear relationship
separately for smokers and nonsmokers. Use appropriate coloring or symbols, with a legend,
to distinguish between the two. Make sure the model represented by each plot is clearly
indicated.

286 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

(d) Which model has the highest R2
adj? Write explicitly the estimated linear relationship between

bwt and age separately for smokers and nonsmokers.
(e) Of the remaining models, which is the submodel of the one identified in the previous part

with the largest number of model degrees of freedom (which equals the number of coefficients
to be estimated)? Include the null model Y = β0 + ε if necessary. Do a goodness-of-fit test
F -test to compare the two models (you can use the anova() function for this). Does the
conclusion yield the same conclusion as the R2

adj ranking?

SOLUTION:

(a) The following code implements parts (a)-(c). See Figure 22.3 below.
(b) etc
(c) etc

function for F-test summary

f0 = function(lm.obj) {

c(summary(lm.obj)$fstatistic,

1-pf(summary(lm.obj)$fstatistic[1],summary(lm.obj)$fstatistic[2],

summary(lm.obj)$fstatistic[3]))

}

This will remove ovservations flagged by DFFITS

birthwt.sub = subset(birthwt,!mm[[2]][,3])

list of 5 models to be fit, in formula representation

model.list = c(

bwt~age,

bwt~smoke,

bwt~smoke + age,

bwt~ smoke + smoke:age,

bwt~ smoke + I(1-smoke):age,

bwt~smoke*age)

list of linear transformations needed to calculate slopes and

intercepts for the smoking and nonsmoking groups

lc.list = list(

matrix(c(1,0, 0,1, 1,0, 0,1),nrow=4,byrow=T),

matrix(c(1,0, 0,0, 1,1, 0,0),nrow=4,byrow=T),

matrix(c(1,0,0, 0,0,1, 1,1,0, 0,0,1),nrow=4,byrow=T),

22.2. DATA ANALYSIS 287

matrix(c(1,0,0, 0,0,0, 1,1,0, 0,0,1),nrow=4,byrow=T),

matrix(c(1,0,0, 0,0,1, 1,1,0, 0,0,0),nrow=4,byrow=T),

matrix(c(1,0,0,0, 0,0,1,0, 1,1,0,0, 0,0,1,1),nrow=4,byrow=T)

)

create summary table

beta.mat = matrix(NA,6,9)

combine plots and calculations into one loop.

pdf(’FIGA1.pdf’)

par(mfrow=c(4,2))

for (i in 1:6) {

with(birthwt.sub,plot(age,bwt,col=3-smoke,pch=20))

fit0 = lm(model.list[[i]],data=birthwt.sub)

coef = fit0$coefficients

betav = lc.list[[i]]%*%coef

if (i ==1) {

abline(betav[1],betav[2],col=’black’,lwd=2)

} else {

abline(betav[1],betav[2],col=’green’,lwd=2)

abline(betav[3],betav[4],col=’red’,lwd=2)

}

beta.mat[i,] = c(betav,summary(fit0)$adj.r.squared,f0(fit0))

title(deparse(model.list[[i]]))

}

plot(c(0,1),c(0,1),type=’n’,axes=F,xlab=NA,ylab=NA)

legend(’topleft’,legend=c(’Smoke -ve’,’Smoke +ve’,’All’),

col=c(3,2,1),pch=c(20,20,NA),lty=c(1,1,1),cex=1)

dev.off()

label the summary table

rownames(beta.mat) = paste(’M’,1:6,sep=’’)

colnames(beta.mat) = c(’b0[smoke=0]’,’b1[smoke=0]’,’b0[smoke=1]’,

’b1[smoke=1]’,’Rsq.adj’,’F’,’num.df’,’den.df’,’P’)

(d) The table is given below

> round(beta.mat,3)

b0[smoke=0] b1[smoke=0] b0[smoke=1] b1[smoke=1] Rsq.adj F num.df den.df P

M1 2700.092 11.080 2700.092 11.080 0.001 1.211 1 184 0.273

M2 3038.728 0.000 2823.306 0.000 0.018 4.410 1 184 0.037

M3 2805.090 10.055 2594.842 10.055 0.018 2.711 2 183 0.069

288 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

M4 3038.728 0.000 2898.994 -3.331 0.013 2.214 2 183 0.112

M5 2624.257 17.837 2823.306 0.000 0.024 3.230 2 183 0.042

M6 2624.257 17.837 2898.994 -3.331 0.018 2.155 3 182 0.095

Model (M5) has the largest R2
adj . We have

bwt = β0 + β2 × age = 2624.257 + 17.837× age, for nonsmokers (22.6)

bwt = β0 + β1 = 2823.306, for smokers. (22.7)

(e) We can use the R code

> anova(fit0,fit1)

Analysis of Variance Table

Model 1: bwt ~ smoke

Model 2: bwt ~ smoke + I(1 - smoke):age

Res.Df RSS Df Sum of Sq F Pr(>F)

1 184 85444096

2 183 84509173 1 934922 2.0245 0.1565

>

The model (M2) is a submodel of (M5), and represents the null hypothesis for the F -test.
Rejection is interpretable as evident that (M5) is more predictive than (M2). The P -value is
0.1565, so we don’t have evidence that (M5) is the better model. This does not conform to
the selection of (M5) using R2

adj .

Problem 22.9. Relationships between the size of two physiological components Y , X of a species
of animal often obey a power relationship

Y = KXr,

where K and r are two fixed constants. Of course, the value r is not necessarily r = 1, but
will depend on the size measure, and any number of scaling principles. Suppose we have paired
observations (Xi, Yi), i = 1, . . . , n. Then K and r may be estimated using simple linear regression,
after taking the double-log transformation:

log Yi = logK + r logXi, (22.8)

that is, we have intercept and slope β0 = logK, β1 = r.
For this problem use data set Animals from the MASS package, which contains X = average body

(kg) and Y = brain (g) weights for 28 species of land animals. We may expect Y to be positively
associated with an animal’s cognitive abilities. However, we also expect X and Y to be positively
associated for reasons having nothing to do with cognitive abilities. Thus, the encephalization
quotient (EQ) measures the relative brain size after controlling for body size.

22.2. DATA ANALYSIS 289

● ●● ●● ● ●● ●●●● ● ●●●● ●● ● ●● ●●● ●● ●●●● ● ●●● ●● ● ● ●●● ●●●● ●● ●●● ●● ●●● ● ●●●● ● ● ●●● ● ●● ●● ●●●● ● ● ●● ●● ●●● ●● ● ● ●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ● ● ● ●●
●

●
●●

●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ● ● ●●● ●●●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●

15 20 25 30 35

10
00

35
00

age

bw
t

bwt ~ age

● ●● ●● ● ●● ●●●● ● ●●●● ●● ● ●● ●●● ●● ●●●● ● ●●● ●● ● ● ●●● ●●●● ●● ●●● ●● ●●● ● ●●●● ● ● ●●● ● ●● ●● ●●●● ● ● ●● ●● ●●● ●● ● ● ●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ● ● ● ●●
●

●
●●

●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ● ● ●●● ●●●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●

15 20 25 30 35

10
00

35
00

age

bw
t

bwt ~ smoke

● ●● ●● ● ●● ●●●● ● ●●●● ●● ● ●● ●●● ●● ●●●● ● ●●● ●● ● ● ●●● ●●●● ●● ●●● ●● ●●● ● ●●●● ● ● ●●● ● ●● ●● ●●●● ● ● ●● ●● ●●● ●● ● ● ●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ● ● ● ●●
●

●
●●

●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ● ● ●●● ●●●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●

15 20 25 30 35

10
00

35
00

age

bw
t

bwt ~ smoke + age

● ●● ●● ● ●● ●●●● ● ●●●● ●● ● ●● ●●● ●● ●●●● ● ●●● ●● ● ● ●●● ●●●● ●● ●●● ●● ●●● ● ●●●● ● ● ●●● ● ●● ●● ●●●● ● ● ●● ●● ●●● ●● ● ● ●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ● ● ● ●●
●

●
●●

●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ● ● ●●● ●●●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●

15 20 25 30 35

10
00

35
00

age

bw
t

bwt ~ smoke + smoke:age

● ●● ●● ● ●● ●●●● ● ●●●● ●● ● ●● ●●● ●● ●●●● ● ●●● ●● ● ● ●●● ●●●● ●● ●●● ●● ●●● ● ●●●● ● ● ●●● ● ●● ●● ●●●● ● ● ●● ●● ●●● ●● ● ● ●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ● ● ● ●●
●

●
●●

●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ● ● ●●● ●●●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●

15 20 25 30 35

10
00

35
00

age

bw
t

bwt ~ smoke + I(1 − smoke):age

● ●● ●● ● ●● ●●●● ● ●●●● ●● ● ●● ●●● ●● ●●●● ● ●●● ●● ● ● ●●● ●●●● ●● ●●● ●● ●●● ● ●●●● ● ● ●●● ● ●● ●● ●●●● ● ● ●● ●● ●●● ●● ● ● ●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ● ● ● ●●
●

●
●●

●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ● ● ●●● ●●●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●

15 20 25 30 35

10
00

35
00

age

bw
t

bwt ~ smoke * age

●

●

Smoke −ve
Smoke +ve
All

Figure 22.3: Figure for Problem 22.8 (c)

290 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

(a) Construct a scatter-plot of logBrain against logBody. Use logBody as the horizontal axis.
Instead of plotting symbols, plot the actual name of the species (here, the text command
may be used). Does there seem to be a linear trend on the double-log scale? Identify the
three most obvious outliers. How do they differ from the remaining species?

(b) Fit the model (22.8), with and without the outliers, and superimpose each fitted line on the
scatter-plot. Give the estimates of K and r for each fit.

(c) The encephalization quotient (EQ) can be formally defined as the ratio of the actual brain
mass to the predicted brain mass based on the species size. If model (22.8) is used to predict
brain mass, show that for species i

EQ ≈ exp(ei)

where ei is the residual from the regression fit for that species.
(d) After removing the outliers, rank the species by their EQ. How would the EQ of the outlier

species rank?

SOLUTION:

(a) The following code will produce the required plot (Figure 22.4). There seems to be a clear
linear trend, with the exception of three outliers, which are all dinosaurs.

par(mfrow=c(1,1),pty=’m’)

with(Animals,plot(log(body),log(brain),type=’n’,xlim=c(-4,13)))

with(Animals,text(log(body),log(brain),rownames(Animals),cex=0.9))

(b) The following code will produce the required plot (Figure 22.5) and calculations. There seems
to be a clear linear trend, with the exception of three outliers, which are all dinosaurs. From
the fit summaries we have log K̂ = 2.55490, r̂ = 0.49599 (with dinosaurs); log K̂ = 2.15041,
r̂ = 0.75226 (without dinosaurs)

> # remove dinosaurs

>

> Animals2 = subset(Animals, !(rownames(Animals)

%in% c("Triceratops","Dipliodocus","Brachiosaurus")))

>

> # fit with and without dinosaurs

>

> fit = lm(log(brain) ~ log(body), data=Animals)

> fit2 = lm(log(brain) ~ log(body), data=Animals2)

>

> # redraw plot, with fits

>

> par(mfrow=c(1,1),pty=’m’)

> with(Animals,plot(log(body),log(brain),type=’n’,xlim=c(-4,13)))

> with(Animals,text(log(body),log(brain),rownames(Animals),cex=0.9))

> abline(fit$coef,lty=2)

22.2. DATA ANALYSIS 291

0 5 10

0
2

4
6

8

log(body)

lo
g(

br
ai

n)

Mountain beaver

Cow

Grey wolfGoat

Guinea pig

Dipliodocus

Asian elephant

Donkey
Horse

Potar monkey

Cat

Giraffe

Gorilla

Human

African elephant

Triceratops

Rhesus monkey

Kangaroo

Golden hamster

Mouse

Rabbit

SheepJaguar

Chimpanzee

Rat

Brachiosaurus

Mole

Pig

Figure 22.4: Plot for Problem 22.9 (a).

> abline(fit2$coef)

> legend(’topleft’,legend=c(’With dinosaurs’,’Without dinosaurs’),lty=c(2,1))

>

> # give coefficient summary

>

> summary(fit)

Call:

lm(formula = log(brain) ~ log(body), data = Animals)

Residuals:

Min 1Q Median 3Q Max

-3.2890 -0.6763 0.3316 0.8646 2.5835

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.55490 0.41314 6.184 1.53e-06 ***

log(body) 0.49599 0.07817 6.345 1.02e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.532 on 26 degrees of freedom

292 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

Multiple R-squared: 0.6076,Adjusted R-squared: 0.5925

F-statistic: 40.26 on 1 and 26 DF, p-value: 1.017e-06

> summary(fit2)

Call:

lm(formula = log(brain) ~ log(body), data = Animals2)

Residuals:

Min 1Q Median 3Q Max

-0.9125 -0.4752 -0.1557 0.1940 1.9303

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.15041 0.20060 10.72 2.03e-10 ***

log(body) 0.75226 0.04572 16.45 3.24e-14 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7258 on 23 degrees of freedom

Multiple R-squared: 0.9217,Adjusted R-squared: 0.9183

F-statistic: 270.7 on 1 and 23 DF, p-value: 3.243e-14

(c) The actual brain mass is Yi, and the predicted brain mass is KXr
i . Then

EQi =
Yi

KXr
i

,

and
log(EQi) = log(Yi)− log(KXr

i) = log(Yi)− [log(K) + r log(Xi)] .

After we substitute estimates β̂0 = log(K̂) and β̂1 = r̂ we have

log(EQi) ≈ log(Yi)−
[
β̂0 + β̂1 log(Xi)

]
= ei,

where ei is the ith residual of the linear model (1). Then

EQi ≈ exp(ei).

(d) A sorting of the residuals ranks the EQi values. Pig has the smallest and Human has the
highest. From Figure 22.5 it can be seen that the dinosaurs have observed brain mass Y well
below predicted brain mass KXr. They would have the smallest EQi.

> sort(fit2$residuals)

Pig Kangaroo Cow Jaguar

-0.912462456 -0.799609067 -0.723453348 -0.558454892

Golden hamster Rat Guinea pig Horse

-0.555421133 -0.550956139 -0.475168201 -0.371731840

22.3. THEORETICAL COMPLEMENTS 293

Rabbit Giraffe Mountain beaver Mouse

-0.346496158 -0.345737520 -0.284304924 -0.228979028

Gorilla African elephant Grey wolf Donkey

-0.155653772 -0.122218673 -0.069700540 -0.048100839

Sheep Goat Cat Asian elephant

-0.006993271 0.097024005 0.194039293 0.384317819

Mole Potar monkey Chimpanzee Rhesus monkey

0.530756811 0.862375734 0.961686125 1.594948144

Human

1.930293870

0 5 10

0
2

4
6

8

log(body)

lo
g(

br
ai

n)

Mountain beaver

Cow

Grey wolfGoat

Guinea pig

Dipliodocus

Asian elephant

Donkey
Horse

Potar monkey

Cat

Giraffe

Gorilla

Human

African elephant

Triceratops

Rhesus monkey

Kangaroo

Golden hamster

Mouse

Rabbit

SheepJaguar

Chimpanzee

Rat

Brachiosaurus

Mole

Pig

With dinosaurs
Without dinosaurs

Figure 22.5: Plot for Problem 22.9 (b).

22.3 Theoretical Complements

Problem 22.10. Consider the case of linear regression through the origin:

Yi = βXi + εi, i = 1, . . . , n

where εi ∼ N(0, σ2) are iid error terms, and X1, . . . , Xn are fixed predictor terms. Write explicitly
the error sum of squares SSE for this model, where β̂ is an estimate of β. After verifying that

294 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

SSE is a second order polynomial in β̂, determine the least squares estimate of β directly in terms
of the observation (Xi, Yi), i = 1, . . . , n.

SOLUTION:
We have

SSE =
∑
i=1

(Yi − β̂Xi)
2 =

[∑
i=1

Y 2
i

]
− 2β̂

[∑
i=1

XiYi

]
+ β̂2

[∑
i=1

X2
i

]
.

The minimum is directly given as

β̂ =

∑
i=1XiYi∑
i=1X

2
i

.

Problem 22.11. Suppose we are given the simple linear regression model

Y = β0 + β1X + ε, (22.9)

where ε ∼ N(0, σ2
ε). Suppose X is then interpreted itself as a random outcome with distribution

X ∼ N(0, 1), which is independent of ε. Derive the correlation coefficient ρX of (X,Y), where

ρXY =
cov(X,Y)√
var(X)var(Y)

.

This provides a method of simulating jointly distributed random variables.

SOLUTION:
The correlation is

ρXY =
cov(X,Y)√
var(X)var(Y)

=
E[(X − µX)(Y − µY)]√

var(X)var(Y)
.

We have, given what we know of ε, X and Y ,

µX = 0

µY = β0

var(X) = 1

var(Y) = var(β1X) + var(ε) = β2
1 + σ2

ε

E[(X − µX)(Y − µY)] = E[X(β1X + ε)] = β1E[X2] + E[Xε] = β1 + 0.

So,

ρXY =
β1√

β2
1 + σ2

ε

.

22.3. THEORETICAL COMPLEMENTS 295

Problem 22.12. We are given a simple linear regression model Y = β0 +β1X, based on n pairs of
independent and dependent variables (Xi, Yi). Let β̂i be the least squares estimates of βi, i = 0, 1.

(a) Suppose we have some choice of the independent variables Xi, subject to the following con-
straints:

(i) Sample size n is even.
(ii) The mean X̄ = n−1

∑n
i=1Xi is constrained to equal some fixed number x∗.

(iii) We impose the bound x∗ + M ≥ Xi ≥ x∗ −M , i = 1, . . . , n, for some fixed number
M > 0.

Show that the variance of β̂1 is minimized by setting Xi = x∗ −M for half the sample, and
Xi = x∗ + M for the other half (the selection of independent variables for the purpose of
optimizing the efficiency of an inference is refered to as the design problem).

(b) Suppose we construct estimate
µ̂x = β̂0 + β̂1x,

for some fixed x. Does the variance of µ̂x depend on x? If so, for what value of x is the
variance minimized?

SOLUTION:

(a) The variance of β̂1 is

σ2
β̂1

=
σ2∑n

i=1(Xi − X̄)2
.

Since σ2 is fixed σ2
β̂1

is minimized by maximizing
∑n

i=1(Xi − X̄)2. Under constraint X̄ = x∗

we must have
n∑
i=1

(Xi − X̄)2 ≤ nM2,

assuming the given bound holds. But, under the proposed design we have

n∑
i=1

(Xi − X̄)2 = nM2.

This gives the smallest possible variance

σ2
β̂1

=
σ2

nM2
.

(b) The variance of µ̂x is

σ2
µ̂x = σ2

[
1

n
+

(x− X̄)2∑n
i=1(Xi − X̄)2

]
.

This quantity depends on x, and is minimized by setting x = X̄.

296 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

Problem 22.13. We are given a multiple linear regression model

yi = β1xi1 + . . .+ βqxiq + εi, i = 1, . . . , n,

where εi are iid error terms with εi ∼ N(0, σ2). Let β̂i be the least squares estimate of βi, i =
1, . . . , q. There is an advantage with respect to the interpretability of the regression coefficients if
they are uncorrelated. In this case, the contribution of each predictor to the model can be assessed
independently of the other predictors.

(a) If β̂ββ = [β̂1 . . . β̂q]
T is the vector of least squares coefficient estimates, then the covariance

matrix is given by
Σ
β̂ββ

= σ2(XTX)−1. (22.10)

Using this expression, show that the regression coefficients are mutually uncorrelated if and
only if

n∑
i=1

xijxik = 0 (22.11)

for each pair j 6= k.
(b) Consider the simple regression model

yi = β0 + β1xi + εi, i = 1, . . . , n. (22.12)

Suppose the independent variable is transformed to x′i = xi− x̄, where x̄ = n−1
∑

i xi. Then,
using the transformed independent variable, consider the alternative model

yi = β′0 + β′1x
′
i + εi, i = 1, . . . , n. (22.13)

The values yi and εi are otherwise the same for both models (22.12) and (22.13).

(i) Show that the two models are equivalent in the sense that the fitted values ŷi must
be the same. How are the least squares estimates of the coefficients for the respective
models related?

(ii) Show that for model (22.13) the estimates of the coefficients β′0 and β′1 are uncorrelated.

SOLUTION:

(a) The components of β̂ββ are uncorrelated if and only if Σ
β̂ββ

is a diagonal matrix. But an invertible
square matrix is diagonal if and only if its inverse is diagonal. Therefore, the components of
β̂ββ are uncorrelated if and only if XTX is a diagonal matrix. This condition is equivalent to
(22.11).

(b) Consider the matrix representation of the multiple linear regression model

y = Xβββ + εεε

where y is an n × 1 response vector, X is a n × q matrix, βββ is a q × 1 vector of coefficients,
and εεε is an n× 1 vector of error terms. Then the least squares estimates β̂ββ of βββ are obtained
by minimizing

SSE =
n∑
i=1

(yi − ŷi)
2

22.3. THEORETICAL COMPLEMENTS 297

where ŷ = Xβ̂ββ is the n× 1 vector of fitted values.
Viewed geometrically, ŷ is a linear combination of the form

ŷ = β̂1x1 + . . .+ β̂qxq,

where x1, . . . ,xq are the n × 1 column vectors of X. Let Y be the set of all n × 1 vectors
which are linear combinations of the column vectors of X (this set is strictly smaller than Rn,
provided n > q). Then ŷ is the unique vector in Y which minimizes SSE.
In general, if we have p vectors vvvi ∈ Rn, then the span of (vvv1, . . . , vvvp) is the set of all linear
combinations of those p vectors. Let YX be the span of the column vectors of X. Then ŷ
is the element of YX which minimizes SSE, and the least squares coefficient estimations are
the values β̂ββ for which ŷ = Xβ̂ββ.

(i) We can answer Part (b)-(i) by showing that the span of the predictors X is the same for
the two models. For model (22.12) the predictor vectors, or column vectors of X, are

x1 = [1 . . . 1]T

x2 = [x1 . . . xn]T .

For model (22.13) the predictor vectors, or column vectors of X′, are

x′1 = [1 . . . 1]T

x′2 = [x1 − x̄ . . . xn − x̄]T

= [x1 . . . xn]T − x̄[1 . . . 1]T

= x2 − x̄ · x1.

It can be seen that ŷ is a linear combination of x1,x2 if and only if it is a linear
combination of x′1,x

′
2. In other words Yx = Yx′ , so the fitted values ŷ must be the same,

and the two models are equivalent.
Since the models are equivalent, we can write

ŷi = β̂0 + β̂1xi = β̂′0 + β̂′1(xi − x̄) = [β̂′0 − β̂′1x̄] + β̂′1xi,

for i = 1, . . . , n. We must therefore have

β̂0 = β̂′0 − β̂′1x̄
β̂1 = β̂′1.

(ii) For model (22.13) we have

n∑
i=1

1× x′i =

n∑
i=1

1× (xi − x̄) = 0,

therefore condition (22.11) is satisfied, which implies that β̂′0 and β̂′1 are uncorrelated.

298 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

Problem 22.14. We are given a simple linear regression model Y = β0 + β1X.

1. Let β̂i be the least squares estimates of βi, i = 0, 1. Suppose a constant c is added to each
response and the model refit. What will be the new least squares estimates of βi, expressed
in terms of the old estimates? Verify your answer analytically.

2. The coefficient β0 is referred to as the intercept term (where the Y -axis is intercepted by the
regression line). It can be interpreted as a summary of the vertical location of the response Y ,
since the effect of changing the constant c of part (a) is directly observable in β0. Of course,
β0 = µ0, where µx = β0 + β1x, so we may construct a new intercept µx at any vertical line
X = x for the same purpose. The least squares estimate will be

µ̂x = β̂0 + β̂1x.

What analytical criterion can be used to select x, and what would be the resulting optimal
choice?

SOLUTION:

(a) For simple linear regression the least squares coefficient estimates are:

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2

β̂0 = Ȳ − β̂1X̄.

Denote the new estimates β̂′i. If we substitute Yi + c for Yi into the expression for β̂1, it is
clear that the c’s will cancel, so that β̂′1 = β̂1. On the other hand, in the expression for β̂0 we
replace Ȳ with Ȳ + c, so that β̂′0 = β̂0 + c.

(b) The variance of µ̂x is

σ2
µ̂x = σ2

[
1

n
+

(x− X̄)2∑n
i=1(Xi − X̄)2

]
.

This quantity is minimized by setting x = X̄.

Problem 22.15. Consider the matrix representation of the multiple linear regression model

y = Xβββ + εεε

where y is an n× 1 response vector, X is a n× q matrix, βββ is a q × 1 vector of coefficients, and εεε
is an n× 1 vector of error terms. Let

β̂ββ = (XTX)−1XTy

22.3. THEORETICAL COMPLEMENTS 299

be the least squares estimate of βββ (we will assume that XTX is invertible). The vector of residuals
is given by

eee = y− ŷ,

where ŷ = Xβ̂ββ is the vector of fitted values. Let yi, ŷi and ei denote the individual responses, fitted
values and residuals, i = 1, . . . , n.

(a) Suppose H is an n× n matrix for which the fitted values satisfy

ŷ = Hy.

Give H explicitly in terms of X.
(b) Prove that H is symmetric and idempotent (that is, H = HH).
(c) Prove that eee and ŷ are orthogonal, that is, ŷTeee = 0.
(d) Prove that

XTeee = 000

where 000 is a q × 1 column vector of zeros.
(e) Prove that if the model contains an intercept (that is, X contains a column of 1’s), then the

sum of the residuals satisfies
∑n

i=1 ei = 0
(f) Prove that

n∑
i=1

y2
i =

n∑
i=1

ŷ2
i +

n∑
i=1

e2
i .

SOLUTION:

(a) The fitted values may be written

ŷ = Xβ̂ββ = X(XTX)−1XTy = Hy,

where H = X(XTX)−1XT .
(b) First note that we always have (ABC)T = CTBTAT where defined. This implies that XTX

is symmetric, therefore so is the inverse (XTX)−1. We then have

HT = X
[
(XTX)−1

]T
XT = X(XTX)−1XT = H,

therefore H is symmetric. Then H is idempotent, since

HH = X(XTX)−1XTX(XTX)−1XT

= X
[
(XTX)−1(XTX)

]
(XTX)−1XT

= XIn(XTX)−1XT

= X(XTX)−1XT

= H,

where In is the n× n identity matrix.

300 CHAPTER 22. PRACTICE PROBLEMS - LINEAR REGRESSION

(c) The residual vector is given by

eee = y− ŷ = Iny−Hy = (In −H)y.

We may then write

ŷTeee = yTHT (In −H)y

= yTH(In −H)y

= yT (H −HH)y

= yT (H −H)y

= 0,

since H is idempotent.
(d) We can write

XTeee = XT (In −H)y

= (XT −XTX(XTX)−1XT)y

= (XT −XT)y

= 000

(e) If the model contains an intercept, then one of the columns of X consists of 1’s. By Part (d)
XTeee = 000. This implies

∑n
i=1 ei = 0.

(f) We can write

n∑
i=1

y2
i = yTy

= (ŷ + eee)T (ŷ + eee)

= ŷT ŷ + 2ŷTeee+ eeeTeee

= ŷT ŷ + eeeTeee

=
n∑
i=1

ŷ2
i +

n∑
i=1

e2
i ,

since by Part (c) ŷTeee = 0.

Chapter 23

Practice Problems - Logistic
Regression

23.1 Exercises

Problem 23.1. Suppose a logistic regression model is fit with response Y = infection (at clinic
visit) and two predictors X1 = antibody level (log titre) and X2 = age (years). The estimated
regression coefficients are β̂0 = −1.23, β̂1 = −0.73, β̂2 = −0.05.

(a) Write an explicit formula for estimating P (infection) in terms of an antibody level x1 and
age x2, making use of the estimated regression coefficients.

(b) What are the estimated values of P (infection) for three subjects of age 4.5 years with
antibody levels -0.5, 1.25 and 3.5?

(c) Suppose the IQR of the antibody levels is estimated to be 2.78. What is the estimated odds
ratio for infection between subjects at the 75th percentile and the 25th percentile of antibody
levels? Does this depend on age?

(d) Construct a plot showing estimated P (infection) as a function of antibody level for ages 1,
5, 9, superimposed on one plot. Use the plot option lty to distinguish the lines, and use the
legend function to label the lines accordingly.

(e) Suppose another model is fit, with an interaction term added, so that the linear prediction
term is now:

η = β0 + β1 × antibody + β2 × age+ β3 × antibody × age,

with estimated coefficients β̂0 = −1.13, β̂1 = −1.05, β̂2 = −0.049, β̂3 = 0.064. Repeat part
(d) and comnment on the differences between the two models.

(f) The odds ratio defined in part (c) now depends on age. Develop a formula for that odds ratio
as a function of age, and plot the function over the range [1, 10].

(g) We generally expect the probability of infection to decrease with increasing antibody levels.
In the model of part (e) for what ages does this hold? What does this say about the suitability
of this model?

301

302 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

SOLUTION:
Suppose a logistic regression model is fit with response Y = infection (at clinic visit) and two
predictorsX1 = antibody level (log titre) andX2 = age (years). The estimated regression coefficients
are β̂0 = −1.23, β̂1 = −0.73, β̂2 = −0.05.

(a) P (infection) = 1
1+exp(1.23+0.73x1+0.05x2)

(b) The probabilities are given directly by:

0.2516 =
1

1 + exp(1.23 + 0.73×−0.5 + 0.05× 4.5)

0.0857 =
1

1 + exp(1.23 + 0.73× 1.25 + 0.05× 4.5)

0.0178 =
1

1 + exp(1.23 + 0.73× 3.5 + 0.05× 4.5)

(c) Odds ratios are given generally by

OR[infection] = eβ̂1(x1−x′1)+β̂2(x2−x′2)

If x1 alone is varied, and we compare (Q75, x2) to (Q25, x2) where Q75 and Q25 are the
percentiles,we get

OR[infection] = eβ̂1(Q75−Q25)+β̂2(x2−x2)

= eβ̂1×IQR

= e−0.73×2.78

= 0.1314.

(d) The following code creates the required plot (Figure 23.1):

beta0 = -1.23

beta1 = -0.73

beta2 = -0.05

ilogit = function(x) {1/(1+exp(-x))}

ab = seq(-1,5,by=0.25)

plot(ab, ilogit(beta0 + beta1*ab + beta2*1),type=’l’,lty=1,ylim=c(0,0.4),

xlab=’AB (log)’,ylab=’P(infection)’)

lines(ab, ilogit(beta0 + beta1*ab + beta2*5),type=’l’,lty=2)

lines(ab, ilogit(beta0 + beta1*ab + beta2*9),type=’l’,lty=3)

legend(’topright’,legend=c(’1 yr’,’5 yr’,’9 yr’),lty=c(1,2,3))

(e) The following code creates the required plot (Figure 23.2). The effect of the interaction is to
reduce the dependence of P (infection) on AB levels for older subjects. Specifically, the rate
of decrease of P (infection) with increasing AB is lower for older subjects.

23.1. EXERCISES 303

−1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

AB (log)

P(
inf

ec
tio

n)

1 yr

5 yr

9 yr

Figure 23.1: Plot for Problem 23.1 (d)

beta0 = -1.13

beta1 = -1.05

beta2 = -0.049

beta3 = 0.064

ilogit = function(x) {1/(1+exp(-x))}

ab = seq(-1,5,by=0.25)

plot(ab, ilogit(beta0 + beta1*ab+beta2*1 + beta3*1*ab),type=’l’,lty=1,ylim=c(0,0.5),

xlab=’AB (log)’,ylab=’P(infection)’)

lines(ab, ilogit(beta0 + beta1*ab+beta2*5 + beta3*5*ab),type=’l’,lty=2)

lines(ab, ilogit(beta0 + beta1*ab+beta2*9 + beta3*9*ab),type=’l’,lty=3)

legend(’topright’,legend=c(’1 yr’,’5 yr’,’9 yr’),lty=c(1,2,3))

(f) Following part (c) we have:

OR[infection] = eβ̂1(Q75−Q25)+β̂2(x2−x2)+β̂3(Q75x2−Q25x2)

= eβ̂1×IQR+β̂3×IQR×x2

The following code creates the required plot (Figure 23.3).

ilogit = function(x) {1/(1+exp(-x))}

age = seq(1,10,by=0.25)

ex = expression(paste(’OR for ’,Q[75],’ vs ’,Q[25],sep=’’))

plot(age,exp((beta1+beta3*age)*2.78),type=’l’,xlab=’Age (years)’,ylab=ex)

304 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

−1 0 1 2 3 4 5

0.0
0.1

0.2
0.3

0.4
0.5

AB (log)

P(
inf

ec
tio

n)

1 yr

5 yr

9 yr

Figure 23.2: Plot for Problem 23.1 (e)

2 4 6 8 10

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

Age (years)

OR
 fo

r Q
75

 vs
 Q

25

Figure 23.3: Plot for Problem 23.1 (f)

(g) The exponential rate of change of P (infection) with antibody for fixed age is

∆ = β1 + β3 ×AGE.

We therefore have

∆ < 0 if and only if AGE <
−β1

β3
.

In this model

∆ < 0 if and only if AGE <
1.05

.064
= 16.40625.

This doesn’t rule out using the model for subjects below a certain age. We may have data
on subjects up to, say, age 10, and we can verify the suitability of the model for the observed
age range. The model would be incorrect outside this range.

23.1. EXERCISES 305

Problem 23.2. A logistic regression model is used to model P (Y = 1) for some binary response
variable Y . It depends on two predictors, a quantitative predictor x and the indicator variable
i.class. The following logistic regression model is used:

P (Y = 1) =
eη

1 + eη
, where η = β0 + β1x + β2i.class + β3x× i.class.

Using data with sample size n = 94, the following coefficient estimates were obtained. The estimated
covariance matrix for the estimated coefficients in vector form [β̂0, . . . β̂3]T is given immediately
following.

>

> ### coefficient estimates

>

> summary(fit)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0488571 0.7736844 -1.355665 0.175205679

x 0.7183279 0.2540876 2.827087 0.004697354

i.class 1.3787316 0.9861359 1.398115 0.162078447

x:i.class -0.9788835 0.2823500 -3.466915 0.000526468

>

> ### estimated covariance matrix

>

> summary(fit)$cov.scaled

(Intercept) x i.class x:i.class

(Intercept) 0.5985876 -0.15894404 -0.5985876 0.15894404

x -0.1589440 0.06456053 0.1589440 -0.06456053

i.class -0.5985876 0.15894404 0.9724639 -0.22173994

x:i.class 0.1589440 -0.06456053 -0.2217399 0.07972153

(a) Carry out a hypothesis test for null hypothesis Ho and alternative hypothesis Ha given by:

Ho : P (Y = 1) is not an increasing function of x for fixed i.class = 0, against

Ha : P (Y = 1) is an increasing function of x for fixed i.class = 0.

Use a t-statistic based on the appropriate degrees of freedom. Use significance level α = 0.05.
(b) Carry out a hypothesis test for null hypothesis Ho and alternative hypothesis Ha given by:

Ho : P (Y = 1) is not a decreasing function of x for fixed i.class = 1, against

Ha : P (Y = 1) is a decreasing function of x i.class = 1for fixed i.class = 1.

Use a t-statistic based on the appropriate degrees of freedom. Use significance level α = 0.05.

SOLUTION:

306 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

(a) The required hypothesis test is

Ho : β1 ≤ 0, against

Ha : β1 > 0.

From the coefficient table we have estimate and standard deviation β̂1 = 0.7183279, S =
0.2540876, giving t-statistic

T =
β̂1

S
=

0.7183279

0.2540876
= 2.827088.

There are p = 4 coefficients, so the appropriate degrees of freedom is n−4 = 90. We reject Ho

if T > t90,0.05 = 1.662. Therefore, we reject Ho, and conclude that P (Y = 1) is an increasing
function of x for fixed i.class = 0.

(b) When i.class = 1, the slope of η is β1 + β3. The required hypothesis test is therefore

Ho : β1 + β3 ≥ 0, against

Ha : β1 + β3 < 0.

The estimate of β1 + β3 is

β̂1 + β̂3 = 0.7183279− 0.9788835 = −0.2605556.

To calculate the standard error of β̂1 + β̂3 we need the standard errors S1, S3 of β̂1 and β̂3,
and the estimated covariance S13. From the estimated covariance matrix we have

S2
1 = 0.06456053

S2
3 = 0.07972153

S13 = −0.06456053

The standard error S+ of β̂1 + β̂3 is then given by

S2
+ = S2

1 + S2
3 + 2S13 = 0.06456053 + 0.07972153− 2× 0.06456053 = 0.015161.

The t-statistic is then

T =
β̂1

S
=
β̂1 + β̂3

S+
=
−0.2605556

0.0151611/2
=
−0.2605556

0.12313
= −2.116102.

There are p = 4 coefficients, so the appropriate degrees of freedom is n−4 = 90. We reject Ho

if T < t90,0.05 = 1.662. Therefore, we reject Ho, and conclude that P (Y = 1) is a deacreasing
function of x for fixed i.class = 1.

23.1. EXERCISES 307

Problem 23.3. A model for predicting victory for a professional baseball team is developed. It
depends on two predictors, T = temperature on game day, in degrees Fahrenheit, and the indicator
variable IH = 1 for home games. The following logistic regression model is used:

P (Win Game) =
eη

1 + eη
, where η = β0 + β1T + β2IH + β3T × IH .

Suppose the parameter estimates are β̂0 = −0.025, β̂1 = −0.027, β̂2 = −2.15, β̂3 = 0.076.

(a) When playing at home, does the team prefer higher or lower temperatures? What about
when they play away?

(b) Suppose the temperature is assumed to be within the range [65, 85]. What are the minimum
and maximum values of P (Win Game) when the team plays at home, and when the team
plays away?

(c) In order to predict the number of wins for a season, a simple temperature model is developed.
The temperature will be either 65◦ or 85◦. We assume probabilities P (T = 85◦ | IH = 1) =
0.45, P (T = 85◦ | IH = 0) = 0.62. Assuming exact half of the games are home games, what
is the overall predicted win rate for the season?

SOLUTION:

(a) First, note that P (Win Game) is an increasing function of η. When playing at home, IH = 1,
so

η = β0 + β2 + (β1 + β3)T.

We have estimate β1 + β3 ≈ β̂1 + β̂3 = −0.027 + 0.076 = 0.049. In this case, η, and therefore
P (Win Game), increases with temperature T . On the other hand, for away games IH = 0, so

η = β0 + β1T.

Since β1 ≈ β̂1 = −0.027, we conclude that η, and therefore P (Win Game), decreases with
temperature T .

(b) In general, we have

P (Win Game | IH = 0) = (1 + exp(0.025 + 0.027× T))−1

P (Win Game | IH = 1) = (1 + exp(2.175− 0.049× T))−1

For both home and away games, the extreme points are calculated at T = 65, 85. We need
the probabilities

P (Win Game | T = 65, IH = 0) = (1 + exp(0.025 + 0.027× 65))−1 = 0.1443

P (Win Game | T = 85, IH = 0) = (1 + exp(0.025 + 0.027× 85))−1 = 0.0895

P (Win Game | T = 65, IH = 1) = (1 + exp(2.175− 0.049× 65))−1 = 0.7330

P (Win Game | T = 85, IH = 1) = (1 + exp(2.175− 0.049× 85))−1 = 0.8797.

308 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

(c) The overall probability is found by the law of total probability:

pW = P (Win Game | T = 65, IH = 0)P (T = 65, IH = 0)

+P (Win Game | T = 85, IH = 0)P (T = 85, IH = 0)

+P (Win Game | T = 65, IH = 1)P (T = 65, IH = 1)

+P (Win Game | T = 85, IH = 1)P (T = 85, IH = 1)

= [0.1443× (1− 0.62) + 0.0895× 0.62 + 0.7330× (1− 0.45) + 0.8797× 0.45] /2

≈ 0.454.

Problem 23.4. We wish to develop a model which predicts the probability that a boxer wins a
match based on weight differential. Suppose W is the amount in pounds by which the weight of
boxer A exceeds the weight of boxer B (of course, W can be negative). Then

P (Boxer A wins |W) =
eη

1 + eη
, where η = β0 + β1W.

(a) Why would we expect

P (Boxer A wins |W) + P (Boxer A wins | −W) = 1

as a general rule? Show that this happens when β0 = 0.
(b) Suppose we constrain β0 = 0, and we are given P (Boxer A wins | 15) = 0.61. What is β1?

SOLUTION:

(a) Suppose we have two boxers A, B. We expect P (Boxer A wins) + P (Boxer B wins) = 1. In
addition, if W = w for boxer A, then W = −w for boxer B. Suppose β0 = 0. Evaluate

eβ1w

1 + eβ1w
+

e−β1w

1 + e−β1w
=

eβ1w

1 + eβ1w
+
eβ1w

eβ1w
× e−β1w

1 + e−β1w

=
eβ1w

1 + eβ1w
+

1

1 + eβ1w

= 1.

(b) We then have

P (Boxer A wins |W) =
1

1 + e−β1W
.

If

0.61 =
1

1 + e−β115
,

then

β1 =
−1

15
log

(
1

0.61
− 1

)
= 0.02982.

23.2. DATA ANALYSIS 309

23.2 Data Analysis

Problem 23.5. This problem will make use of the birthwt data set from the MASS library. This
data set was collected from birth records at Baystate Medical Center, Springfield, Mass during 1986,
for the purpose of analyzing risk factors associated with low infant birth weight. The response will
be the indicator variable low, set to 1 for birth weight less than 2.5 kg.

(a) First examine the integer variable ptl, the number of previous premature labors. Construct
a frequency table for the outcomes. Also include in this table the sample mean of low for
each ptl outcome.

(b) Fit a logistic regression model with response birthwt and predictor ptl. Do this using two
methods, first with ptl as a numerical variable, then as a factor with each integer outcome as a
single level. Using the fitted coefficients calculate the expected response (here, the probability
of low birthweight) for each ptl outcome, and append these to the table constructed for Part
(a).

(c) Comment on the results of Part (b). In particular, which fit most resembles the sample means,
and why would you expect this?

(d) Refit the model, replacing ptl with the indicator variable I(ptl > 0), then add the predictor
age. You can use the command

fit.mult = glm(low ∼ I(ptl > 0)+age, data = birthwt, family=’binomial’)

Plot the estimated probability of low birthweight on a single plot. Use age as the horizontal
axis, and P (low birth weight) as the vertical axis. Include on the same plot separate lines for
ptl = 0 and ptl > 0, properly labeled. Make sure the range of age on the plot matches that
of the data. In general, what group is most at risk of low birth weight?

(e) Write explicitly P (low birth weight) as function of ptl and age as modeled in Part (d), and
the appropriate regression coefficients βi (you can leave these as symbols). Show that in this
model the odds ratio

OR =
Odds(low birth weight | ptl > 0)

Odds(low birth weight | ptl = 0)

does not depend on age. Estimate this odds ratio from the fitted model, and include a 95%
confidence interval.

(f) Divide the data into two groups defined by {age ≤ 25} and {age > 25}. For each group
estimate directly P (low birth weight | ptl > 0), P (low birth weight | ptl = 0), and the odds
ratio OR defined in Part (e).

(g) For the groups defined by {age ≤ 25} in Part (f), we would expect the probabilities
P (low birth weight | ptl > 0) and P (low birth weight | ptl = 0) to be strictly between
the fitted probabilities for ages 14 and 25 given the respective values of I{ptl > 0} (14 and
25 are the end points of the age range used). Test this rule. Do the same for the {age > 25}
group, using age endpoints 25 and 45.

(h) Do the two odds ratios for the two groups defined by {age ≤ 25} and {age > 25} calculated
in Part (f) seem compatible with the assumption that the odds ratio does not depend on age?

310 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

SOLUTION:

(a) The following code produces the required table

>

> ### (a)

>

> freq = table(birthwt$ptl)

> mean.ptl = tapply(birthwt$low,birthwt$ptl,mean)

> cbind(freq,mean.ptl)

freq mean.ptl

0 159 0.2578616

1 24 0.6666667

2 5 0.4000000

3 1 0.0000000

>

(b) The following code produces the required fitted models

> ### (b)

>

> logistic = function(x) {1/(1+exp(-x))}

>

> # numerical predictor

> fit.num = glm(low ~ ptl, data = birthwt, family=’binomial’)

> cf.num = summary(fit.num)$coef

>

> # factor predictor

> fit.fact = glm(low ~ as.factor(ptl), data = birthwt, family=’binomial’)

> cf.fact = summary(fit.fact)$coef

>

> # print coefficient tables

>

> cf.num

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9641890 0.1749606 -5.510892 3.570202e-08

ptl 0.8018058 0.3171533 2.528133 1.146709e-02

> cf.fact

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0571126 0.1812866 -5.83116864 5.504052e-09

as.factor(ptl)1 1.7502597 0.4694303 3.72847616 1.926411e-04

as.factor(ptl)2 0.6516474 0.9306977 0.70017093 4.838206e-01

as.factor(ptl)3 -13.5089552 882.7433938 -0.01530338 9.877901e-01

>

> # obtain fitted values

>

23.2. DATA ANALYSIS 311

> fitted.num = logistic(cf.num[1,1]+(0:3)*cf.num[2,1])

> fitted.fact = logistic(cf.fact[1,1]+c(0,cf.fact[2:4,1]))

>

> # append to table

>

> cbind(freq,mean.ptl,fitted.num,fitted.fact)

freq mean.ptl fitted.num fitted.fact

0 159 0.2578616 0.2760403 2.578616e-01

1 24 0.6666667 0.4594932 6.666667e-01

2 5 0.4000000 0.6546229 4.000000e-01

3 1 0.0000000 0.8086448 4.721032e-07

>

(c) The fitted model which uses the predictor in factor form produces fitted values almost identical
to the grouped sample proportions. The sample frequency of 0 for ptl = 3 is estimated
by the logistic regression model as 4.721032e-07. This can be expected, since the factor
model has four degrees of freedom, and can therefore estimate the appropriate probabilities
independently of each other.

(d) The following code produces the required fitted model (Figure 23.4). Risk for low birth weight
decreases with age of mother, and increases with a previous history of premature labors. The
group at highest risk for low birth weight deliveries are youger mothers with a previous history
of premature labors.

> ### (d)

>

> # Indicator predictor

> fit.mult = glm(low ~ I(ptl > 0)+age, data = birthwt, family=’binomial’)

> cf.mult = summary(fit.mult)$coef

> cf.mult

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.53224661 0.77459803 0.6871262 0.4920032031

I(ptl > 0)TRUE 1.60766387 0.42986071 3.7399647 0.0001840461

age -0.07054101 0.03411005 -2.0680417 0.0386360997

>

>

> age.range = range(birthwt$age)

> age.grid = seq(age.range[1],age.range[2],0.1)

>

> pdf(’A3-fig1.pdf’)

>

> new.data.0 = data.frame(age=age.grid, ptl=0)

> new.data.1 = data.frame(age=age.grid, ptl=1)

>

> matplot(age.grid,cbind(logistic(predict(fit.mult, newdata=new.data.0)),

+ logistic(predict(fit.mult, newdata=new.data.1))),

+ col=c(’green’,’red’),type=’l’,lty=1,

312 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

+ xlab=’Age of Mother (year)’,ylab=’P(low birth weight)’, ylim=c(0,1))

>

> legend(’topright’,legend=c(’0 premature labors’, ’>0 premature labor’),

+ col=c(’green’,’red’),lty=1)

> dev.off()

RStudioGD

2

>

(e) The functional form for the model is

P (low birth weight) =
eβ0+β1I{ptl>0}+β2age

1 + eβ0+β1I{ptl>0}+β2age

=
1

1 + e−β0−β1I{ptl>0}−β2age
.

(Either form is fine). In general, of a probability is given in the form

P =
eη

1 + eη

then the associated odds is

Odds =
P

1− P
=

eη

1+eη

1− eη

1+eη
=

eη

1+eη

1
1+eη

= eη.

Then let ηi, i = 1, 2 be the linear predictor term for two sets of predictor values. The odds
ratio for low birth weight between predictor values η1, η2 is then

OR =
Odds(low birth weight | η1)

Odds(low birth weight | η2)
=
eη1

eη2
= eη1−η2 .

Now, suppose two subjects i = 1, 2 have the same age A, but ptl > 0 for subject i = 1 and
ptl = 0 for subject i = 2. Then

η1 − η2 = [β0 + β1 × 1 + β2A]− [β0 + β1 × 0 + β2A] = β1,

so that the odds ratio

OR = eβ1 ≈ e1.6077 = 4.991

does not depend on age. An approximate 95% confidence interval for β1 is

CIβ1 = β̂1 ± 2SE = 1.6077± 2× 0.43 = 1.6077± 0.86 = [0.7477, 2.4677].

The confidence interval for OR is therefore

CIOR = eβ̂1±2SE = [e0.7477, e2.4677] = [2.11, 11.80].

(f) The following code produces the required tables

23.2. DATA ANALYSIS 313

> ### (f)

>

> bw2 = subset(birthwt, age <= 25)

> tab = table(bw2$low,bw2$ptl > 0)

> dimnames(tab) = list(c(’low=0’,’low=1’),c(’ptl=0’,’ptl>0’))

> tab

ptl=0 ptl>0

low=0 82 7

low=1 33 13

>

> bw2 = subset(birthwt, age > 25)

> tab = table(bw2$low,bw2$ptl > 0)

> dimnames(tab) = list(c(’low=0’,’low=1’),c(’ptl=0’,’ptl>0’))

> tab

ptl=0 ptl>0

low=0 36 5

low=1 8 5

>

From the table for age ≤ 25 we have

P (low birth weight | ptl = 0) =
33

33 + 82
≈ 0.287

P (low birth weight | ptl > 0) =
13

13 + 7
= 0.65

OR =
82× 13

33× 7
≈ 4.615.

From the table for age > 25 we have

P (low birth weight | ptl = 0) =
8

8 + 36
≈ 0.1818

P (low birth weight | ptl > 0) =
5

5 + 5
= 0.5

OR =
82× 13

33× 7
= 4.5.

(g) The following code produces the required fitted values

> ### (g)

>

> # the required fitted values

>

> new.data.0 = data.frame(age=c(14,25,45), ptl=0)

> new.data.1 = data.frame(age=c(14,25,45), ptl=1)

> logistic(predict(fit.mult, newdata=new.data.0))

1 2 3

0.38809484 0.22595771 0.06647766

314 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

> logistic(predict(fit.mult, newdata=new.data.1))

1 2 3

0.7599374 0.5930010 0.2622252

>

The relevant probabilities are:

P (low birth weight | ptl = 0, age = 14) = 0.3881

P (low birth weight | ptl = 0, age = 25) = 0.2260

P (low birth weight | ptl = 0, age = 45) = 0.0665

P (low birth weight | ptl > 0, age = 14) = 0.7599

P (low birth weight | ptl > 0, age = 25) = 0.5930

P (low birth weight | ptl > 0, age = 45) = 0.2622

The required ordering rule holds for age ≤ 25

P (low birth weight | ptl = 0) =
33

33 + 82
≈ 0.287 ∈ (0.2260, 0.3881)

P (low birth weight | ptl > 0) =
13

13 + 7
= 0.65 ∈ (0.5930, 0.7599)

The required ordering rule holds for age > 25

P (low birth weight | ptl = 0) =
8

8 + 36
≈ 0.1818 ∈ (0.0665, 0.2260)

P (low birth weight | ptl > 0) =
5

5 + 5
= 0.5 ∈ (0.2622, 0.5930)

(h) The ORs for age ≤ 25 and age > 25 are 4.615 and 4.5 respectively. These are both close
to the estimated value 4.991 obtained from the fitted model, and well within the confidence
interval [2.11, 11.80]. Thus, that the OR does not depend on age is supported by this analysis.

Problem 23.6. For this problem use data set Auto from the ISLR package, which contains MPG;
number of cylinders; model year; origin of car; and other information for 392 vehicles. Suppose a
given application requires a prediction as to whether or not the model year of a vehicle is 1975 or
later, bases on minimum technical specifications. The reasoning here is that a very low or very high
MPG may be enough to give an accurate prediction (if not, more information would be collected).

(a) Create a new data frame containing an indicator function Y which equals 1 for model year
≥ 1975. Also retain only vehicles for which origin == 1 (that is, we will only consider
American cars).

23.2. DATA ANALYSIS 315

15 20 25 30 35 40 45

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age of Mother (year)

P
(l
o
w

 b
ir

th
 w

e
ig

h
t)

0 premature labors
>0 premature labor

Figure 23.4: Figure for Problem 23.5 (d).

(b) Fit a logistic regression model with binary response Y and predictor variable mpg. Report
the standard coefficient table (ie. for each β̂0, β̂1 there are columms for Estimate, Standard
Error, Z-score and P -value).

(c) Create a graph with the following elements.

(i) Each observed pair (mpgi, Yi) is plotted separately (the option pch=3 works well for
this).

(ii) The function f(mpg) = E[Y | mpg] = P (1975+ | mpg) is plotted. Use the predict()

function. This has several advantages. First, we don’t need to rely on the fitted values to
construct the plot, since predict() will calculate fitted values for any predictor values,
using the newdata option (use a list or data frame with consistent variable names). So,
we can use an evenly spaced grid for the mpg axis. Second, we can get standard errors
for the fits using the se=T option. This gives approximate 95% confidence bands after
adding ±2SE to each fitted value. Usually, the confidence bounds are drawn using
dashed lines. Use something like the following commands (data in data frame auto2) to
add the fitted curve to the plot:

logistic = function(x) {(1+exp(-x))^(-1)}

fit0 = glm(Y ~ mpg, family=’binomial’,data=auto2)

mpg.range = seq(min(auto2$mpg),max(auto2$mpg),0.1)

316 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

pr = predict(fit0,newdata=list(mpg=mpg.range),se=T)

lines(mpg.range,logistic(pr$fit))

lines(mpg.range,logistic(pr$fit-2*pr$se.fit),lty=2)

lines(mpg.range,logistic(pr$fit+2*pr$se.fit),lty=2)

Note that predict() gives the linear predictor η = Xβ. You have to apply the logistic
function yourself.

(d) Construct side-by-side boxplots of mpg for each of the six combinations of Y and cylinders.
You can use the formula mpg ∼ Y*cylinders inside the boxplot() function, as long as you
set the data option correctly. Examining the boxplot, would mpg = 20 be strong evidence
that the model year was ≥ 1975 for a 4 cylinder vehicle? What about an 8 cylinder vehicle?

(e) Expand your fit to include the new predictor cylinder as a factor. Note that cylinder has
mode numeric, so it must be explicitly converted to a factor. This can be done directly to
the data frame, or within the model formula, using Y ∼ mpg*as.factor(cylinders). This
will essentially add two indicator functions to the model:

as.factor(cylinders)6 = I{cylinders == 6}
as.factor(cylinders)8 = I{cylinders == 8}

These indicator variables will appear as separate terms, and as interactions with mpg. These
will appear in the resulting coefficient table.

(f) Create a plot with the same axes as that of part (c):

(i) Include the observed pairs (mpgi, Yi), but use separate colors or symbols for each cylinder
level.

(ii) Plot the same function f(mpg) = E[Y | mpg] = P (1975+ | mpg) as in part (c) (ie, the
original fit with mpg only), but without the confidence bounds.

(iii) For each cylinder level identify the mpg range.
(iv) Plot the function f(mpg, cylinders) = E[Y | mpg, cylinders] = P (1975+ |

mpg, cylinders) separately for each cylinder level 4,6,8. Use distinct colors or line types.
Make sure each of the 4 curves is properly labeled (best to use the legend() function
for this). No confidence bounds should be drawn.

(v) The predict() function should be used as in Part (c). However, for each cylinder level,
only use the mpg range observed for that level. Note that the newdata object will need
to include that cylinder level. For example, to draw the fitted curve for level cylinders
== 4:

fit1 = glm(Y ~ mpg*as.factor(cylinders), family=’binomial’,data=auto2)

range.by.cylinder = tapply(auto2$mpg,auto2$cylinders,function(x) range(x))

mpg.col=2

mpg.type=4

mpg.range = seq(range.by.cylinder$’4’[1],range.by.cylinder$’4’[2],0.1)

ngrid = length(mpg.range)

pr = predict(fit1,newdata=list(mpg=mpg.range,

cylinders = rep(mpg.type,ngrid)),se=T)

lines(mpg.range,logistic(pr$fit),col=mpg.col,lwd=2)

For mpg = 20, what is P (1975+ | mpg) without knowing the cylinder level? What is P (1975+ |

23.2. DATA ANALYSIS 317

mpg, cylinders) for mpg = 20, for each cylinder level. Does adding cylinders improve the
prediction accuracy?

SOLUTION:
The required script follows. The plots are given in Figure 23.5.

> par(mfrow=c(2,2))

>

> ### (a) Use American cars (some cars from Europe and Japan have 3 or 5 cylinders)

>

> Auto.ex = subset(Auto, origin==1)

> Y = 1*(Auto.ex$year >= 75)

> auto2 = data.frame(Y,Auto.ex)

>

>

> ### (b) summary() gives the required table

>

> fit0 = glm(Y ~ mpg, family=’binomial’,data=auto2)

> summary(fit0)

Call:

glm(formula = Y ~ mpg, family = "binomial", data = auto2)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2952 -0.8416 0.3046 0.9324 1.6657

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.27126 0.66623 -6.411 1.44e-10 ***

mpg 0.24395 0.03617 6.744 1.54e-11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 332.75 on 244 degrees of freedom

Residual deviance: 256.79 on 243 degrees of freedom

AIC: 260.79

Number of Fisher Scoring iterations: 5

>

> ### (c) Create main plot

>

318 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

> # main plot

> with(auto2,plot(mpg,Y,pch=3,xlab=’MPG’,ylab=’P(1975+)’,cex=0.5,col=1))

>

> # create new data for plotting fitted curve

>

> mpg.range = seq(min(auto2$mpg),max(auto2$mpg),0.1)

> pr = predict(fit0,newdata=list(mpg=mpg.range),se=T)

>

> # Plot fitted values, and fitted values +/- 2*SE.

> # For plotting, fitted values need to be transformed using the logistic function.

> # This is done AFTER the +/- 2*SE operation.

>

> lines(mpg.range,logistic(pr$fit))

> lines(mpg.range,logistic(pr$fit-2*pr$se.fit),lty=2)

> lines(mpg.range,logistic(pr$fit+2*pr$se.fit),lty=2)

>

> ### (d)

>

> boxplot(mpg~Y*cylinders,data=auto2,xlab="(1 = 1975+).(# cylinders)",ylab=’MPG’)

> abline(h=20,col=’gray’)

>

> ### (e)

>

> fit1 = glm(Y ~ mpg*as.factor(cylinders), family=’binomial’,data=auto2)

>

> ### (f)

>

> # Get cylinder-specific MPG ranges

>

> range.by.cylinder = tapply(auto2$mpg,auto2$cylinders,function(x) range(x))

>

> # Create a cylinder color scheme

>

> col.cyl = 2*(auto2$cylinders==4) + 3*(auto2$cylinders==6) + 4*(auto2$cylinders==8)

>

> # Create main plot

>

> with(auto2,plot(mpg,Y,pch=3,xlab=’MPG’,ylab=’P(1975+)’,cex=0.5,col=col.cyl))

>

> # Draw MPG only fit

>

> mpg.range = seq(min(auto2$mpg),max(auto2$mpg),0.1)

> pr = predict(fit0,newdata=list(mpg=mpg.range),se=T)

> lines(mpg.range,logistic(pr$fit),lwd=2)

>

23.2. DATA ANALYSIS 319

> # Add cylinder-specific fits

>

> mpg.col=2

> mpg.type=4

> mpg.range = seq(range.by.cylinder$’4’[1],range.by.cylinder$’4’[2],0.1)

> ngrid = length(mpg.range)

> pr = predict(fit1,newdata=list(mpg=mpg.range,cylinders = rep(mpg.type,ngrid)),se=T)

> lines(mpg.range,logistic(pr$fit),col=mpg.col,lwd=2)

>

> mpg.col=3

> mpg.type=6

> mpg.range = seq(range.by.cylinder$’6’[1],range.by.cylinder$’6’[2],0.1)

> ngrid = length(mpg.range)

> pr = predict(fit1,newdata=list(mpg=mpg.range,cylinders = rep(mpg.type,ngrid)),se=T)

> lines(mpg.range,logistic(pr$fit),col=mpg.col,lwd=2)

>

> mpg.col=4

> mpg.type=8

> mpg.range = seq(range.by.cylinder$’8’[1],range.by.cylinder$’8’[2],0.1)

> ngrid = length(mpg.range)

> pr = predict(fit1,newdata=list(mpg=mpg.range,cylinders = rep(mpg.type,ngrid)),se=T)

> lines(mpg.range,logistic(pr$fit),col=mpg.col,lwd=2)

>

> legend(’right’,legend=c(paste(c(4,6,8),’cylinder’),’All Vehicles’),

col=c(2:4,1),lty=1,cex=0.75)

>

> # P-value for cylinder factor

>

> aov01 = anova(fit0,fit1)

> aov01

Analysis of Deviance Table

Model 1: Y ~ mpg

Model 2: Y ~ mpg * as.factor(cylinders)\end{color}

Resid. Df Resid. Dev Df Deviance

1 243 256.79

2 239 229.88 4 26.91

> pchisq(aov01[2,4],df=aov01[2,3],lower.tail = FALSE)

[1] 2.073389e-05

>

> ### Give predicted values of P(1975+) for MPG = 20, for each cylinder level

>

> logistic(predict(fit1,newdata=list(mpg=rep(20,3),cylinders = c(4,6,8))))

1 2 3

0.2125593 0.7002243 0.9647786

320 CHAPTER 23. PRACTICE PROBLEMS - LOGISTIC REGRESSION

>

(a) See above.
(b) See above. The output table is

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.27126 0.66623 -6.411 1.44e-10 ***

mpg 0.24395 0.03617 6.744 1.54e-11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(c) See above, and Figure 23.5.
(d) For a 4 cylinder vehicle of model year 1975+, mpg = 20 would be very low, while for an 8

cylinder vehicle of model year less than 1975, mpg = 20 would be very high (see boxplots of
Figure 23.5). Therefore, mpg=20 is not evidence of model year 1975+ for a 4 cylinder vehicle,
but is strong evidence of model year 1975+ for an 8 cylinder vehicle.

(e) See above.
(f) See Figure 23.5. The distribution of mpg strongly depends on cylinders, so that adjusting for

cylinders clearly improves the prediction. Including cylinders as a factor into the model
increases the number of parameters (and therefore the model degrees of freedom) by 4. The
anova() function (see above) calculates the change in deviance:

X2 = Dev[mpg]−Dev[mpg ∗ cylinders] = 26.91.

Under the null hypothesis that cylinders does not improve model prediction X2 ∼ χ2
4, which

gives P -value 2.1× 10−5.

23.2. DATA ANALYSIS 321

10 15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MPG

P
(1

97
5+

)

●
●●

●●

●

●

●
●●

●

●

●

●

●
●

●

0.4 1.4 0.6 1.6 0.8 1.8
10

15
20

25
30

35
40

(1 = 1975+).(# cylinders)

M
P

G

10 15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MPG

P
(1

97
5+

)

4 cylinder
6 cylinder
8 cylinder
All Vehicles

Figure 23.5: Plots for Problem 23.6.

Chapter 24

Practice Problems - Survival Analysis

24.1 Exercises

Problem 24.1. Suppose we observe survival times 21, 25+, 25, 27+, 34, 34, 35. Recall that the
symbol ‘+’ denotes a right-censored observation. Construct and sketch a Kaplan-Meier estimate
for the survival function.

SOLUTION:
For survival times 21, 25+, 25, 27+, 34, 34, 35 we have table:

i ti di r(ti) p̂i
0 0 0 7 (7-0)/7 = 1
1 21 1 7 (7-1)/7 = 6/7
2 25 1 6 (6-1)/6 = 5/6
3 27 0 4 (4-0)/4 = 1
4 34 2 3 (3-2)/3 = 1/3
5 35 1 1 (1-1)/1 = 0

Then plot the cumulative products

p̂0, p̂0p̂1, p̂0p̂1p̂2, . . . , p̂0p̂1 × · · · × p̂5 = 1, 6/7, 5/7, 5/7, 5/21, 0

at times
t0, . . . , t5 = 0, 21, 25, 27, 34, 35.

Note that ‘+’ indicates the position of a censored observation. See Figure 24.1.

Problem 24.2. Suppose we observe survival times 42, 51, 51, 51, 53+, 60, 60+, 64, where T+ is a
right-censored survival time.

(a) Consider time points (t0, t1, t2, t3, t4, t5) = (0, 42, 51, 53, 60, 64). For each of these times t′ give
the number at risk at time t′ (the number of subjects with survival times T ≥ t′ or T+ ≥ t′),
and the number who die at time t′ (T = t′). Summarize these quantities in a tabular form.

322

24.1. EXERCISES 323

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Directly from table

t.points

km
.c

ur
ve

Figure 24.1: Kaplan-Meier estimate of survival function for Problem 24.1.

(b) Plot a Kaplan-Meier estimate of the survival curve. Do this two ways:

(i) Plot the curve directly from the numbers in the table. Use the pty=’s’ option. Indicate
all points on the curve at which an observation was censored. use a + symbol (pch=3).

(ii) Use the survfit() function. Set options conf.int=FALSE and mark.time=TRUE. Under
what conditions are censored observations shown using the mark.time=TRUE option?

SOLUTION:

(a) A completely observed survival time T is included in all at risk totals ti ≤ T , and the number
who die at ti = T . A censored observation T+ is included in all at risk totals ti ≤ T , but is
not included in any death totals. This gives

i ti di r(ti) p̂i
0 0 0 8 (8-0)/8 = 1
1 42 1 8 (8-1)/8 = 7/8
2 51 3 7 (7-3)/7 = 4/7
3 53 0 4 (4-0)/4 = 1
4 60 1 3 (3-1)/3 = 2/3
5 64 1 1 (1-1)/1 = 0

(b) To plot the Kaplan-Meier curve, plot cumulative products p̂0, p̂0p̂1, . . . , p̂0p̂1p̂2p̂3p̂5 against
times t0, . . . , t5. The plot should be a step function, using option pty=’s’. Note that ‘+’
indicates the position of a censored observation. The following code gives both plots. Note
that if the option mark.time=TRUE is set, censored times T+ will be marked only if there is
no other death which occurs at T . For this data, this means only the censored times T = 53+
is marked. See Figure 24.2.

324 CHAPTER 24. PRACTICE PROBLEMS - SURVIVAL ANALYSIS

0 10 20 30 40 50 60

0.0
0.2

0.4
0.6

0.8
1.0

Directly from table

t.points

km
.cu

rve

0 10 20 30 40 50 60

0.0
0.2

0.4
0.6

0.8
1.0

From survfit() function

Figure 24.2: Kaplan-Meier estimate of survival function for Problem 24.2.

library(survival)

par(mfrow=c(1,2))

Plot KM curve directly

t.points = c(0,42,51,53,60,64)

p.surv = c(1,7/8,4/7,1,2/3,0)

km.curve = cumprod(p.surv)

plot(t.points,km.curve,type=’s’)

locate censored times:

points(t.points[c(4,5)],km.curve[c(4,5)],pch=3)

Set up data, then plot KM curve directly

z = c(42, 51, 51, 51, 53, 60, 60,6/home/anthony/Desktop/STAT_LIB4)

ev = c(1,1,1,1,0,1,0,1)

plot(survfit(Surv(z,ev)~1),conf.int = F, mark.time=T)

Problem 24.3. The Raleigh distribution models positive random variables. It has one parameter
σ2 > 0 and a cumulative distribution function (CDF) given by

F (x) = 1− e−x2/(2σ2), x ≥ 0.

24.2. DATA ANALYSIS 325

Derive the survival function and the hazard function for the Raleigh distribution. Is a Raleigh
survival time new better than used (NBU) or new worse than used (NWU)?

SOLUTION:
We have survival function

S(x) = 1− F (X) = e−x
2/(2σ2), x ≥ 0.

The density f(x) is the derivative of F :

f(x) =
d1− e−x2/(2σ2)

dx
=

x

σ2
e−x

2/(2σ2),

so that the hazard function is

h(x) =
f(x)

S(x)
=

x

σ2
e−x

2/(2σ2) ÷ e−x2/(2σ2) =
x

σ2
, x ≥ 0.

The hazard rate is increasing with x so the survival time is new better than used (NBU).

24.2 Data Analysis

Problem 24.4. Load the data frame Aids2 from the library MASS. This data set contains survival
data from Australian AIDS patients. The date of diagnosis (diag) and date of death or end of
observation (death) are given separately, in Julian format with unspecified origin. The difference
death - diag can be taken as the survival time. The factor status indicates whether the patient
was alive or dead at the end of the observation period.

(a) Use Cox proportional hazards regression to determine if survival time is related to age at
diagnosis (variable age). Is higher age associated with higher or lower survival? What is the
estimated hazards ratio between subjects aged 60 and 30 years at diagnosis?

(b) Create a new variable indicating into which quartile a subject’s age at diagnosis falls. The
cut function can be used for this. It may be more convenient to first convert ages equal
to 0 to, say, 0.1 years. Create Kaplan-Meier survival curves for each quartiles, displayed on
a single plot (you can use the survfit function). Do the same for the cumulative hazard
functions (use the survfit function with plot option fun="cumhaz"). Is the proportional
hazards assumption used for Cox proportional hazards regression approximately valid?

SOLUTION:
The following R code can be used to set up the analysis:

library(survival)

library(MASS)

326 CHAPTER 24. PRACTICE PROBLEMS - SURVIVAL ANALYSIS

set up new data frame

age2 = Aids2$age

Create quartiles

age2[age2==0] = 0.1

br = c(0,quantile(age2,c(0.25,0.50,0.75,1)))

age.quartiles = cut(Aids2$age,breaks=br)

Include time = death - diag

Aids3 = data.frame(Aids2,Aids2$death - Aids2$diag,as.integer(Aids2$status=="D"),

age.quartiles)

names(Aids3) = c(names(Aids2),’time’,’ev’,’ageQuartiles’)

Run function coxph() to fit a Cox proportional hazards regression model.

> fit = coxph(Surv(time,ev) ~ age, data=Aids3)

> summary(fit)$coef

coef exp(coef) se(coef) z Pr(>|z|)

age 0.01509529 1.01521 0.002449204 6.163344 7.122433e-10

>

From the output, the coefficient estimate for age is β̂age = 0.015, which corresponds to a hazards

ratio of exp(β̂age) = 1.015. The hazard rate therefore increases with age. The estimated hazard
ratio between subjects aged 60 and 30 years at diagnosis is

exp(β̂age(60− 30)) = 1.573.

The following code can be used to create the plots. See Figure 24.3. If the hazard functions
satisfy the proportionality assumption, the cumulative hazard functions should as well. From the
plot, this assumption appears valid.

par(mfrow=c(1,2))

fit = survfit(Surv(time,ev)~ageQuartiles,data=Aids3)

plot(fit,col=c(1:4),xlab="Days",ylab=’Survival’)

legend(’topright’,legend=levels(Aids3$ageQuartiles),col=1:4,lty=1)

plot(fit,fun="cumhaz",col=c(1:4),xlab="Days",ylab=’Cumulative Hazard’)

legend(’bottomright’,legend=levels(Aids3$ageQuartiles),col=1:4,lty=1)

Problem 24.5. Load the data frame leuk from the library MASS. This data set contains time

(survival time in weeks) and wbc (white blood counts) for n = 33 leukaemia patients. None of
the survival times are censored (in this case event can be omitted from the Surv object). It

24.2. DATA ANALYSIS 327

0 500 1500 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Days

S
u

rv
iv

a
l

(0,30]
(30,37]
(37,43]
(43,82]

0 500 1500 2500

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Days

C
u

m
u

la
tiv

e
 H

a
za

rd

(0,30]
(30,37]
(37,43]
(43,82]

Figure 24.3: Plot for Problem 24.4.

also contains the variable ag. From the help file “[t]he patients were also factored into 2 groups
according to the presence or absence of a morphologic characteristic of white blood cells. Patients
termed AG positive were identified by the presence of Auer rods and/or significant granulation of
the leukaemic cells in the bone marrow at the time of diagnosis”.

In the article Feigl, P. & Zelen, M. (1965) Estimation of exponential survival probabilities with
concomitant information, Biometrics 21, 826–838, these lifetimes are assumed to be exponentially
distributed with means λ−1, where λ is allowed to depend on the predictors wbc and ag.

(a) The Cox proportional hazards model predicts the hazard rate

h(x) = h0(x)eη, x > 0,

where any predictor is incorporated into η, but not the baseline hazard rate h0(x). Therefore,
a crucial assumption is that the hazard rate functions of all observations are proportional
to h0, and therefore to each other. This can be checked when comparing a small number
of groups, but is more difficult when using numerical predictors, since each survival time
distribution is distinct, except for ties.
However, we can at least check the assumption approximately, by comparing the estimated
hazard functions for the two levels of the factor ag, assuming provisionally that the survival
times within each level are identically distributed.

(i) Show that if the hazard rates are proportional, the cumulative hazard rates will be
proportional as well.

(ii) What is the cumulative hazard function H(x) of an exponentially distributed lifetime of
mean λ−1?

(iii) If each survival time actually is exponentially distributed, with mean λ−1 dependent on
ag and wbc, will the proportional hazard rate assumption be satisfied?

328 CHAPTER 24. PRACTICE PROBLEMS - SURVIVAL ANALYSIS

(iv) Calculate Kaplan-Meier estimates of the survival curves separately for the two levels of
factor ag. Plot the cumulative hazard functions. This can be done using essentially the
same method used to plot the survival curves, except that the option fun="cumhaz" is
used. Make sure the option conf.int=TRUE is used.

(v) Calculate the sample means of the survival times for each level of ag. Using these esti-
mates, superimpose on the plot an estimate of the cumulative hazard function obtainable
by assuming that survival times are exponentially distributed, and that the mean sur-
vival time is constant within each level of ag. Does the proportional hazards assumption
seem reasonable?

(b) Using function cox.ph fit the cox proportional hazards model with

η = β1ag + β2 log(wbc).

Assuming that survival times are exponentially distributed, use this model to estimate the
proportion by which expected survival time is reduced by a 2-fold increase in white blood cell
count.

SOLUTION:

(a) (i) If h(x) is the hazard rate, the cumulative hazard rate is the integral

H(x) =

∫ x

u=0
h(u)du.

If a second hazard rate h∗(x) is proportion to h(x), then we can write h∗(x) = ch(x).
The associated cumulative hazard rate is then

H∗(x) =

∫ x

u=0
h∗(u)du =

∫ x

u=0
ch(u)du = c

∫ x

u=0
h(u)du = cH(x),

so that proportionality is preserved.
(ii) An exponentially distributed lifetime of mean λ−1 has a constant hazard rate λ, by the

memoryless property. The cumulative hazard rate is therefore H(x) = λx.
(iii) If survival times are exponentially distributed, then all hazard rates are constants that

depend on the predictors, so proportionality is satisfied.
(iv) The following code can be used to construct the plots (Figure 24.4).

library(survival)

library(MASS)

par(mfrow=c(1,1))

plot(survfit(Surv(time) ~ ag, data = leuk), fun="cumhaz", lty = 1,

col = 2:3,conf.int=T,xlab=’Survival Time’,ylab=’Cumulative Hazard’)

legend(’bottomright’, legend=c(’absent’,’present’),lty=1,col=2:3)

get means

24.2. DATA ANALYSIS 329

means.ag = tapply(leuk$time,leuk$ag,mean)

use the abline function to plot the cumulative hazard rates

abline(0,1/means.ag[1],col=’red’)

abline(0,1/means.ag[2],col=’green’)

(v) The cumulative hazard rate estimates based on the exponential distribution assumption
conform reasonably well to the Kaplan-Meier estimates, and fall within the confidence
bands. The proportional hazards assumption is reasonable.

(b) For the exponential distribution the hazard rate is constant, and equals the reciprocal of the
mean. This means the mean survival time µ is given by

µ−1 = µ−1
0 × e

β1ag+β2 log(wbc)

= µ−1
0 × e

β1ag × (wbc)β2 ,

where µ0 is the mean survival time associated with the baseline hazard rate. Then suppose
two subjects have mean survival times µ1, µ2, have the same factor level for ag, and have
white blood cell counts w1 = w∗ and w2 = 2w∗ for some positive value w∗. Then

µ2

µ1
=

µ−1
0 × eβ1ag × (w∗)β2

µ−1
0 × eβ1ag × (2w∗)β2

=

(
1

2

)β2
where µ0 is the mean survival under the baseline hazard rate. The coefficients can be esti-
mated using the following code:

> leuk.cox = coxph(Surv(time) ~ ag + log(wbc), leuk)

> summary(leuk.cox)

Call:

coxph(formula = Surv(time) ~ ag + log(wbc), data = leuk)

n= 33, number of events= 33

coef exp(coef) se(coef) z Pr(>|z|)

agpresent -1.0691 0.3433 0.4293 -2.490 0.01276 *

log(wbc) 0.3677 1.4444 0.1360 2.703 0.00687 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

agpresent 0.3433 2.9126 0.148 0.7964

log(wbc) 1.4444 0.6923 1.106 1.8857

Concordance= 0.726 (se = 0.065)

Rsquare= 0.377 (max possible= 0.994)

Likelihood ratio test= 15.64 on 2 df, p=0.0004014

330 CHAPTER 24. PRACTICE PROBLEMS - SURVIVAL ANALYSIS

Wald test = 15.06 on 2 df, p=0.0005365

Score (logrank) test = 16.49 on 2 df, p=0.0002629

From the coefficient table we have β̂2 = 1.4444. Therefore, the proportion by which expected
survival time is reduced by a 2-fold increase in white blood cell count is approximately

µ2

µ1
=

(
1

2

)β2
≈
(

1

2

)1.4444

= 0.367.

0 50 100 150

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Survival Time

C
um

ul
at

iv
e

H
az

ar
d

absent

present

Figure 24.4: Plot for Problem 24.5 (a).

24.3 Theoretical Complements

Problem 24.6. Suppose X ∼ exp(λ), that is, X is a random variable with density

f(x) = λe−λxI{x > 0}.

(a) A random survival time T > 0 is memoryless if

P (T > t+ s | T > t) = P (T > s).

Essentially, the distribution of the remaining survival time at time t, given survival up to
time t, is the same as the survival time from time 0. Prove that the exponentially distributed
random variable is the unique memoryless continuous survival time with support [0,∞).

24.3. THEORETICAL COMPLEMENTS 331

(b) Prove that the exponentially distributed random variable is the unique continuous survival
time with support [0,∞) that possesses a constant hazard rate.

(c) Reliability theory is concerned with stochastic models which predict the survival time of a
system. Suppose a system has m components, and component i has a random survival time
of Xi ∼ exp(λi), i = 1, . . . ,m. A component or system fails immediately after its survival
time expires. Assume the m component survival times are independent.

(i) We say the system is a series system if it fails as soon as any single component fails.
Prove that a series system possesses a constant hazard rate of h(t) =

∑m
i=1 λi.

(ii) We say the system is a parallel system if it fails only after all m components fails. Prove
that if h(t) is the hazard rate of a parallel system, then limt→∞ h(t) = mini λi. In
your proof it will be important to consider the following. Denote the minimum rate
λ∗ = mini λi, and let m∗ denote the number of components with this rate. The proof
will need to consider the possibility that m∗ > 1, then show that the limit of h(t)
does not depend on this number. This implies that if the rates of the components are
equal, then, rather counterintuitively, the limit of h(t) does not depend on the number
of components m. In addition, one approach is to use the cumulative hazard function,
noting the identity H(t) = − log(S(t)).

(iii) Suppose the components function as replacements. That is, they have a common rate
λi = λ. Only one component functions at a time, and is replaced as soon as it fails.
The system fails as soon as no functioning components remain. This means the system
survival time is

T = X1 + . . .+Xm.

Create plots of the hazard rates of T for m = 2, 4, 6, 8, setting λ = 1. Make use of the
fact that the sum of iid exponential random variables has a gamma distribution. When
you use the pgamma() function make sure you use the lower.tail = FALSE, that is, use

pgamma(x,m,1,lower.tail=FALSE)

instead of

1 - pgamma(x,m,1,lower.tail=TRUE)

to calculate the survival function S(t) = 1 − F (t) = P (T > t). Add to your plots a
horizontal line representing a hazard rate of 1. Use range t ∈ (0, 200]. What do the plots
have in common?

(iv) It can be shown that for any m, the limit of the hazard rate of T is limt→∞ h(t) = 1, the
same hazard rate possessed by an individual component. Give an intuitive explanation
for this.

SOLUTION:

(a) A survival time X on [0,∞) is memoryless if and only if P (X > t+ s | X > t) = P (X > s),
or P (X > t+ s) = P (X > s)P (X > t), for all s, t ≥ 0. That this property is satisfied by the
exponential distribution is easily verified by substituting P (X > x) = 1 − F (x) = F̄ (x) =
exp(−λx). To prove the converse, suppose a memoryless survival time on support [0,∞)
has distribution function F . Letting S(u) = log(F̄ (u)), the memoryless property implies

332 CHAPTER 24. PRACTICE PROBLEMS - SURVIVAL ANALYSIS

S(t+ s) = S(t) + S(s). Since S is monotone, a solution to this equation must be of the form
S(t) = ct, which completes the proof.

(b) Suppose X ∼ exp(λ). The hazard rate is

h(t) =
λe−λt

e−λt
= λ.

Next, suppose X has constant hazard rate

h(t) =
f(t)

1− F (t)
= λ,

where f and F are the density and CDF. Then

f(t) = λ(1− F (t)) = λS(t)

However, we have dS(t)/dt = −f(t), giving differential equation

dS(t)

dt
= −λS(t)

Any solution to this differential equation is of the form S(t) = ae−λt. Since S(t) is a survival
function, we must have a = 1 and therefore X ∼ exp(λ).

(c) (i) For a series system, the survival time is T = miniXi. Then

P (T > t) = P (∩i{Xi > t}) =
∏
i

P (Xi > t) =
∏
i

exp(−λit) = exp

(
−t
∑
i

λi

)
.

Thus, T is exponentially distributed with rate
∑

i λi, and therefore possesses this con-
stant hazard rate.

(ii) For a parallel system, the survival time is T = maxiXi. Then

P (T ≤ t) = P (∩i{Xi ≤ t}) =
∏
i

P (Xi ≤ t) =
∏
i

(1− exp(−λit)).

Let λ∗ = mini λi, and let m∗ denote the number of components with this rate. Then

P (T > t) = 1− P (T ≤ t) = m∗e−λ
∗t + g(t)

where g(t) is some linear combination of exponential functions with terms of the form
ae−bt, where b > λ∗. This means that for all large t, g(t) becomes negligible compared
to m∗e−λ

∗t and therefore the cumulative hazard function is approximately

H(t) = − log(S(t)) ≈ λ∗t− logm∗.

As t approaches ∞ the − logm∗ term becomes negligible, and we have

H(t) ≈ λ∗t.

We can conclude that as t→∞ the hazard rate approaches λ∗.

24.3. THEORETICAL COMPLEMENTS 333

(iii) The following code creates the plots (Figure 24.5). All hazard rates appear to approach
1 as t increases.

par(mfrow=c(2,2))

hf = function(x) {dgamma(x,m,1)/pgamma(x,m,1,lower.tail=FALSE)}

xgrid = seq(0,200,0.01)

for (m in c(2,4,6,8)) {

plot(xgrid,hf(xgrid),type=’l’,ylim=c(0,1),main=paste(’m = ’,m),

xlab=expression(italic(t)),ylab=’hazard rate’)

abline(h=1,col=’green’)

}

(iv) Suppose at time t the system has not yet failed. As t→∞ the probability that it is the
last component m that is functioning approaches 1. Therefore, at this point the system
hazard rate is dominated by the hazard rate of a single component, which is, by the
memoryless property, equal to 1.

334 CHAPTER 24. PRACTICE PROBLEMS - SURVIVAL ANALYSIS

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m = 2

t

ha
za

rd
 r

at
e

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m = 4

t
ha

za
rd

 r
at

e

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m = 6

t

ha
za

rd
 r

at
e

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m = 8

t

ha
za

rd
 r

at
e

Figure 24.5: Plots for Problem 24.6.

Chapter 25

Practice Problems - Bayesian
Inference

25.1 Exercises

Problem 25.1. The wheel of a car in a certain parking spot is marked with chalk. Suppose that
the position of the chalk mark is recorded as a number from 1 to 12, corresponding to the face of a
clock. It is noted that 3 hours later (in a parking zone with a 2 hour limit) the same car occupies
the parking spot. Let

A = { The car has remained stationary for at least 3 hours }
E = { Chalk mark position has remained the same }

Give Odds(A | E) and Odds(A | Ec). Assume that if the car has been driven, the chalk mark is
equally likely to be in any of the 12 positions when it returns to the parking space.

SOLUTION:
Suppose the chalk mark position has remained the same. By Bayes Theorem, we have

Odds(A | E) = LR×Odds(A),

where LR is the likelihood ratio

LR =
P (E | A)

P (E | Ac)
≈ 1

1/12
= 12.

This gives

Odds(A | E) = 12×Odds(A).

In contrast, if the chalk mark position has not remained the same, we have

Odds(A | Ec) = LR×Odds(A),

335

336 CHAPTER 25. PRACTICE PROBLEMS - BAYESIAN INFERENCE

where LR is the likelihood ratio

LR =
P (Ec | A)

P (Ec | Ac)
≈ 0

11/12
= 0.

This gives

Odds(A | Ec) = 0×Odds(A) = 0,

assuming Odds(A) <∞.

Problem 25.2. A genotype found in a blood sample has a population frequency of 1/1000. A
genotype from a suspect is extracted. Suppose that due to imperfect typing procedures if the
suspect’s blood is the same as that of the sample then the probability that the genotype is incorrectly
typed is 0.01. Assume that this will be the only type of error, that is, the probability of a false
match is negligible. Let A be the event that the suspect’s blood is the same as that of the sample,
and let E be the event that the suspect’s observed genotype matches that of the sample. Give the
posterior odds of A given evidence of the form E in terms of the prior odds of A. Also give the
posterior odds of Ac given evidence of the form Ec in terms of the prior odds of Ac.

SOLUTION:
By Bayes Theorem, we have

Odds(A | E) = LR×Odds(A),

where LR is the likelihood ratio

LR =
P (E | A)

P (E | Ac)
≈ 1− 0.01

1/1000
= 990.

This gives

Odds(A | E) = 990×Odds(A).

Similarly,

Odds(Ac | Ec) = LR×Odds(Ac),

where LR is the likelihood ratio

LR =
P (Ec | Ac)
P (Ec | A)

≈ 1− 1/1000

0.01
= 99.9.

This gives

Odds(Ac | Ec) = 990×Odds(Ac).

25.2. DATA ANALYSIS 337

Problem 25.3. The odds of an event A is denoted Odds(A). Suppose the distribution of a
random variable X depends on whether or not event A occurs. In particular, conditional on A,
X ∼ bin(4, 0.5). Conditional on Ac, X ∼ bin(2, 0.9).

Determine the relationship between Odds(A | X = x) and Odds(A) for x = 0, 1, 2, 3, 4. For
which values of x does evidence of the form {X = x} increase the odds that A does not occur.

SOLUTION:
By Bayes Theorem, we have

Odds(A | X = x) = LR×Odds(A),

where LR is the likelihood ratio

LR =
P (X = x | A)

P (X = x | Ac)
, x = 0, 1, . . . , 4.

The PMF of X ∼ bin(n, p) is p(x) =
(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n. However, where needed, we

can set p(x) = 0 for any x not in the set {0, 1, . . . , n}. This gives

x = 0 1 2 3 4

A p(x) =
(

4
0

)
0.54

(
4
1

)
0.54

(
4
2

)
0.54

(
4
3

)
0.54

(
4
4

)
0.54

Ac p(x) =
(

2
0

)
0.900.12

(
2
1

)
0.910.11

(
2
2

)
0.920.10 0 0

LR (0.54)/(0.12) (4× 0.54)/(2× 0.9× 0.1) (6× 0.54)/(0.92) ∞ ∞

= 5.25 ≈ 1.39 ≈ 0.463 ∞ ∞

If LR > 1, the evidence increases the odds that A occurs, if LR < 1 the evidence increases the
odds that A does not occur. The only value for which LR < 1 is x = 2.

25.2 Data Analysis

Problem 25.4. A test for a certain infection was evaluated experimentally. When administered
to a test group of 285 individuals known to have the infection, the test was positive in 256 cases.
The test was also administered to a control group of 220 subjects known to be free of the infection.
The test was positive in 12 cases.

(a) Estimate the sensitivity and specificity of the test directly from the data.
(b) This test is intended to be used in clinical populations of varying infection prevalence. Use

R to construct plots of PPV and NPV for values of prevalence ranging from 0 to 10%. Use
the type = ’l’ option of the plot() function.

(c) Calculate prevalence, NPV and PPV directly from the data. How do these values compare
to those shown in the plots of part (b)?

338 CHAPTER 25. PRACTICE PROBLEMS - BAYESIAN INFERENCE

SOLUTION:
We can summarize the study with the following contingency table:

Table 1: Outcomes of test for Problem 25.4.

Infection
Positive Negative Total

Diagnostic Test Positive 256 12 268
Negative 29 208 237

Total 285 220 505

(a) We have

sens =
TP

TP + FN
=

256

285
≈ 0.898

spec =
TN

TN + FP
=

208

220
≈ 0.945.

(b) Given our calculated values of spec and sens we can given PPV and NPV as functions of
prev:

PPV =
sens× prev

sens× prev + (1− spec)× (1− prev)

=
0.898× prev

0.898× prev + (1− 0.945)× (1− prev)

and

NPV =
spec× (1− prev)

spec× (1− prev) + (1− sens)× prev

=
0.945× (1− prev)

0.945× (1− prev) + (1− 0.898)× prev

The plot itself can be constructed using the following code (see Figure 25.1 below):

Calculate sens, spec as global variables

sens = 256/285

spec = 208/220

Create functions for PPV and NPV

ppv0 = function(prev,sens,spec) { sens*prev/(sens*prev + (1-spec)*(1-prev)) }

npv0 = function(prev,sens,spec) { spec*(1-prev)/(spec*(1-prev) + (1-sens)*prev) }

Create range of prev values

25.2. DATA ANALYSIS 339

prev = seq(0,0.1,by = 0.001)

Draw plots

par(mfrow=c(1,2),cex=1.0,cex.lab=1.0,cex.axis=1.0,mar=c(6,6,2,2),pty=’s’)

plot(prev, ppv0(prev,sens,spec),type=’l’, xlab=’Prevalence’,ylab=’PPV’)

plot(prev, npv0(prev,sens,spec),type=’l’, xlab=’Prevalence’,ylab=’NPV’)

(c) Directly from the table we have

prev =
TP + FN

N
=

285

505
≈ 0.564

PPV =
TP

TP + FP
=

256

268
≈ 0.955

NPV =
TN

TN + FN
=

208

237
≈ 0.878.

Directly from the data, the prevalence is prev = 0.564, which is much higher than the
values used for the plot. Then PPV = 0.955 is much higher than the plotted values, and
NPV = 0.878 is much lower than the plotted values. This is due to the dependence of PPV
and NPV on the prevalence.

0.00 0.04 0.08

0.
0

0.
2

0.
4

0.
6

Prevalence

P
P

V

0.00 0.04 0.08

0.
98

8
0.

99
2

0.
99

6
1.

00
0

Prevalence

N
P

V

Figure 25.1: Plots for Problem 25.4.

340 CHAPTER 25. PRACTICE PROBLEMS - BAYESIAN INFERENCE

Problem 25.5. A test for the presence of an infection is developed. The test is administered to
a test group of 159 individuals known to have the infection. Of this group 154 test positive. The
test is also administered to a control group of 325 subjects known to be free of the infection. Of
these, 6 test positive.

(a) Estimate the sensitivity and specificity of the test directly from the data.
(b) Calculate prevalence, NPV and PPV directly from the data, then recaclulate assuming a

prevalence of 2%.
(c) Give the relationship between the prior and posterior odds of infection for both a positive

and negative test result.

SOLUTION:
We can summarize the study with the following contingency table:

Table 2: Outcomes of test for Problem 25.5.

Infection
Positive Negative Total

Diagnostic Test Positive 154 6 160
Negative 5 319 324

Total 159 325 484

(a) We have

sens =
TP

TP + FN
=

154

159
≈ 0.969

spec =
TN

TN + FP
=

319

325
≈ 0.982.

(b) Directly from the table we have

prev =
TP + FN

N
=

159

484
≈ 0.329

PPV =
TP

TP + FP
=

154

160
≈ 0.963

NPV =
TN

TN + FN
=

319

324
≈ 0.985.

There is a prevalence of 32.9%, which is (hopefully) much higher than any prevalence we
would expect to see in any population. If prev = 0.02, then

PPV =
sens× prev

sens× prev + (1− spec)× (1− prev)

=
0.969× 0.02

0.969× 0.02 + (1− 0.982)× (1− 0.02)

≈ 0.517

25.2. DATA ANALYSIS 341

and

NPV =
spec× (1− prev)

spec× (1− prev) + (1− sens)× prev

=
0.982× (1− 0.02)

0.982× (1− 0.02) + (1− 0.969)× 0.02

≈ 0.999.

(c) The positive and negative likelihood ratios are

LR+ =
sens

1− spec
=

154/159

6/325
≈ 52.5,

LR− =
1− sens
spec

=
5/159

319/325
≈ 0.032.

Note that it is better to use the exact values of sens and spec in this calculation to avoid
rounding error. Bayes’ theorem for odds is then

Odds(O+ | T+) = LR+ ×Odds(O+) = 52.5×Odds(O+)

Odds(O+ | T−) = LR− ×Odds(O+) = 0.032×Odds(O+).

Problem 25.6. A test for Hepatitis-B is developed. The test is administered to a test group
of 147 individuals known to have Hepatitis-B. Of this group 123 test positive. The test is also
administered to a control group of 220 subjects known to be free of Hepatitis-B. Of these, 15 test
positive.

(a) Estimate the sensitivity and specificity of the test directly from the data.
(b) This test is intended to be used in clinical populations of varying infection prevalence. Use R

to construct plots of PPV and NPV for values of prevalence ranging from 0 to 5%. Use the
type = ’l’ option of the plot() function.

(c) Calculate prevalence, NPV and PPV directly from the data. How do these values compare
to those shown in the plots of part (b)?

SOLUTION:
We can summarize the study with the following contingency table:

(a) We have

sens =
TP

TP + FN
=

123

147
≈ 0.837

spec =
TN

TN + FP
=

205

220
≈ 0.932.

342 CHAPTER 25. PRACTICE PROBLEMS - BAYESIAN INFERENCE

Table 3: Outcomes of hepatitis-B diagnostic test for Problem 25.6.

Hepatitis-B
Positive Negative Total

Diagnostic Test Positive 123 15 138
Negative 24 205 229

Total 147 220 367

(b) The script shown below produces the plot in Figure 25.2.
(c) Directly from the table we have

prev =
TP + FN

N
=

147

367
≈ 0.401

PPV =
TP

TP + FP
=

123

138
≈ 0.891

NPV =
TN

TN + FN
=

205

229
≈ 0.895.

There is a prevalence of 40.1%, which is (hopefully) much higher than any prevalence we
would expect to see in any population. The PPV estimated directly from the study is much
higher than a PPV we would expect to encounter in a population, while the NPV is lower.

The following code produced Figure 25.2.

> sens = 123/147

> spec = (220-15)/220

>

> prev = seq(0,0.05,by = 0.001)

>

> par(mfrow=c(2,1),cex=1.0)

>

> f0 = function(prev,sens,spec) { sens*prev/(sens*prev + (1-spec)*(1-prev)) }

> plot(prev, f0(prev,sens,spec),type=’l’, xlab=’Prevalence’,ylab=’PPV’)

> title(’Hepatiti-B Test’)

>

>

> f0 = function(prev,sens,spec) { spec*(1-prev)/(spec*(1-prev) + (1-sens)*prev) }

> plot(prev, f0(prev,sens,spec),type=’l’, xlab=’Prevalence’,ylab=’NPV’)

> title(’Hepatiti-B Test’)

25.3. THEORETICAL COMPLEMENTS 343

0.00 0.01 0.02 0.03 0.04 0.05
0.
0

0.
1

0.
2

0.
3

0.
4

Prevalence

PP
V

Hepatiti-B Test

0.00 0.01 0.02 0.03 0.04 0.05

0.
99
2

0.
99
6

1.
00
0

Prevalence

NP
V

Hepatiti-B Test

Figure 25.2: Plot for Problem 25.6.

25.3 Theoretical Complements

Problem 25.7. Suppose we observe a normally distributed random variable X ∼ N(µ, σ). Assume
σ is known, and that µ has a prior density π(µ):

µ ∼ N(µ0, σ0),

for some fixed µ0, σ0. Show that the normal prior density is a conjugate density for µ, that is, that
the posterior density for µ given X is also normal. Give this density precisely.

SOLUTION:
Recall that to evaluate a posterior density of a parameter θ given data x it is often easiest to first
express it as

π(θ | x) = Kg(θ)

where K is a constant that does not depend on θ, and then normalize g(θ). This means we don’t
need to actually evaluate K. In this case we have

π(µ | x) ∝ f(x | µ)π(µ)

344 CHAPTER 25. PRACTICE PROBLEMS - BAYESIAN INFERENCE

where x | µ ∼ N(µ, σ) and µ ∼ N(µ0, σ0). This means

π(µ | x) = Ke−
1
2
Q1e−

1
2
Q0

where

Q1 =
(x− µ)2

σ2
, Q0 =

(µ− µ0)2

σ2
0

.

We then have

Q1 +Q0 = µ2

[
1

σ2
+

1

σ2
0

]
− 2µ

[
x

σ2
+
µ0

σ2
0

]
+

[
x2

σ2
+
µ2

0

σ2
0

]
.

This means

π(µ | x) = Ke
− 1

2

{
µ2

[
1
σ2

+ 1

σ20

]
−2µ

[
x
σ2

+
µ0
σ20

]}

where K does not depend on µ, and that π(θ | x) ∼ N(µpost, σ
2
post) is a normal density function

with mean and variance

µpost =

x
σ2 + µ0

σ2
0

1
σ2 + 1

σ2
0

,

σ2
post =

1
1
σ2 + 1

σ2
0

.

Problem 25.8. The gamma density, denoted Y ∼ gamma(α, β) is defined as

f(y | α, β) =
βα

Γ(α)
yα−1e−βy

where y, α, β > 0. Suppose we observe a Poisson random variable X ∼ pois(λ), so that

P (X = x) =
λx

x!
e−λ, x = 0, 1, 2, . . .

and that λ has a prior density π(λ):

λ ∼ gamma(α0, β0)

for some fixed α0, β0.

(a) Recall the definition of the gamma function

Γ(t) =

∫ ∞
u=0

ut−1e−udu, t > 0.

Show that if Y ∼ gamma(α, β) then for any k > 0

E[Y k] = β−k
Γ(k + α)

Γ(α)
.

Use this to derive the mean and variance of Y (recall that Γ(t+ 1) = tΓ(t)).

25.3. THEORETICAL COMPLEMENTS 345

(b) Show that the gamma prior density is a conjugate density for λ, that is, that the posterior
density for λ given X is also gamma. Give this density precisely.

(c) Suppose we observe a random sample X1, . . . , Xn from a Poisson distribution with mean λ.
Denote the sum S =

∑n
i=1Xi. Define prior density λ ∼ gamma(α0, β0). Show that the Bayes

estimator under squared error loss for λ (that is, the mean of the posterior density) can be
given by

λ̂Bayes = qX̄ + (1− q)α0

β0

where X̄ = S/n and q = n/(n + β0), assuming that the posterior density is conditioned
directly on S (recall that the sum of independent Poisson random variables is also a Poisson
random variable).

(d) A study is to use this model, and a sample size n is planned. Suppose prior knowledge
suggests that λ = λ∗ for some fixed value λ∗. Since sample size can be taken as a measure of
precision or certainty, the confidence in the prior belief can be expressed as a fraction of the
proposed sample size, say n∗ = n/10. What values α0, β0 would be appropriate for the prior
density of λ in this situation?

SOLUTION:

(a) Making use of variable substitution u = βx we have

E[Xk] =

∫ ∞
x=0

xkf(x | α, β)dx

=

∫ ∞
x=0

xk
βα

Γ(α)
xα−1e−βxdx

=

∫ ∞
x=0

βα

Γ(α)
xk+α−1e−βxdx

=

∫ ∞
u=0

βα

Γ(α)
(u/β)k+α−1e−uβ−1du

=
β−k

Γ(α)

∫ ∞
u=0

uk+α−1e−udu

= β−k
Γ(k + α)

Γ(α)
.

Making use of the identity Γ(t+ 1) = tΓ(t) we have special cases

E[X] = β−1 Γ(1 + α)

Γ(α)
= β−1αΓ(α)

Γ(α)
=
α

β
,

and

E[X2] = β−2 Γ(2 + α)

Γ(α)
= β−2 (α+ 1)Γ(α+ 1)

Γ(α)
= β−2 (α+ 1)αΓ(α)

Γ(α)
=

(α+ 1)α

β2
,

which gives variance

σ2 = E[X2]− E[X]2 =
(α+ 1)α

β2
−
[
α

β

]2

=
α

β2
.

346 CHAPTER 25. PRACTICE PROBLEMS - BAYESIAN INFERENCE

(b) Recall that to evaluate a posterior density of a parameter θ given data x it is often easiest to
first express it as

π(θ | x) = Kg(θ)

where K is a constant that does not depend on θ, and then normalize g(θ). This means we
don’t need to actually evaluate K. In this case we have

π(λ | x) ∝ f(x | λ)π(λ)

where x | λ ∼ pois(λ) and λ ∼ gamma(α0, β0). This means

π(λ | x) = Kλxe−λλα0−1e−β0λ

= Kλx+α0−1e−(β0+1)λ,

where K does not depend on λ. We conclude that the posterior density of λ given x is

λ | x ∼ gamma(x+ α0, β0 + 1).

(c) The posterior density π(λ | S) is similar to that of Part (b), except that S ∼ poisson(nλ).
This gives

π(λ | s) = K(nλ)se−nλλα0−1e−β0λ

= K ′λs+α0−1e−(β0+n)λ,

after incorporating into K ′ all factors that do not depend on λ. The posterior density is
therefore gamma(s + α0, β0 + n).Then the Bayes estimator under squared error loss is the
mean of the posterior density, which is, from Part (a):

λ̂Bayes =
S + α0

β0 + n

=
nX̄ + β0

α0
β0

β0 + n

= qX̄ + (1− q)α0

β0

where q = n/(n+ β0).
(d) The mean of the prior density is α0/β0, so set

λ∗ =
α0

β0
.

From Part (c), β0 can be seen to function as a sample size, which accordingly weights the
contribution of the prior density to the Bayes estimate. So set

β0 = n∗ = n/10,

so that (α0, β0) = (n∗λ∗, n∗) = (nλ∗/10, n/10).

25.3. THEORETICAL COMPLEMENTS 347

Problem 25.9. Suppose we observe a binomial random variable X ∼ bin(n, p).

(a) Show that the maximum likelihood estimate of p is p̂MLE = X/n.
(b) Suppose in the context of Bayesian inference, we asssign a beta(α, β) prior distribution to

p. What is the expected value of p under the prior distribution (say p̂prior) and under the
posterior distribution given observation X = x (say p̂post)?

(c) Show that we can write
p̂post = qp̂MLE + (1− q)p̂prior

where q depends only on α, β and n.

SOLUTION:

(a) The density of the binomial is

P (X = x | p) =

(
n

x

)
px(1− p)n−x.

The log-likelihood is

L(p;x) = x log(p) + (n− x) log(1− p) + C,

where C does not depend on p. Taking the derivative gives stationary conditions

dL(p;x)

dp
=
x

p
− n− x

1− p
= 0.

It may then be verified that
p̂MLE = x/n

is a unique stationary point, and the unique global maximum of L(p;x).
(b) The beta density is given by

f(z | α, β) =
1

B(α, β)
zα−1(1− z)β−1, z ∈ [0, 1],

and has expected value

µα,β =
α

α+ β
.

For a beta prior, the prior mean of p is therefore

p̂prior =
α

α+ β
.

The posterior density of p is then

π(p | x) =
P (X = x | p)π(p)∫ 1

p=0 P (X = x | p)π(p)dp

=

(
n
x

)
px(1− p)n−x 1

B(α,β)p
α−1(1− p)β−1∫ 1

p=0

(
n
x

)
px(1− p)n−x 1

B(α,β)p
α−1(1− p)β−1dp

.

348 CHAPTER 25. PRACTICE PROBLEMS - BAYESIAN INFERENCE

Careful examination reveals that π(p | x) is equivalent to a beta(x + α, n − x + β) density,
therefore the posterior mean of p is

p̂post =
x+ α

n+ α+ β
.

(c) We can write

p̂post =
x+ α

n+ α+ β

=
x

n+ α+ β
+

α

n+ α+ β

=
x

n+ α+ β

[n
n

]
+

α

n+ α+ β

[
α+ β

α+ β

]
=

x

n

[
n

n+ α+ β

]
+

α

α+ β

[
α+ β

n+ α+ β

]
= qp̂MLE + (1− q)p̂prior,

where
q =

n

n+ α+ β
.

Problem 25.10. Let Y be a random variable, and let X be any random observation X =
(X1, . . . , Xn). Suppose we have the density of Y conditional on X, fY |X(y | x), and the den-
sity of X, fX(x). The joint density of (X,Y) is then

fXY (x, y) = fY |X(y | x)fX(x).

Then for any function h(x, y) denote the conditional expectation

E[h(X,Y) | X = x] = E[h(x, Y) | X = x] =

∫
y
h(x, y)fY |X(y | x)dy.

The law of total expectation states

E[h(X,Y)] =

∫
x1

· · ·
∫
xn

∫
y
h(x, y)fXY (x, y) dy dx1 · · · dxn

=

∫
x1

· · ·
∫
xn

∫
y
h(x, y)fY |X(y | x)fX(x) dy dx1 · · · dxn

=

∫
x1

· · ·
∫
xn

fX(x)

[∫
y
h(x, y)fY |X(y | x) dy

]
dx1 · · · dxn

=

∫
x1

· · ·
∫
xn

E[h(X,Y) | X = x]fX(x) dx1 · · · dxn,

and can be informally summarized as E[h(X,Y)] = E[E[h(X,Y) | X]].

25.3. THEORETICAL COMPLEMENTS 349

The problem of prediction is to determine a function δ(X) which is closed to Y in some sense.
We can defined mean squared error MSEδ of δ as

MSEδ = E[(Y − δ(X))2],

and the minimum mean squared error (MMSE) predictor is the one which minimizes MSEδ. Then
recall that the Bayes (minimum expected risk) estimator for parameter θ under squared error loss
is the expected value of θ under the posterior density. We can verify this by understanding how
to derive an MMSE predictor. In the following development we will assume that all means and
variances are finite, and in general this would need to be verified.

(a) Prove that the constant c which minimizes E[(Y − c)2] is, uniquely, c = E[Y].
(b) Define the function

µY (x) = E[Y | X = x],

which gives the expected value of Y conditional on {X = x}. Using the result of Part (a),
and the law of total expectation, show that the MMSE predictor of Y is δ(X) = µY (X).

(c) Then derive the Bayes estimator for parameter θ under squared error loss.

SOLUTION:

(a) We can write
E[(Y − c)2] = E[Y 2 − 2cY + c2] = E[Y 2]− 2cE[Y] + c2.

This is a second order polynomial in c. Taking the derivative gives

dE[(Y − c)2]

dc
= −2E[Y] + 2c.

The second derivative is positive (equal to 2), so that E[(Y − c)2] is uniquely minimized by
setting the first derivative equal to 0, giving c = E[Y].

(b) By the law of total expectation we have

MSEδ = E[(Y − δ(X)2)]

=

∫
x1

· · ·
∫
xn

E[(Y − δ(x)2) | X = x]fX(x) dx1 · · · dxn.

Consider the quantity E[(Y − δ(x)2) | X = x] in the preceding integral. Since, conditional
on {X = x}, δ(x) is a constant within the expectation, Part (a) applies. This means E[(Y −
δ(x)2) | X = x] is uniquely minimized by E[Y | X = x] = µY (x). This means MSEδ =
E[(Y − δ(X)2)] is uniquely minimzed by setting δ(x) = µY (x) for all x.

(c) In a Bayesian model, we have joint density

fθ,X(θ, x) = fX|θ(x | θ)π(θ),

where fX|θ(x | θ) and π(θ) are the conditional and prior densities, respectively. By Part
(b), the MMSE predictor of θ based on X, say δ(X), is the expected value of θ under the
conditional density π(θ | x). But this is the posterior density, and MSEδ is Bayes risk under
squared error loss.

Chapter 26

Practice Problems - Simulation
Methods

26.1 Exercises

Problem 26.1. The distributions of ratios of random variables are often difficult to evaluate,
making formal inference methods for parameter ratios difficult to develop. The bootstrap procedure
can be useful in this case.

Suppose we observe a sample of n paired observations (Y1, Y2). The sample is independent, but
the components within each pair might not be. The respective means are µ1, µ2. Suppose we are
interested in the solution to the equation:

µ1 + µ2x = 165,

which is

x0 =
165− µ1

µ2
.

We estimate x0 using the sample means

x̂0 =
165− Ȳ1

Ȳ2
.

The problem is then to estimate the standard error Sx̂0 . We will use a simulation study to investigate
the accuracy of a bootstrap estimate of Sx̂0 .

(a) Write a function that returns a simulated independent sample of Y = (Y1, Y2). We first assume
that Y is bivariate normal with µ1 = 90, µ2 = 120, σ2

1 = σ2
2 = 10, and cov(Y1, Y2) = 2.5. The

sample size is n = 250. Use function rmvnorm() from the mvtnorm library.
(b) Write a function that returns the estimate x̂0, given an n× 2 matrix of data.
(c) The first step is to estimate the true standard error by simulating the actual model (of course,

in an actual inference problem, this step is not available). Simulate the model dataNs = 10000
times, in each case computing and storing the estimate x̂0. The standard deviation of these
estimates is approximately Sx̂0 .

350

26.1. EXERCISES 351

(d) Next, write the bootstrap function, which accepts as input the data matrix, and Nb, the
number of bootstrap replicates. The function should first compute the sample size n. Then
for each replicate take the following steps:

(i) A new data set Y ∗ is created by sampling n observation pairs with replacement from
the input data.

(ii) A new estimate x̂∗0 is calculated using Y ∗ and stored in an array.

The bootstrap estimate of Sx̂0 is the standard deviation of the Nb replicates x̂∗0.
(e) Finally, for a total of Ns replications, do the following steps:

(i) Simulate a sample Y using the function of part (a).
(ii) Use the function of part (d) to estimate Sx̂0 .

Set Ns = 1000, and report the approximate true value of Sx̂0 calculated in part (c) and the
median, 5th and 95th percentiles of the bootstrap estimates of Sx̂0 from part (e). Comment
on the accuracy of the bootstrap procedure.

(f) Repeat part (e), this time setting (Y1, Y2) to be independent Poisson random variables with
the same means µ1 = 90, µ2 = 120.

SOLUTION:

(a) We use thermvnorm() from the mvtnorm library.

give.data = function() {

set up mean vector and covariance matrix

mu = c(90,120)

Sigma = matrix(c(10,2.5,2.5,10),nrow=2)

sample size n = 250

n = 250

y = rmvnorm(n,mu,Sigma)

return(y)

}

(b) The following function returns the required estimator:

give.est = function(y) {

yest = apply(y,2,mean)

est = (165-yest[1])/yest[2]

return(est)

}

(c) The following function restimates Sx̂0 :

352 CHAPTER 26. PRACTICE PROBLEMS - SIMULATION METHODS

n.true = 10000

est = numeric(n.true)

for (i in 1:n.true) {

y = give.data()

est[i] = give.est(y)

}

true.se = sd(est)

The estimated value of Sx̂0 is:

> true.se

[1] 0.002190398

(d) The following function gives a bootstrap estimate of Sx̂0 :

bs.fun = function(y,nb) {

determine sample size

n = dim(y)[1]

estb = numeric(nb)

generate nb bootstrap replicates, using function sample()

to resample the data with replacement

for (i in 1:nb) {

ind = sample(n,n,replace=T)

yb = y[ind,]

estb[i] = give.est(yb)

}

return(sd(estb))

}

(e) The following code implements the simulation study:

use nb = 2000 bootstrap replicates for each simulated data set

nb = 2000

Do the simulation 1000 times

n.bs = 1000

main loop

bs.se = numeric(n.bs)

for (i in 1:n.bs) {

y = give.data()

26.1. EXERCISES 353

bs.se[i] = bs.fun(y,nb)

}

Summarize the bootstrap estimates

se.quant = quantile(bs.se,c(0.05,0.95))

sm = c(true.se,se.quant)

The (approximately) true estimate of Sx̂0 is:

> true.se

[1] 0.002190398

and the boostrap estimates are summarized by

> sm

5% 95%

0.002161288 0.002003698 0.002342916

The bootstrap estimates are close to Sx̂0 ≈ 0.00219, usually within about 8%.
(f) The function give.data() in part (a) can be replace by the following:

give.data = function() {

means and sample sizes

mu = c(90,120)

n = 250

generate the Poisson RVs

y = cbind(rpois(n,lambda=mu[1]), rpois(n,lambda=mu[2]))

return(y)

}

We can run the remaining code unaltered, giving summaries:

> true.se

[1] 0.006141413

> sm

5% 95%

0.006141413 0.005673434 0.006650371

The bootstrap estimates are close to Sx̂0 ≈ 0.00614, again usually within about 8%.

354 CHAPTER 26. PRACTICE PROBLEMS - SIMULATION METHODS

Problem 26.2. Correlation between random variables can be modeled in the following way. Let
X and ε be random variables with mean 0 and variance 1, and assume X and ε are independent.
Then set, for constants β0, β1, β2, a new random variable Y as follows:

Y = β0 + β1X + β2ε. (26.1)

(a) Derive an expression for the correlation between X and Y as a function of β1 and β2 (verify
that this expression will not depend on β0).

(b) Suppose we wish to simulate pairs of random variables (X,Y) such that µX = µY = 0,
var(X) = var(Y) = 1, and the correlation between X and Y is fixed at ρ ∈ (−1, 1). We can
do this by simulating X and ε, then using Equation (26.1) to generate Y . To achieve this,
what values must be used for β0, β1, β2? Using R, generate four scatter plots from 1000 pairs
of normally distributed random variables (X,Y) using this scheme, for ρ = −0.5, 0, 0.5, 0.9.
Do an independent simulation for each of the four plots. Place all four scatter plots in one
graphics window using the par() function. Indicate the relevant title for each plot, using the
Greek font for ρ (consult help(plotmath) and the function bquote()).
In addition, for each simulation, summarize in a table the sample variances and correlation
of X and Y . Compare these sample values to the theoretical values.

SOLUTION:

(a) The correlation is

ρXY =
cov(X,Y)√
var(X)var(Y)

=
E[(X − µX)(Y − µY)]√

var(X)var(Y)
=

E[XY]− µXµY√
var(X)var(Y)

.

We have, given what we know of ε, X and Y ,

µX = 0

µY = E[β0 + β1X + β2ε] = E[β0] + β1E[X] + β2E[ε] = β0 + β1 × 0 + β2 × 0 = β0

var(X) = 1

var(Y) = var(β0) + var(β1X) + var(β2ε) = 0 + β2
1 + β2

2 = β2
1 + β2

2

E[XY] = E[β0X + β1X
2 + β2εX] = β0E[X] + β1E[X2] + β2E[ε]E[X] = 0 + β1 + 0 = β1.

So,

ρXY =
β1 − 0× β0√

β2
1 + β2

2

=
β1√

β2
1 + β2

2

.

(b) We have

var(Y) = β2
1 + β2

2 , and

ρ =
β1√

β2
1 + β2

2

=
β1√
var(Y)

.

If var(Y) = 1, this gives (we can assume without loss of generality that β2 > 0),

β1 = var(Y)1/2ρ = ρ, and

β2 =
√
var(Y)− β2

1 =
√

1− ρ2

26.1. EXERCISES 355

The following R script produces the required plot (Figure 26.1):

rho.list = c(-0.5, 0, 0.5, 0.9)

sumtab = matrix(NA,4,3)

par(mfrow=c(2,2))

for (i in 1:4) {

rho = rho.list[i]

eps = rnorm(1000)

x = rnorm(1000)

y = rho*x + sqrt(1 - rho^2)*eps

plot(x,y, main = bquote(rho == .(rho)))

sumtab[i,] = c(var(x), var(y), cor(x,y))

}

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●● ●
●

●

● ●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●●

●

●

●
●●

●
●

●

●
●●

●
●

●

●

●●●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●
●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

● ●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

● ●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●●

●

●

● ●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●● ●

●
●

●●

●●
●

● ●

●

●

●●
●

●

●

●

●

●

● ●

●
●

●

●

● ●

● ●
●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●

● ●

●

●

●
●

●●

●

●

●
●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●●●

●
●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

● ●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
●●

●

●●
●
● ●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●● ●
●●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●

● ●●

●
●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●
● ●

● ●

●

●

●

● ●●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●
●

●
●

●

●

−3 −1 0 1 2 3

−
3

−
1

1
2

3

ρ = −0.5

x

y

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●● ●

●●
●

●

●

●
●●

●

●

●

●

●

● ●

●●

●
●

●

●

●●
●

●● ●

●
●

●

●
●

●

● ●
●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●●

● ●
●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●●

● ●
●

●
●

●

● ●
●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
● ●

●

● ●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●●●

●

●
● ●

●

●

●

●

●

●
●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

● ● ●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

● ●●

●

●

●

●

●

●

● ●

●
●●

●

●

●
●

●

●

●● ●

●
●
●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●
●

●

● ●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●● ●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

−3 −1 0 1 2 3

−
3

−
1

1
2

3

ρ = 0

x

y

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●●

●

●
●●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

● ●●
●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

● ●

● ●

●●

●

●●
●

●

●

●●

● ●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

● ●●
●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
● ●

●

●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

● ●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●●●●

●●
●

●
●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●
●

●

●●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●
●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

● ●

● ●
●

●

●●

●

●●
●

●
●

●

●

●●●

●

●●

● ●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●
●

●
●●

●

●

●
● ●

●

●

● ●

●
●

●●

●

●

●

●

●

−3 −1 0 1 2 3

−
2

0
2

4

ρ = 0.5

x

y

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●●

● ●
●

●
●●

●

●

●●

●●

●
●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
● ●

●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●
● ●●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●●●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

● ●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

● ●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●●

●
●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●●

●●

● ●●

●

●

●

●●

●

●
●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

ρ = 0.9

x

y

Figure 26.1: Plot for Problem 26.2.

The table is

> sumtab

[,1] [,2] [,3]

[1,] 1.0364338 1.0496114 -0.5117990

[2,] 0.9644771 0.9503838 -0.0389420

[3,] 1.0288339 1.0237045 0.5053358

[4,] 0.9148030 0.9224029 0.8937180

356 CHAPTER 26. PRACTICE PROBLEMS - SIMULATION METHODS

The sample variances and correlations are all close to the theoretical values.

Problem 26.3. If r is a Pearson correlation coefficient for a bivariate normal random sample of
size n, then if the true correlation is ρ = 0, then the transformed statistic

T =
r√
1−r2
n−2

(26.2)

has an approximate t-distribution with n−2 degrees of freedom. We wish to investigate the accuracy
of this approximation when applied to the Spearman rank correlation coefficient.

(a) The R function sample(n) outputs a random permutation of the numbers 1, 2, . . . , n. How can
this be used to simulate the Spearman rank correlation coefficient when the true correlation
is ρ = 0?

(b) Simulate a random sample (of size 10,000) of Spearman rank correlation coefficients for n = 25
under the null hypothesis Ho : ρ = 0.

(c) Calculate the t-distribution transformation of (26.2) for each simulated value.
(d) Plot a histogram of the transformed sample. Superimpose a t-density on the same plot, using

the approriate degrees of freedom. Is the t-distribution an accurate approximation? [Make
sure you use the probability = T option when you plot the histogram].

SOLUTION:

(a) Suppose we have output x = sample(25). Then set y = 1:25. Calculate the correlation of
x and y (you can use either the method = ‘spearman’ or the default method = ‘pearson’

method).
(b) The following code creates the sample:

f0 = function(i) {

x = sample(25)

y = 1:25

return(cor(x,y,method=’spearman’))

}

cor.sample = sapply(1:10000,f0)

(c) The following function calculates the transformation:

f.transform = function(x) {x/sqrt((1-x^2)/23)}

(d) The following code creates the plot (Figure 26.2):

t.sample = f.transform(cor.sample)

tgrid = seq(-3,3,0.01)

hist(f.transform(cor.sample),probability=T,nclass=15)

lines(tgrid,dt(tgrid,df=23))

26.1. EXERCISES 357

The t-distribution (with 23 degrees of freedom) accurately models the distribution.

Histogram of f.transform(cor.sample)

f.transform(cor.sample)

De
ns

ity

−4 −2 0 2 4

0.0
0.1

0.2
0.3

Figure 26.2: Plot for Problem 26.3.

Chapter 27

Practice Problems - Markov Chains,
MCMC and Computational Bayesian
Methods

27.1 Exercises

Problem 27.1. Consider the network shown in Figure 27.1. There are 5 nodes, Ni, i = 1, . . . , 5.
Two nodes are considered connected if there is an edge between them. A traveller starts at node N1

and makes transitions between nodes. The path is denoted x1, x2, . . . , xt, . . . with time represented
by index t = 1, 2, The traveller is attempting to reach node N5, using the following rules:

Rule 1: The initial node x1 = N1 is fixed. Then x2 is selected from all nodes connected to N1 with
equal probability.

Rule 2: Following the initial transition, at any t > 1, when the traveller is at any node xt other than
N5 the subsequent node is selected from all nodes connected to xt except for the previously
visited node xt−1, with equal probability assigned to each available node. For example, if the
traveller transitions from nodes N3 to N2, then the next node visited is selected from N1 and
N5, with probability 1/2 assigned to each.

Rule 3: The traveller remains in node N5 once it is visited.

We can describe the independence structure this way: when necessary, the traveller can choose
the subsequent node by flipping a 2- or a 3- sided coin. The outcome of the toss is independent of
all previous coin tosses and on the current choice of coin.

(a) Is x1, x2, . . . a Markov process? Why or why not?
(b) Assuming you answered ‘no’ to part (a), show how the process can be Markovianized. That

is, construct a Markov process z1, z2, . . . by defining as a state the transition between pairs of
successively visited nodes, rather than the nodes themselves. For example, a transition from
node N2 to node N1 defines state N2 → N1. It may clarify things to introduce a dummy node

358

27.1. EXERCISES 359

N0. The initial state of the Markovianized process would then be the transition N0 → N1,
which represents the entry of the traveller into the system. The traveller never visits N0

again, so this transition occurs only once. Enumerate explicitly the state space, and derive
the probability transition matrix P . Why is the transition N5 → N5 an absorbing state in
the Markovianized process?

(c) Let T be the time at which the traveller visits node N5 for the first time. For example,
given a path x1 = N1, x2 = N3, x3 = N2, x4 = N5, we have T = 4. Let P (k) be the
k-step probability transition matrix of the Markovianized process z1, z2, Explain how the
probabilty P (T < k) can be obtained from P (k).

(d) Using R, or another suitable computing environment, calculate the probability mass function
pT (x) = P (T = x) for T , and compute its mean. This can be done by successively calcu-
lating P (k) for increasing k. Construct a suitable plot of pT . Note that the support of T is
unbounded, so you can confine calculation of pT (x) to all x ≤ M , selecting large enough M
for which pT (M) is close to zero.

1

2

4

5

3

Figure 27.1: Network diagram for Problem 27.1.

SOLUTION:

(a) No, x1, x2, . . . is not a Markov process. The probability P (xn = x′ | xn−1, xn−2, . . . , x1)
depends on both xn−1 and xn−2.

(b) The state space consists of transitions Nj → Nk, or j − k for short. For each edge in the
network, there are two transitions, except for transitions starting from N5. In addition, we
have the initial transition 0−1 and the final transition 5−5. That makes 2×8−3+1+1 = 15
transitions, enumerated in the table below. The transition probabilities can be deduced from
the rules, yielding the transition matrix given in the table below. The transition 5− 5 is and
absorbing state because P (5− 5 | 5− 5) = 1.

(c) We have

P
(k)
0−1,5−5 = P (zk = 5− 5 | z1 = 0− 1) = P (T < k).

(d) We calculate P (k) = P k, where P is the (one-step) transition matrix given above. The PMF
is then pk = P (T < k + 1) − P (T < k). The following code completes the problem. See
Figure 27.2.

360CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

0-1 1-2 1-3 1-4 2-1 2-3 2-5 3-1 3-2 3-4 3-5 4-1 4-3 4-5 5-5
0-1 0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-2 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.33 0.00 0.00 0.00
1-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00
2-1 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.33 0.00 0.00 0.00 0.00
2-5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
3-1 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-2 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00
3-5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
4-1 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00
4-5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
5-5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.
0

0.
1

0.
2

0.
3

0.
4

0 10 20 30 40 50 60

k

P
(T

=k
)

mean = 4.833

Figure 27.2: Distribution of T for Problem 27.1.

Construct Transition Matrix

x = c(

0,1/3,1/3,1/3,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,1/2,1/2,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,1/3,0,1/3,1/3,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,1/2,1/2,0,

0,0,1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,

27.1. EXERCISES 361

0,0,0,0,0,0,0,1/3,0,1/3,1/3,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,

0,1/2,0,1/2,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1/2,0,1/2,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1/2,0,1/2,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,

0,1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1/3,1/3,0,1/3,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)

pp = matrix(x, 15,15,byrow=T)

Iterate matrix multiplication

st = pp[1,15]

ppp = pp

for (i in 1:101) {

ppp = ppp%*%pp

st = c(st, ppp[1,15])

}

sum(1 - st) + 1

calculate mean and PMF

pa = diff(c(0,st))

mu = sum(pa*(1:length(pa)))

output results

ex1 = expression(paste(italic(k)))

ex2 = expression(paste(italic(P),’(’,italic(T),’=’,italic(k),’)’,sep=’’))

par(mfrow=c(1,1),cex=1,oma=c(2,2,2,2))

barplot(pa[1:50])

axis(1)

mtext(ex1,1,line=3,cex=1.25)

mtext(ex2,2,line=3,cex=1.25)

text(30,.3,paste(’mean = ’,round(mu,3)))

Problem 27.2. One important application in remote sensor systems is the localization of a system
node based on received signal strength indication (RSSI) measurements. Suppose m stationary

362CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

nodes equipped with radio signal receivers are deployed in an environment, which is mathematically
a region within R2. Suppose an additional mobile node to be localized is equipped with a radio
signal transmitter. The strength of the signal (RSSI) received at each stationary node is inversely
proportional to the distance between that node and the mobile node (that is, the transmission
distance).

The Weibull density is often used to model survival times, and other positive random variables.
Parameterizations vary, but it commonly incorporates a shape parameter κ > 0 and scale parameter
µ > 0 as follows:

f(z;κ, µ) =
κ

µ

(
z

µ

)κ−1

e−(z/µ)κ , z ≥ 0.

Then suppose Y is an RSSI measurement which is calibrated so that Z = 1/Y has a Weibull
distribution where κ = 8.25 and µ is the transmission distance. There are m = 3 stationary nodes,
labeled i = 1, 2, 3, located on the two-dimensional deployment region at coordinates (in miles):

(x1, y1) = (−0.50, 0.00)

(x2, y2) = (0.42, 2.00)

(x3, y3) = (1.50, 1.27).

Suppose θ = (θx, θy) is the current location of the mobile node. After transmitting a radio sig-
nal, three RSSI measurements (Y1, Y2, Y3) = (0.926, 0.943, 0.787) are collected from the respective
stationary nodes. Assume the RSSI measurements are independent.

(a) The object is to construct a Bayesian model for the inference of θ = (θx, θy). For the prior
density π(θ), use a uniform distribution over some large enough region containing all nodes.
Then accept as the data the reciprocals Z = (Z1, Z2, Z3) = (1/Y1, 1/Y2, 1/Y3). Write ex-
plicitly the conditional density of Z given θ, say f(z1, z2, z3 | θ), and then give the posterior
density of θ given Z = z, say π(θ | z1, z2, z3). Note that the posterior density need not be
normalized.

(b) Evaluate the posterior density on a two-dimensional grid, with x and y coordinates defined
as follows

xgrid = seq(-0.7,1.0,0.01)

ygrid = seq(-0.1,1.8,0.01)

That is, π(θ | z1, z2, z3) is evaluated in a rectangle θx ∈ [−0.7, 1.0] and θy ∈ [−0.1, 1.8],
with spacing δ = 0.01 between grid points in each axis direction. Use the data given here
for the values (z1, z2, z3). Use the persp function to create a 3-dimensional image of this
density. Use options theta=0, phi=30. HINT: In R, densities and distribution functions
can usually be evaluated on a logarithmic scale, using the log = TRUE or log.p = TRUE

option, as appropriate. This is far preferable for an application like this. A good strategy
would be to write a function which evaluates and returns the density on a logarithmic scale,
which can later be exponentiated if needed. Again, note that the posterior density need not
be normalized.

(c) In this example, the maximum likelihood estimate θ̂MLE will be the value of θ which max-
imizes π(θ | z1, z2, z3) (assuming there is only one global maximum). Why is this the case?
Use the grid evaluation of Part (b) to obtain an approximation of θ̂MLE . HINT: This can
be done with the which function, using the arr.ind = TRUE option.

27.1. EXERCISES 363

(d) Create a Hastings-Metropolis algorithm to simulate a sample from π(θ | z1, z2, z3). Implement
the following features:

(i) Use as a proposal rule something like theta.new = theta.old +

runif(2,-1/10,1/10). This means the resulting state space is not discrete, but
the algorithm will work in much the same way. Under this proposal rule we can take
1 = Q(θ2 | θ1)/Q(θ1 | θ2) when calculating the acceptance probability.

(ii) Allow N = 100, 000 transitions. Capture in a single object all sampled values of θ. You
can used θ = (0, 0) as the initial state. HINT: When constructing an MCMC algorithm,
rather than calculate a ratio of densities, it is better to calculate a difference ∆ in log-
densities, and then calculate the exponential function of the difference, that is, e∆. For
this reason, the function constructed in Part (b) should return log-densities.

(e) The posterior density is defined on a two-dimensional plane. There are a number of R functions
that can be used to visualize functions or densities defined on R2.

(i) Use the smoothScatter function to plot the sampled θ values (this function is part of the
graphics library). Rather than draw a simple scatter plot, this function draws a heat
map representation of the sample density. Essentially, a deeper color shade indicates
a higher density of sampled points. Use options xlim=c(-1,1.5),ylim=c(-0.5,2.1).
Include horizontal and vertical axes lines which pass through the origin (0,0) (you can
use the abline function for this). Also indicate the locations of the three stationary
nodes (you can use the points function for this). Then indicate the location of θ̂MLE ,
using a distinct symbol for clarity.

(ii) Superimpose on your plot a contour plot of the posterior density evaluated in Part (b).
Use the contour function with the add = TRUE option.

(f) One advantage of the use of MCMC sampling to estimate posterior densities is that various
forms of inference become easy to implement. For example, suppose there is interest in the
distance of the mobile node from the origin (0, 0). Use the MCMC to estimate the posterior
density of this distance. This can be done by first transforming the sampled values of θ, then
constructing a histogram of these transformed values.

SOLUTION:
The following code can be used to complete the problem.

> ### (b)

>

> ### Reciever locations

>

> rec.loc = matrix(c(-0.5,0,0.42,2.0,1.5,1.27),3,2,byrow=T)

>

> ### RSSI data (use the reciprocal)

>

> xrfid = c(0.926, 0.943, 0.787)^(-1)

>

> ### Posterior density (assuming uniform prior)

364CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

x

−0.5 0.0 0.5 1.0

y

0.0

0.5

1.0

1.5

P
osterior D

ensity

0

5

10

Figure 27.3: Plot for Problem 27.2 (b).

> ### Note log scale

>

> f.posterior = function(xy) {

+ rr = apply(rec.loc,1,function(rlxy) {sqrt(sum((xy-rlxy)^2))})

+ ans = sum(dweibull(xrfid,shape=8.25,scale=rr,log=TRUE))

+ return(ans)

+ }

>

> ### Evaluate posterior density on grid

>

> xgrid = seq(-0.7,1.0,0.01)

> ygrid = seq(-0.1,1.8,0.01)

> nx = length(xgrid)

> ny = length(ygrid)

> post.density = matrix(NA, nx, ny)

27.1. EXERCISES 365

−1.0 −0.5 0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

xy.trace[,1]

xy
.tr

ac
e[

,2
]

●

●

●
 2

 4
 6

 8

 10

 12

 14

Figure 27.4: Plot for Problem 27.2 (e).

> for (i in 1:nx) {

+ for (j in 1:ny) {

+ post.density[i,j] = exp(f.posterior(c(xgrid[i],ygrid[j])))

+ }

+ }

>

> ### Draw perspective plot of posterior denisty

>

> pdf(’figa2q4a-2019.pdf’)

> par(mfrow=c(1,1))

> persp(xgrid,ygrid,post.density,theta=0,phi=30,xlab=’x’,ylab=’y’,

zlab=’Posterior Density’,ticktype=’detailed’)

> dev.off()

RStudioGD

2

366CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

Posterior Density

Distance from Origin

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5

0
10

00
20

00
30

00
40

00
50

00

Figure 27.5: Plot for Problem 27.2 (f).

>

> ### (c)

>

> ### Get MLE of mobile node location

>

> max.ind = which(post.density==max(post.density),arr.ind=T)

> max.ind

row col

[1,] 94 102

> xy.max = c(xgrid[max.ind[1]],ygrid[max.ind[2]])

> xy.max

[1] 0.23 0.91

>

> ### (d)

>

27.1. EXERCISES 367

> ### Setup MCMC

>

> ntrace = 100000

> xy.trace = matrix(NA,ntrace,2)

> xy.old = c(0,0)

> set.seed(234)

>

> ### Loop through transitions

>

> for (i in 1:ntrace) {

+

+ # simulate transition from Q

+

+ xy.new = xy.old + runif(2,-1/10,1/10)

+

+ # determine acceptance probability (the q.ratio is always 1)

+ # recall that f.posterior() returns density on a log scale

+

+ alpha = exp(f.posterior(xy.new)-f.posterior(xy.old))

+ if (runif(1) <= alpha) {xy.old = xy.new}

+

+ # capture samples

+

+ xy.trace[i,]=xy.old

+

+ }

>

> ### (e)

>

>

> pdf(’figa2q4b-2019.pdf’)

> par(mfrow=c(1,1))

>

> # One way to visualize empirical densities in two dimensions:

>

> smoothScatter(xy.trace,xlim=c(-1,1.5),ylim=c(-0.5,2.1))

>

> # Add location of stationary nodes

>

> points(rec.loc,pch=19)

>

> # Add axes for clarity

>

> abline(h=0,lty=2)

> abline(v=0,lty=2)

368CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

>

> # add countour plot of posterior evaluated on grid

>

> contour(xgrid,ygrid,post.density,add=T)

>

> # add MLE of mobile node location

>

> points(xy.max[1],xy.max[2], pch=3,col=’red’)

> dev.off()

RStudioGD

2

>

> pdf(’figa2q4c-2019.pdf’)

> par(mfrow=c(1,1))

> rr.post = apply(xy.trace,1,function(xy) sqrt(sum((xy-c(0,0))^2)))

> hist(rr.post,nclass=100,main=’Posterior Density’,xlab=’Distance from Origin’)

> dev.off()

(a) First note that Zi has a Weibull density with shape parameter κ = 8.25 and scale parameter

µi = ‖θ − (xi, yi)‖ =
√

(θx − xi)2 + (θy − yi)2,

which is equal to the Euclidean distance between θ and (xi, yi) (ie. the radio signal trans-
mission distance). Then, since the three RSSI measurements are assumed to be independent,
the posterior density is

π(θ | z1, z2, z3) = K
3∏
i=1

f(zi;κ, µi)× π(θ)

where K is a normalization constant. However, since the prior is uniform, π(θ) does not
depend on θ, and can be incorporated into the normalization constant. We then have

π(θ | z1, z2, z3) = K ′
3∏
i=1

f(zi;κ, µi),

where K ′ does not depend on θ.
(b) We can set K ′ = 1. Then see Figure 27.3 produced by the code above.
(c) Since the prior density is uniform (and therefore constant) it follows that π(θ | z1, z2, z3) is

proportional to the likelihood function, that is, the likelihood is given by

l(θ; z1, z2, z3) =

3∏
i=1

f(zi;κ, µi) ∝ π(θ | z1, z2, z3).

Then using the code above, we obtain, approximately, θ̂MLE ≈ (0.23, 0.91).
(d) See code above.

27.1. EXERCISES 369

(e) See Figure 27.4 produced by the code above.

(f) For each value of θ = (θx, θy) in the MCMC sample calculate d =
√
θ2
x + θ2

y, which is the

distance from the origin. Then the posterior density for d is estimated by, for example, a
histogram constructed from the sampled values of d. See Figure 27.5 produced by the code
above.

Problem 27.3. Create a Hastings-Metropolis algorithm to simulate a sample from a bin(25, 0.75)
distribution using the following steps.

(a) The state space is S = {0, . . . , 25}.
(b) Define a proposal Markov chain in the following way. If the algorithm is in state x ∈
{0, . . . , 25}, the proposed state is x′ with probability Q(x′ | x). Suppose that if 0 < x < 25,
then the proposal state is x′ = x + 1 and x′ = x − 1 with equal probability. If x = 0 then
x′ = 1 with probability 1. If x = 25 then x′ = 24 with probability 1. Give Q(x′ | x) precisely.

(c) Program the Hastings-Metropolis algorithm, and allow it to run for 100,000 transitions. You
can start from any initial state.

(d) Plot a histogram of the MCMC sample. Use one frequency bar for each state. Superimpose
on this the true binomial density.

SOLUTION:
The proposal Markov chain is given by

Q(x′ | x) =

1/2 ; |x′ − x| = 1, 0 < x < 25
1 ; x′ = 1, x = 0
1 ; x′ = 24, x = 25
0 ; otherwise

The algorithm can be run using the following code. The plot is given in Figure 27.6, which
shows a close agreement between the true density and the MCMC estimate.

nstate=25

f0 = function(x) {dbinom(x,size=nstate,prob=0.75)}

do ntrace transitions

ntrace = 100000

x = numeric(ntrace)

x0 = 1

set.seed(12345)

for (i in 1:ntrace) {

simulate transition from Q

370CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

if (x0 == 0) {

x1 = 1

} else {

if (x0 == nstate) {

x1 = nstate-1

} else {

x1 = x0 + sample(c(-1,1),1)

}

}

determine Q[j,i]/Q[i,j]

if (x0 ==0 | x0 == nstate) {

q.ratio = 1/2

} else {

if ((x0==1 & x1==0) | (x0==nstate-1 & x1==nstate)) {

q.ratio = 2

} else {q.ratio=1}

}

determine acceptance probability

a1 = f0(x1)/f0(x0)

alpha = min((f0(x1)/f0(x0)) *q.ratio,1)

if (runif(1) <= alpha) {x[i] = x1} else {x[i] = x0}

x0 = x[i]

}

ex1 = expression(italic(X))

hist(x,probability=T,breaks=(c(0:(nstate+1))-0.5),col=’gray’,main=’’,cex.lab=1.25)

lines(0:nstate,dbinom(0:nstate,nstate,0.75),type=’b’,pch=19,cex=1.0)

legend(’topleft’,legend=c(’True density’,’MCMC sample’),lty=c(1,NA),

pch=c(19,15),col=c(’black’,’darkgray’))

Problem 27.4. Consider the 4th order polynomial

f(x) = x · (x+ 1/2) · (x− 2) · (x− 4).

(a) Plot f(x) on a range [-2,5]. Identify all local minima, and the unique global minimum. This
can be done either analytically, or numerically with R code such as

27.1. EXERCISES 371

x

D
e

n
si

ty

0 5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● True density
MCMC sample

Figure 27.6: Plot for Problem 27.3.

f0 = function(x) {x*(x+0.5)*(x-2)*(x-4)}

optimize(f0,interval=c(-10,0))

optimize(f0,interval=c(0,10))

(b) Create a simulated annealing algorithm to find the value of xmin = x which gives the global
minimum f(xmin) of f(x). Suppose the algorithm is allowed to run for N transitions. Use
the following components.

(i) We can specificy the initial and final temperatures of the cooling schedule to be t0 > tN .
This can be attained by setting

tn = t0

(
tN
t0

)n/N
.

(ii) Given current state x, the proposed state is given by x′ = x+U , where U is uniformally
distributed on the interval (−1/4, 1/4).

In your algorithm use parameters N = 50, 000, t0 = 500, tN = 0.01. Remember that in
simulated annealing, the proposal distribution is not used in the calculation of the acceptance
probability.

(c) When you run the algorithm, capture the sequence x1, . . . , xN . Plot xn and f(xn) as a
function of iteration index n = 1, . . . , 50000. Superimpose on your plots the local and global
minima, either x∗ or f(x∗) as appropriate. Comment on the convergence properties.

372CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

SOLUTION:
The required code is given below. In particular, using the optimize function the minima are
x∗ = −0.271, 3.266, with objective values f(x∗) = −0.602,−11.429.

> f0 = function(x) {x*(x+0.5)*(x-2)*(x-4)}

> optimize(f0,interval=c(-10,0))

$minimum

[1] -0.2709331

$objective

[1] -0.6019377

> optimize(f0,interval=c(0,10))

$minimum

[1] 3.265703

$objective

[1] -11.42948

The algorithm and plots are given by the code given below. See plots in Figure 27.7. From the
top right plot it can be seen that initially, the algorithm fluctuates between the two local minima,
but finally converges to the global minimum. The bottom row gives plots of f(xn) against n, the
first plot showing the entire range, the second showing only the final 15000 iterations. Both show
that the value of f(xn) is subject to considerable variation near any n, but that this variation
eventually approaches zero as the minimum is approached. In effect, convergence of simulated
annealing can be understood as convergence of a distribution.

Proposal function

proposal = function(x) {x + runif(1,-0.25,0.25)}

Set up algorithm

x.trace = NULL

scr.trace = NULL

x.old = 0

scr.old = f0(x.old)

t0 = 500

tn = 0.01

set.seed(12345)

ntrace = 50000

for (i in 1:ntrace) {

get proposal and route distance

x.new = proposal(x.old)

27.1. EXERCISES 373

−2 −1 0 1 2 3 4 5

0
2

0
4

0
6

0
8

0

x

f(
x

)

0 10000 30000 50000

−
2

0
2

4
6

n

x
n

0 10000 30000 50000

0
4

0
0

8
0

0

n

f(
x

n
)

35000 40000 45000 50000

−
1

1
.5

−
1

0
.5

−
9

.5

n

f(
x

n
)

Global minimum
Local minimum

Figure 27.7: Plots for Problem 27.4.

scr.new = f0(x.new)

update temperature

temp = t0*(tn/t0)^(i/ntrace)

calculate acceptance probability

alpha = exp((scr.old-scr.new)/temp)

374CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

accept or reject proposal

if (runif(1) <= alpha)

{

accept proposal

x.old = x.new

scr.old = scr.new

}

x.trace[i] = x.old

scr.trace[i] = scr.old

}

Set up graphics detail

ex1 = expression(paste(italic(f),’(’,italic(x),’)’,sep=’’))

ex2 = expression(italic(x))

ex3 = expression(italic(x)[italic(n)])

ex4 = expression(italic(n))

ex5 = expression(paste(italic(f),’(’,italic(x)[italic(n)],’)’,sep=’’))

par(mfrow=c(2,2),cex.lab=1.25,oma=c(2,2,2,2))

Draw plots

xgrid = seq(-2,5,0.1)

plot(xgrid,f0(xgrid),type=’l’,xlab=ex2,ylab=ex1)

abline(v=-0.271,lty=2,lwd=1,col=’blue’)

abline(v=3.266,lty=1,lwd=1,col=’blue’)

abline(h=-0.271,lty=2,lwd=1,col=’blue’)

abline(h=-11.429,lty=1,lwd=1,col=’blue’)

plot(x.trace,type=’l’,xlab=ex4,ylab=ex3)

abline(h=-0.271,lty=2,lwd=2,col=’blue’)

abline(h=3.266,lty=1,lwd=2,col=’blue’)

del = 15000

plot(scr.trace,type=’l’,xlab=ex4,ylab=ex5)

abline(h=-0.271,lty=2,lwd=2,col=’blue’)

abline(h=-11.429,lty=1,lwd=2,col=’blue’)

plot((ntrace-del):ntrace, scr.trace[(ntrace-del):ntrace],type=’l’,

xlab=ex4,ylab=ex5)

abline(h=-0.271,lty=2,lwd=2,col=’blue’)

abline(h=-11.429,lty=1,lwd=2,col=’blue’)

legend(’topright’,legend=c(’Global minimum’,’Local minimum’),

27.1. EXERCISES 375

lty=c(1,2),col=’blue’,lwd=1)

Problem 27.5. Suppose in an apple orchard a thin cross-section of land of length 1000 feet is
selected. We define a starting point at x = 0, so that the cross-section ends at x = 1000 feet.
It is assumed that the number of apples on a tree at position x has a Poisson distribution with
mean λ = a + bx, for two constants a, b. We count the number of apples on 4 trees at positions
x = (25, 135, 643, 719), observing counts N = (590, 627, 736, 737) respectively. We assume the
counts are statistically independent.

We will use a Bayesian analysis to estimate a, b. We assume these parameters are in the rectangle

(a, b) ∈ [500, 700]× [0, 0.4] = Θ.

The prior distribution π(a, b) of (a, b) is taken to be uniform on Θ. The conditional distribution
P (N | a, b) of the counts given (a, b) is obtainable directly from the Poisson distribution.

To estimate the posterior distribution π(a, b | N) given the observed counts, we discretize Θ by
selecting integers Na, Nb, and defining a discrete distribution on points

(ai, bj) = (500 + 200× i/Na, 0 + 0.4× j/Nb) ∈ Θgrid, i = 0, 1, . . . , Na, j = 0, 1, . . . , Nb.

(a) Identify precisely the components P (N | a, b) and π(a, b) of the posterior density

π(a, b | N) =
P (N | a, b)π(a, b)∫

a,b∈Θ P (N | a, b)π(a, b) da db
.

(b) First approximate the posterior distribution by evaluating it on all grid points in Θgrid. Use
Na = Nb = 40. Store the values in a 41×41 matrix, where the value for (ai, bj) occupies matrix
position (i+1, j+1). The posterior density can be normalized by summing P (N | a, b)π(a, b)
over all grid points in Θgrid. Use R functions contour and persp to plot the distribution.

(c) Next, approximate the posterior distribution by sampling, using a Metropolis-Hastings al-
gorithm, from the discrete density proportional to P (N | a, b)π(a, b) with support on Θgrid.
This will require defining a proposal transition matrix on the two dimensional grid Θgrid.
This can be done in the following way. The first step of the proposal is to choose with equal
probability to move either in the a or the b dimension (but not both). Then select a direction
in that dimension as described in the lecture notes. Start the sampler in the middle of the
grid. Record the sample both by capturing the sampled values of (an, bn), and by recording
the occupancy frequency of the Markov chain in a suitably defined 41× 41 matrix. Allow the
sampler to run for M = 500, 000 iterations.

(d) The two approximations can be compared directly using the contour function. By setting
the option add = T a contour plot is superimposed onto the current plot. In this way, draw
contours for both approximations on the same plot (use different colors). It will be helpful
to specify the same contour levels for each distribution. This can be done using, for ex-
ample, option levels = seq(.002,.01,by=.002). Is the sampler able to approximate the
distribution?

376CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

(e) One of the advantages of simulating a sample from a posterior distribution is that it becomes
very easy to answer specific inference questions. For example, if the trees are evenly spaced
along the cross-section, the average number of apples per tree is

µ = a+ b× 500.

We can estimate the marginal posterior density π(µ | N) of µ by examining the sampled
values µi = ai + bi × 500, i = 1, . . . ,M . Using this method:

(i) Estimate graphically the marginal posterior density of µ by plotting a histogram of the
samples µi.

(ii) Report the estimated mean, and the 5th and 95th percentiles of π(µ | N).

SOLUTION:
We have data x = (25, 135, 643, 719) = (x1, . . . , x4), N = (590, 627, 736, 737) = (n1, . . . , n4). If
Ni ∼ pois(a+ xib) then

P (Ni = n | a, b) =
(a+ xib)

n

n!
e−(a+xib).

Then, Θ is a rectangle of area (700− 500)× (0.4− 0) = 80. Therefore, the prior density of (a, b) is

π(a, b) =
1

80
I{(a, b) ∈ Θ}.

Assuming conditional independence, the posterior density of (a, b) is proportional to

π(a, b | N) ∝

(
4∏
i=1

P (Ni = ni | a, b)

)
× π(a, b)

∝

(
4∏
i=1

(a+ xib)
nie−(a+xib)

)
× I{(a, b) ∈ Θ}.

Note that we omit any factors which do not depend on (a, b).

The code needed to answer the remainder of the question is given below, with plots given in
Figure 27.8.

(i) The bivariate posterior density is represented in the top row of Figure 27.8.
(ii) Regarding Part (d) (lower left plot of Figure 27.8), we would expect the estimate of a density

to be less accurate at smaller values, where the sampling rate would, necessarily, be much
smaller. This can be seen very clearly in the contours. The green countour represents the
MCMC sample, and contains considerable variation at the 10−5 level contour. However, the
MCMC estimate is quite accurate for the level 10−2 and 10−3 contours.

(iii) Regarding Part (e) the estimated mean, and the 5th and 95th percentiles of π(µ | N) are,
respectively, 698.4, 675 and 720. This can be obtained directly from the data represented in
the lower right plot of Figure 27.8.

27.1. EXERCISES 377

a

b
 1e−05

 1e−04

 0.001

 0.01

500 550 600 650 700

0.
0

0.
1

0.
2

0.
3

0.
4

Part (b)

a

b

P
osterior D

ensity

Part (b)

a

b

 1e−05

 1e−04

 0.001

 0.01

500 550 600 650 700

0.
0

0.
1

0.
2

0.
3

0.
4

 1e−05

 1e−04

 0.001

 0.01

Part (d)

atrace + btrace * 500

F
re

qu
en

cy

640 680 720 760

0
20

00
0

50
00

0

Part (e)

Figure 27.8: Plots for Problem 27.5.

prop.grid = function(x0,n) {

if (x0 == 1) {

x1 = 2

qratio = 1/2

} else {

if (x0 == n) {

x1 = n-1

qratio = 1/2

} else {

x1 = x0 + sample(c(-1,1),1)

if (x1 %in% c(1,n)) {qratio = 2} else {qratio = 1}

}

}

return(c(x1,qratio))

378CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

}

set up data

xpos = c(25, 135, 643, 719)

xobs = c(590, 627, 736, 737)

calculate ’exact’ posterior density

agrid = seq(500,700,by = 5)

bgrid = seq(0,0.4,by = .01)

na = length(agrid)

nb = length(bgrid)

zmat = matrix(0,na,nb)

for (i in 1:na) {

for (j in 1:nb) {

zmat[i,j] = prod(dpois(xobs,agrid[i]+bgrid[j]*xpos))

}}

zmat = zmat/sum(zmat)

MCMC samplers

fmat = matrix(0,na,nb)

x = floor(na/2)

y = floor(nb/2)

fmat[x,y]=1

ntrace = 500000

atrace = rep(0,ntrace)

btrace = rep(0,ntrace)

for (i in 1:ntrace) {

if (runif(1) < 0.5) {

propx = prop.grid(x,na)

xnew = propx[1]

ynew = y

qratio = propx[2]

} else {

propy = prop.grid(y,nb)

27.1. EXERCISES 379

ynew = propy[1]

xnew = x

qratio = propy[2]

}

pratio = prod(dpois(xobs,agrid[xnew]+bgrid[ynew]*xpos))

/prod(dpois(xobs,agrid[x]+bgrid[y]*xpos))

alpha = min(pratio*qratio,1)

if (runif(1) <= alpha) {

x = xnew

y = ynew

}

atrace[i] = agrid[x]

btrace[i] = bgrid[y]

fmat[x,y] = fmat[x,y] + 1

}

Create plots

par(mfrow=c(2,2),oma=c(2,2,2,2))

lv = c(10^seq(-5,0,1))

contour(agrid,bgrid,zmat,levels=lv,xlab=’a’,ylab=’b’)

title(’Part (b)’)

persp(agrid,bgrid,zmat,xlab=’a’,ylab=’b’,zlab=’Posterior Density’)

title(’Part (b)’)

lv = c(10^seq(-5,0,1))

contour(agrid,bgrid,zmat/sum(zmat),levels=lv,xlab=’a’,ylab=’b’)

contour(agrid,bgrid,fmat/sum(fmat),levels=lv,add=T,col=’green’)

title(’Part (d)’)

marginal mean

hist(atrace+btrace*500,main=’’)

title(’Part (e)’)

mean(atrace+btrace*500)

quantile(atrace+btrace*500,c(0.05,0.95))

mean(xobs)

380CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

Problem 27.6. This problem will make use of the cabbages data set from the MASS library. This
contains data from a cabbage field trial. We will be interested in HeadWt (weight of the cabbage
head, presumably in kg) and VitC ascorbic acid content, in undefined units.

(a) We are interested in the simple linear regression model

Yi = β0 + β1Xi + εi

where εi ∼ N(0, σ2
ε), Yi = VitC and Xi = log(HeadWt). Plot Y against X. Using the function

lm(), calculate the least squares estimates of β0, β1, and superimpose the estimated regression
line on your plot. Is a linear relationship between X and Y plausible?

(b) We will construct a Bayesian model for the inference of (β0, β1). The marginal prior densities
will be

β0 ∼ N(µY , σ
2
0)

β1 ∼ N(0, σ2
1),

and under the prior assumption, β0 and β1 are independent. The conditional densities of Yi
given (β0, β1) are Yi ∼ N(β0 + β1Xi, σ

2
ε). Given (β0, β1) the responses Yi can be assumed to

be independent. Let φ(x;µ, σ2) denote the density function for a N(µ, σ2) distribution. The
joint posterior density of (β0, β1) will therefore be proportional to

π(β0, β1 | Y1, . . . , Yn) ∝

[
n∏
i=1

φ(Yi;β0 + β1Xi, σ
2
ε)

]
π(β0)π(β1),

where π(β0) = φ(β0;µY , σ
2
0) and π(β1) = φ(β1; 0, σ2

1). Create a Hastings-Metropolis algorithm
to simulate a sample from π(β0, β1 | Y1, . . . , Yn). Implement the following features.

(i) Estimate µY using the sample mean of the responses Yi, and estimate σ2
ε using the MSE

from the regression model in Part (a) (using data to estimate parameters in a Bayesian
model can be referred to as the empirical Bayesian method).

(ii) Use as a proposal rule something like beta.new = beta.old + runif(2,-1,1). This
means the resulting state space is not discrete, but the algorithm will work in much
the same way. Under this proposal rule we can take 1 = Q(y2 | y1)/Q(y1 | y2) when
calculating the acceptance probability.

(iii) Allow N = 100, 000 transitions. Capture in a single object all sampled values of (β0, β1)
(iv) Run the algorithm twice, first setting prior variance σ2

0 = σ2
1 = σ2

prior = 100, then

σ2
prior = 1000. A parameter defining a prior density is referred to as a hyperparam-

eter. Sometimes, this is used to represent prior information (for example µY in this
model). Otherwise, the hyperparameters are often set so as to make the prior density
uniform, close to uniform, or otherwise highly variable, to reflect uncertainty regarding
the parameter. This is known as a diffuse prior.

(v) When constructing an MCMC algorithm, rather than calculate a ratio of densities, it
is better to calculate a difference ∆ in log-densities, and then calculate the exponential
function of the difference, that is, e∆. This can be done using the log = TRUE option of
the dnorm() function. This option is generally available for density functions in R.

27.1. EXERCISES 381

(c) Construct separate histograms for β0 and β1 for each hyperparameter choice σ2
prior =

100, 1000. Also, superimpose on each histogram the least squares estimate of β0, β1 from
Part (a), as well as the confidence interval bounds β̂i ± tcritSEi (the abline() function can
be used). In general, is the Bayesian inference for β0 and β1 consistent with the confidence
intervals?

(d) When a prior is intended to be diffuse, the usual practice is to investigate the sensitivity of
the posterior density to the choice of prior. Ideally, in this case, the posterior density does
not depend significantly on the prior. The simplest way to do this is to use a range of priors,
then compare the resulting posterior densities. With this in mind, does the posterior density
appear to be sensitive to the choice of σ2

prior?

SOLUTION:

(a) The following code may be used to calculate the fit and create the plot. A linear relationship
is plausible. See Figure 27.9.

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0 1.5

40
50

60
70

80

x

y

Figure 27.9: Plot for Problem 27.6 (a).

library(MASS)

Part (a) Plot variables, calculate least squares fit

382CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

par(mfrow=c(1,1))

y = cabbages$VitC

x = log(cabbages$HeadWt)

plot(x,y)

fit = lm(y~x)

fit.coef = summary(fit)$coefficients

abline(fit.coef[,1])

(b) The following code may be used to run the MCMC algorithm.

Part (b)

get mean response

mean.y = mean(y)

get MSE

mse = anova(fit)[2,3]

get coefficient estimates, and confidence intervals

fit.coef = summary(fit)$coefficients

beta0.hat = fit.coef[1,1]

beta0.hat.se = fit.coef[1,2]

beta1.hat = fit.coef[2,1]

beta1.hat.se = fit.coef[2,2]

t.crit = qt(0.975,length(y)-2)

construct conditional, prior, and posterior densities

f.cond = function(beta0,beta1) {sum(dnorm(y,mean=beta0+beta1*x,sd=sqrt(mse),log=T))}

f.prior = function(beta0,beta1) {sum(dnorm(c(beta0,beta1),mean=c(mean.y,0),

sd=sqrt(var.prior),log=T))}

f.post = function(betav) {f.cond(betav[1],betav[2])+f.prior(betav[1],betav[2])}

create graphics window for 4 plots in a 2x2 arrangement

par(mfrow=c(2,2))

loop through 2 values of the prior variance = 1,100

for (var.prior in c(100,1000)) {

set up MCMC algorithm

27.1. EXERCISES 383

ntrace = 100000

beta.trace = matrix(NA,ntrace,2)

beta.old = c(mean.y,0)

set.seed(234)

loop through iterations

for (i in 1:ntrace) {

simulate transition from Q

beta.new = beta.old + runif(2,-1,1)

determine acceptance probability (the q.ratio is always 1)

alpha = exp(f.post(beta.new)-f.post(beta.old))

if (runif(1) <= alpha) {beta.old = beta.new}

capture samples

beta.trace[i,]=beta.old

}

Part (c) create plots

ex1 = expression(beta[0])

ex2 = expression(beta[1])

hist(beta.trace[,1],xlab=ex1,ylab=’posterior density’,

main=bquote(var.prior == .(var.prior)),

nclass=25)

abline(v = beta0.hat+t.crit*beta0.hat.se*c(-1,0,1),lty=c(2,1,2),

col=’green’,lwd=2)

hist(beta.trace[,2],xlab=ex2,ylab=’posterior density’,

main=bquote(var.prior == .(var.prior)),

nclass=25)

abline(v = beta1.hat+t.crit*beta1.hat.se*c(-1,0,1),lty=c(2,1,2),

col=’green’,lwd=2)

}

(i) See code.
(ii) See code.
(iii) See code.

384CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

(iv) See code.
(v) See code.

var.prior = 100

β0

p
o

st
e

ri
o

r
d

e
n

si
ty

60 65 70 75 80

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

var.prior = 100

β1

p
o

st
e

ri
o

r
d

e
n

si
ty

−25 −20 −15 −10 −5 0

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

var.prior = 1000

β0

p
o

st
e

ri
o

r
d

e
n

si
ty

60 65 70 75 80 85

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

var.prior = 1000

β1

p
o

st
e

ri
o

r
d

e
n

si
ty

−30 −25 −20 −15 −10 −5 0

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Figure 27.10: Plot for Problem 27.6 (c).

(c) See Figure 27.10. The inference is consistent with the confidence intervals for σ2
prior = 1000,

in that the posterior density is centered at the estimates β̂0 = 75.79 and β̂1 = −19.96. Also,
most of the densities are contained within the respective confidence intervals. However, for
σ2
prior = 100, the centers of the posterior densities are shifted significantly in the direction of

the prior means of β0, β1, which are (µY , 0), where µY = 57.95.
(d) The posterior density is quite sensitive to the prior density of β0, β1. The prior variance σ2

prior

determines the amount of weight (or certainty) to be assigned to the prior estimates of β0, β1

(here, these are (µY , 0)). When σ2
prior = 100 this weight is still relatively large, so that the

posterior densities are shifted significantly towards these values. On the other hand, when
σ2
prior = 1000, the influence of the prior density is small, so that the Bayesian inference will be

quite consistent with likelihood methods (recall that for Gaussian models, the least squares

27.2. SIMULATION PROJECTS 385

estimates are equivalent to the maximum likelihood estimates).

27.2 Simulation Projects

Problem 27.7. Suppose a casino has a game in which a player bets x dollars, then with probability
p wins back 2x dollars (for a net gain of x) and loses the original x dollars with probability
1 − p (for a net loss of x). Usually, p < 1/2. If p = 1/2 then the game is fair. Probability the-
ory states that in such a fair game, there can be no strategy that results in a positive expected gain.

A commonly claimed counter-example to this is the following strategy. Enter the casino,
then play the game, betting x = 1 each time, until you have a total gain of 1. For ex-
ample, the following Win/Loss sequence will accomplish this: LWLLWWW, which has gain
sequence -1,0,-1,-2,-1,0,1, taking 7 games to reach a gain of 1. The Win/Loss sequence W
also achieves a gain of 1 after a single game. Probability theory also states that the probability
that a gain of 1 is reached after a finite number of games is 1 (although this doesn’t hold if p < 1/2).

This seems to lead to a contradiction, since if we use this strategy, we can play once a day, and
guarantee ourselves a regular income, noting that we can use any value of x we wish. Note that
the case of the fair game, p = 1/2, is the important one, since if no winning strategy exists for this
case, no winning strategy can exist when p < 1/2, which settles the matter.

(a) Write an R program which simulates this process. Assume p = 1/2. For a single simulation,
start at gain = 0, then increase or decrease gain after each game by 1. This type of process is
referred to as a random walk . The process stops when gain = 1. Store the number of games
T needed to reach gain = 1. You may use the rbinom() function. Truncate the process at
1000 games. If gain = 1 has not been reached, indicate this by setting the number of games
at, say, T = 1001.

(b) Repeat the simulation to get 1000 replicates of T . Estimate the PMF pT (k) = P (T = k)
directly from the data. Construct a log-log plot of log(pT (k)) against log(k). Note that the
frequencies are not sorted in this case. How many times did T exceed 1000? How many times
was T within 10 games, inclusive?

(c) Using the lines() function, superimpose on this plot the lines

f(k) = log(pT (1))− α log(k),

for α = 1.0, 1.25, 2.0. Label your plot with the legend() function as in Question 4. We say
that T has a power law distribution if

pT (k) =
c

kα

for positive constants α, c. If you can conclude that T conforms to a power law distribution,
what can be said about E[T]? The rate at which a strategy earns money is

gain rate =
gain

number of games played
.

386CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

At what rate does this strategy earn money?

SOLUTION:
The following R script produces the plot in Figure 27.11.

0 1 2 3 4 5 6 7

log T

lo
g

fre
qu

en
cy

alpha = 1.0
alpha = 1.25
alpha = 2.0

Figure 27.11: Plot for Problem 27.7

> nsim = 1000

> tt = rep(NA, nsim)

> bank = rep(NA, nsim)

>

> for (i in 1:nsim) {

+

+ x = rbinom(1000,size=1,prob=1/2)

+ z = cumsum(2*x-1)

+

+ if (sum(z==1) > 0) {

+ tt[i] = min(which(z==1))

+ bank[i] = min(z[1:tt[i]])

+ }

+ else

+ {

27.2. SIMULATION PROJECTS 387

+ tt[i] = 1001

+ bank[i] = min(z)

+ }

+ }

>

> sum(tt <= 10)

[1] 752

> sum(tt == 1001)

[1] 32

>

> xx = as.integer(names(table(tt)))

> par(mfrow=c(1,1),cex=1)

> plot(log(xx), log(table(tt)/1000),xlab = ’log T’, ylab = ’log frequency’)

> lines(log(xx), max(log(table(tt)/1000)) - 1*log(xx),lty=1)

> lines(log(xx), max(log(table(tt)/1000)) - 1.25*log(xx),lty=2)

> lines(log(xx), max(log(table(tt)/1000)) - 2*log(xx),lty=3)

> legend(’bottomleft’,legend=paste(’alpha = ’,c(’1.0’,’1.25’,’2.0’),sep=’’),lty=1:3)

>

In this simulation there were 752/1000 simulated values of T within 10, and 32/1000 greater
than 1000. Results will vary. From Figure 27.11 the power law pX(k) ∝ 1/kα holds approximately,
with α ≈ 1.25, and more generally with α < 2. We then have, for some constant c,

E[T] =

∞∑
k=1

k
c

kα

noting that the support of T is unbounded. However, E[T] < ∞ only if α > 2 (compare the
summation to the integral

∫∞
1 x−αdx). If α < 2 then in our case E[T] = ∞. This means that

although the gambler can win a gain of 1 with probability 1 in a finite amount of time, the gain
rate is 0, since E[T] = ∞. If we let Gn be the total gain after the nth game (not day), we would
find

lim
n→∞

Gn
n

= 0.

As a practical matter, using this strategy, we would often find that we cannot play enough games
in a single day to achieve the daily gain of 1.

Problem 27.8. Whether or not a Markov chain is an adequate model for a given application is
an important question. We’ll use a Markov chain model to design a simple tic-tac-toe player. It
will play both sides.

Create in R the following objects:

(a) The board will consist of a vector of length 9. An unoccupied position is set to 0, otherwise
the position is occupied by player 1 or 2.

388CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

(b) A tic-tac-toe board has 8 ‘rows’. The three horizontal rows are (1,2,3), (4,5,6) and (7,8,9), the
three vertical rows are (1,4,7), (2,5,8) and (3,6,9). The diagonal rows are (1,5,9) and (3,5,7).
Create an 8× 3 table which stores these rows.

(c) Each position on the board belongs to certain rows. For example, position 6 belongs to rows
(3,6,9) and (4,5,6), and so on. Create a list of length 9, in which the ith element is a vector
of indices referencing the rows to which position i belongs.

(d) To choose a move, player 1 examines each position, and assigns each a score. If position i is
occupied it is assigned score 0. Otherwise, each row containing i is looked up. The number
of positions in that row occupied by 1 and 2 are stored in n.us and n.them respectively. The
row is scored according to the following table:

n.them =

0 1 2

n.us = 0 10 100 10,000
1 1,000 1 0
2 100,000 0 0

Then, the score for position i is the sum of the scores of the rows containing i. For example,
for the following board it is player 1’s turn to move. Positions 5 and 7 are scored 0, since
they are occupied. To score position 1, note that it is contained in 3 rows, (1,2,3), (1,4,7) and
(1,5,9). For row (1,2,3), n.us = 0, n.them = 0, so this row contributes 10 to the score. For
row (1,4,7) n.us = 0, n.them = 1, and for row (1,5,9) n.us = 1, n.them = 0, so these rows
contribute 100 and 1,000, respectively. The total score for position 1 is then 1,000 + 100 +
10 = 1,110.

0 0 0
0 1 0
2 0 0

(e) After each position’s score is calculated the position with the highest score is selected. If
more than one position has the maximum score, one of these is chosen at random.

(f) Player 2 uses the same strategy, calculating n.us and n.them accordingly.
(g) Write an R program to simulate a tic-tac-toe game with alternating players using the same

strategy. The game ends after one player completely occupies any row (and therefore wins),
or the board is full. Run the simulation 1,000 times, and store the frequency of outcomes
(player 1 wins, player 2 wins or the games ends in a draw). What are the frequencies of each
outcome?

(h) Which of the three outcomes can occur? Justify your answer. Symmetry plays a role here.

SOLUTION:
The following R program plays the game as defined in the question. All games in the 1,000
simulations end in draws.

create row.table: 8x3 matrix of row definitions

27.2. SIMULATION PROJECTS 389

row.table = matrix(c(1,2,3,4,5,6,7,8,9,1,4,7,2,5,8,3,6,9,1,5,9,3,5,7),

ncol=3, byrow=T)

create row.list. The ith element is a vector of indices to all

rows in row.table in which position i is located

row.list = vector(’list’,9)

row.list[[1]] = c(1,4,7)

row.list[[2]] = c(1,5)

row.list[[3]] = c(1,6,8)

row.list[[4]] = c(2,4)

row.list[[5]] = c(2,5,7,8)

row.list[[6]] = c(2,6)

row.list[[7]] = c(3,4,8)

row.list[[8]] = c(3,5)

row.list[[9]] = c(3,6,7)

score.matrix is a 3 x 3 matrix. Element score.matrix[n.us+1, n.them+1]

gives the score for (n.us, n.them)

score.matrix = matrix(0, nrow=3, ncol=3)

score.matrix[3,1] = 100000

score.matrix[1,3] = 10000

score.matrix[2,1] = 1000

score.matrix[1,2] = 100

score.matrix[1,1] = 10

score.matrix[2,2] = 1

choose.move is a function which accepts the current board,

the values us.them = c(n.us, n.them), and the objects

row.table, row.list, score.matrix created above.

The score is calculated for each position. The highest score is identified.

If more than one position has the highest score, one of them is chosen at random.

The output is a list with elements names move (the selected position),

max.score (the maximum score),

score.temp (the vector of scores for each position)

choose.move = function(board, us.them, row.table, row.list, score.matrix) {

score.temp = rep(0,9)

calculate score for each position

for (i in 1:9) {

390CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

if (board[i] == 0) {

for (j in 1:length(row.list[[i]])) {

row.temp = board[row.table[row.list[[i]][j],]]

n.us = sum(row.temp==us.them[1])

n.them = sum(row.temp==us.them[2])

score.temp[i] = score.temp[i] + score.matrix[n.us+1,n.them+1]

}

}

}

determine maximum score

max.score = max(score.temp)

identify positions with maximum score

move.list = which(score.temp==max.score)

if (length(move.list)==1) {

if highest scoring position is unique, copy onto move

move = move.list[1]

} else

{

otherwise, select position at random from highest scoring ones

move = sample(which(score.temp==max.score),1)

}

return selected position and score

return(list(move=move, max.score=max.score, score.temp=score.temp))

}

simulate nsim games

nsim = 1000

store result in sv 0=draw, 1=Player 1 wins, 2 = Player 2 wins

sv = rep(0, nsim)

27.2. SIMULATION PROJECTS 391

for (iii in 1:nsim) {

create playing board as vector of length 9

board = rep(0,9)

flag==1 is used to indicate end of game

flag = 0

while (flag == 0) {

Player 1 plays

junk = choose.move(board, c(1,2), row.table, row.list, score.matrix)

update board

board[junk$move] = 1

Player 1 wins if score is 100000. Game ends if there are no

empty positions on the board

if ((junk$max.score >= 100000) | (sum(board==0)==0)) {

flag=1

if (junk$max.score >= 100000) {sv[iii] = 1}

}

Player 2 plays if flag==0

if (flag == 0) {

Player 2 plays

junk = choose.move(board, c(2,1), row.table, row.list, score.matrix)

update board

board[junk$move] = 2

Player 2 wins if score is 100000. Game ends if there are no

empty positions on the board

if ((junk$max.score >= 100000) | (sum(board==0)==0)) {

flag=1

if (junk$max.score >= 100000) {sv[iii] = 2}

}

392CHAPTER 27. PRACTICE PROBLEMS - MARKOVCHAINS, MCMCANDCOMPUTATIONAL BAYESIANMETHODS

}

}

}

Examine results

table(sv)

After the program is run we should see something like this:

> table(sv)

sv

0

1000

The table below shows the sequence of one game, including scores for each position, and the
subsequent move. For the first move, note that when the board is empty, the middle position (5)
is scored highest, so Player 1 always starts there.

For Player 2’s first move, all four diagonal positions (1,3,7,9) are scored highest. Player 2 selects
one of these at random. However, note that by symmetry there is no important difference between
these moves.

For Player 1’s second move, the two remaining diagonal positions which share a row with Player
2’s first position are scored highest. Player 1 chooses one of these at random. Both are essentially
identical, after symmetry is accounted for.

If we continue in this way for the remaining moves, we see that after symmetry is accounted
for, there is really only one available move at each turn. All games must be essentially identical,
and will therefore end in draws.

27.2. SIMULATION PROJECTS 393

Score Board

1 30 20 30 0 0 0
20 40 20 0 1 0
30 20 30 0 0 0

2 120 110 120 0 0 0
110 0 110 0 1 0
120 110 120 0 0 2

3 21 1010 1110 0 0 0
1010 0 1100 0 1 0
1110 1100 0 1 0 2

4 111 110 11010 0 0 2
200 0 1100 0 1 0

0 101 0 1 0 2

5 1101 1100 0 0 0 2
2000 0 11000 0 1 1

0 1001 0 1 0 2

6 1101 1100 0 0 0 2
10100 0 0 2 1 1

0 101 0 1 0 2

7 102 1100 0 0 1 2
0 0 0 2 1 1
0 1001 0 1 0 2

8 3 0 0 0 1 2
0 0 0 2 1 1
0 10001 0 1 2 2

9 3 0 0 1 1 2
0 0 0 2 1 1
0 0 0 1 2 2

Chapter 28

Practice Problems - Classification

28.1 Exercises

Problem 28.1. Under given conditions two sharp shooters i = 1, 2 are able to hit a target within
a distance X, where X has an exponential density with mean µi (ie with density function f(x) =
µ−1
i exp(−x/µi), x ≥ 0). Suppose we have independent observations of target accuracy X1, . . . , Xn

from one of the sharp shooters, and we wish to build a Bayesian classifier to predict that identity.
Assume µ1 < µ2 are known, and that the prior probabilities are π1, π2.

Show that the classifier requires only the sum S =
∑n

i=1Xi, and give precise conditions under
which identity i = 1 would be predicted.

SOLUTION:
For each class i = 1, 2 the joint distribution of X = (X1, . . . , Xn) is

f(x1, . . . , xn) =

n∏
k=1

µ−1
i e−xk/µi .

The classifier function for class i may be given by

hi(x1, . . . , xn) = log (fi(x1, . . . , xn)πi)

= log(πi)− n log(µi)−
n∑
k=1

xk/µi.

Class i = 1 is predicted if h1(x1, . . . , xn)− h2(x1, . . . , xn) > 0, which is equivalent to[
log(π1)− n log(µ1)−

n∑
k=1

xk/µ1

]
−

[
log(π2)− n log(µ2)−

n∑
k=1

xk/µ2

]
> 0,

or, more concisely,
n∑
k=1

xk <
log(π1/π2)− n log(µ1/µ2)

µ−1
1 − µ

−1
2

394

28.1. EXERCISES 395

Problem 28.2. To build a KNN classifier, the data in the following plot is used, partitioned into
training and test data. That is, the test data is used to evaluate the accuracy of the KNN classifier
built using the training data. As it happens, there are two classes, indicated in the plot by a class
boundary. The pairwise distances are also given. Give the predicted class for each test observation
(labelled 9 and 10), using neighborhood sizes K = 1 and K = 3. Show clearly how these were
obtained.

0 2 4 6 8

0
2

4
6

8
10

X1

X
2

1

2
3

4

5

6

7

8

9

10

training data
test data

CLASS 1 CLASS 2

Pairwise Distance =

1 2 3 4 5 6 7 8 9 10

1 0.00 3.27 4.74 5.30 6.40 5.00 3.16 4.47 3.61 3.97
2 3.27 0.00 2.04 4.38 3.31 2.33 2.62 2.88 4.48 0.95
3 4.74 2.04 0.00 3.06 3.64 3.58 2.42 1.57 4.30 1.10
4 5.30 4.38 3.06 0.00 6.70 6.48 2.20 1.56 2.55 3.78
5 6.40 3.31 3.64 6.70 0.00 1.64 5.63 5.19 7.59 3.20
6 5.00 2.33 3.58 6.48 1.64 0.00 4.94 4.92 6.81 2.70
7 3.16 2.62 2.42 2.20 5.63 4.94 0.00 1.41 1.96 2.44
8 4.47 2.88 1.57 1.56 5.19 4.92 1.41 0.00 2.94 2.22
9 3.61 4.48 4.30 2.55 7.59 6.81 1.96 2.94 0.00 4.40

10 3.97 0.95 1.10 3.78 3.20 2.70 2.44 2.22 4.40 0.00

SOLUTION:
The correct classes for test observations i = 9, 10 are yi = 2, 1, respectively.

For K = 1, observation i = 9, the neighborhood is N = {7}, so ŷ9 = 2 [correct], since
observation 7 is class 2. For i = 10, N = {2}, ŷ10 = 1 [correct], since observation 2 is class 1.

For K = 3, observation i = 9, the neighborhood is N = {4, 7, 8}, so ŷ9 = 2 [correct], since all

396 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

observations in N are class 2. For i = 10, N = {2, 3, 8}, ŷ10 = 2 [incorrect], since 2/3 in N are
class 2.

Problem 28.3. We are given 2 classes, j = 1, 2. The distribution of a single dimensional obser-
vation is given by X ∼ N(µj , σ

2
j), given classes j = 1, 2. Available estimates of µj are given by

X̄1 = 44.5, X̄2 = 20.7. We assume σ2
1 = σ2

2, and a pooled estimate of the common variance is
given by s2

pooled = 3.82. We accept as prior class probabilities π1 = 0.4, π2 = 0.6. Suppose an LDA
classifier is constructed. Determine in which regions for which X predicts each class.

SOLUTION:
For LDA, the classifier is given by

ŷ = argmaxjhj(x)

where

hj(x) = xµj/σ
2 − 1

2
µ2
j/σ

2 + log(πj).

The classification boundary xb is the solution to h1(xb) = h2(xb). There is only one, since the hj(x)
are linear. This gives, after substituting the estimates,

xb × (44.5/3.82)− 1

2
× 44.52/3.82 + log(0.4) = xb × (20.7/3.82)− 1

2
× 20.72/3.82 + log(0.6)

or,

xb ×
44.5− 20.7

3.82
= −1

2
× 44.52 − 20.72

3.82
+ log(0.6/0.4),

xb = 32.665,

so that class y = 1 is predicted when X > xb = 32.665.

Problem 28.4. A certain classification problem involves 2 classes j = 1, 2, and a random
observation of the form X ∈ {1, 2, 3, 4}. Suppose the prior probabilities πj of class j are given by
π1 = 1− π2 = 3/4. The following table gives the conditional distribution f(x | j) of X:

x = 1 2 3 4

f(x | j = 1) 1/2 1/4 1/4 0
f(x | j = 2) 0 1/3 1/3 1/3

(a) What is the posterior probability of class j = 1 given X = 2?
(b) Give the prediction made by a Bayes classifier for each outcome X = 1, 2, 3, 4. Justify your

answers numerically.

SOLUTION:

28.1. EXERCISES 397

(a) We have

P (j = 1 | X = 2) =
P (X = 2 | j = 1)P (j = 1)

P (X = 2)

=
f(2 | j = 1)π1

f(2 | j = 1)π1 + f(2 | j = 2)π2

=
(1/4)× (3/4)

(1/4)× (3/4) + (1/3)× (1/4)

=
(3/4)

(3/4) + (1/3)

=
9

13
.

(b) The Bayes classifier is given by

ĵ = argmaxjhj(x)

where

hj(x) = f(x | j)πj .

These values, along with ĵ, are given in the following table:

x = 1 2 3 4

h1(x) 3/8 3/16 3/16 0
h2(x) 0 1/12 1/12 1/12

ĵ 1 1 1 2

Problem 28.5. To build a KNN classifier, the data in the following plot is used, partitioned into
training and test data (see the appropriate symbols in the plot legend). As it happens, there are
two classes, indicated in the plot by a class boundary (the dashed line). The pairwise distances
are also given. By evaluating the classifier with the test data, estimate the classification errors for
neighborhood sizes K = 1 and K = 3. When evaluating a prediction, specify the neighborhood
exactly. Note that the KNN classifier itself is built using only the training data.

1 2 3 4 5 6 7

0
1

2
3

4
5

6

X1

X
2

1

2

3

4

5

6

7

training data
test data

CLASS 1 CLASS 2

398 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

Pairwise Distance =
1 2 3 4 5 6

2 4.500
3 2.332 2.773
4 2.844 4.883 2.193
5 2.022 5.200 2.435 1.131
6 4.295 6.841 4.173 1.980 2.280
7 2.300 5.054 2.283 0.707 0.424 2.102

SOLUTION:
The correct classes for test observations i = 6, 7 are yi = 2, 1.

For K = 1, observation i = 6, the neighborhood is N = {4}, so ŷ6 = 2. For i = 7, N = {5},
ŷ7 = 1. This means CE = 0.0.

For K = 3, observation i = 6, the neighborhood is N = {3, 4, 5}, so ŷ6 = 1 (2/3 in N are class
1). For i = 7, N = {3, 4, 5}, ŷ7 = 1 (2/3 in N are class 2). This means CE = 1/2.

Problem 28.6. We are given 2 classes, j = 1, 2. The distribution of a single dimensional obser-
vation is given by X ∼ N(µj , σ

2
j), given classes j = 1, 2. Available estimates of µj are given by

X̄1 = 102.5, X̄2 = 143.8. We assume σ2
1 = σ2

2, and a pooled estimate of the common variance is
given by s2

pooled = 5.03. We accept as prior class probabilities π1 = 0.7, π2 = 0.3. Suppose an LDA
classifier is constructed. Determine the region for X which predicts class j = 1.

SOLUTION:
For LDA, the classifier is given by

ŷ = argmaxjhj(x)

where

hj(x) = xµj/σ
2 − 1

2
µ2
j/σ

2 + log(πj).

The classification boundary xb is the solution to h1(xb) = h2(xb). There is only one, since the hj(x)
are linear. This gives, after substituting the estimates,

xb × (102.5/5.03)− 1

2
× 102.52/5.03 + log(0.7) = xb × (143.8/5.03)− 1

2
× 143.82/5.03 + log(0.3)

or,

xb ×
102.5− 143.8

5.03
= −1

2
× 102.52 − 143.82

5.03
+ log(0.7/0.3),

xb = 123.2532,

so that class y = 1 is predicted when X < xb = 123.2532.

28.1. EXERCISES 399

Problem 28.7. A total of n ancient Roman coins are discovered scattered at an archaeological site.
Each coin has a distinctive mark identifying the mint at which the coin was produced. Suppose at
the time the coins were produced there existed m mints in operation, and that the exact number
m is of interest to historians. We may therefore calculate frequencies Nj , j = 1, . . . ,m, equalling
the number of coins in the collection from the jth observed mint label, so that N1 + . . .+Nm = n.
If N+ is the number of distinct mints observed in the sample, we at least know that m ≥ N+.
Assume, for convenience, that a coin is equally likely to come from any mint, and that the mint
assignments are independent. We then interpret (N1, . . . , Nm) as a multinomial vector (but for a
more subtle interpretation of these frequencies see Nayak TK (1992) “On statistical analysis of a
sample from a population of unknown species”, Journal of Statistical Planning and Inference).

(a) Suppose we wish to develop a Bayes classifier to predict m. Assume we are given a prior
distribution πj = P (m = j). Write explicitly the posterior distribution, and show how this
can be interpreted as a Bayes classifier.

(b) Suppose prior belief favors m = 15, and it is known that at least m = 10 mints existed. It is
then assumed that m ∈ [10, 20], so πj = 0 if j /∈ [10, 20], and otherwise

(π10, π11, . . . , π19, π20) = K × (12, 22, . . . , 52, 62, 52, . . . , 22, 12),

for some normalization constant K. Then, suppose there are n = 8 coins, with 2 mints
represented by 2 coins and 4 mints are represented by 1 coin. Plot the prior and posterior
densities for m. What value of m does the Bayes classifier predict?

SOLUTION:

(a) Suppose we are given a probability distribution P = (p1, . . . , pm) on S = {1, . . . ,m}. If we
are given an iid sample of size n from P , and we let Ñ = (N1, . . . , Nm) be the vector of sample
frequencies for each outcome, then Ñ has a multinomial distribution with density given by

fÑ (n1, . . . , nm) = P (N1 = n1, . . . , Nm = nm) =
n!∏m
i=1 ni!

m∏
i=1

pnii , min
i
ni ≥ 0, n1+. . .+nm = n.

For the coin frequencies, given m mints we have distribution P = (1/m, . . . , 1/m), which
gives conditional density

P (n1, . . . , nm | m) =
n!∏m
i=1 ni!

m∏
i=1

pnii

=
n!∏m
i=1 ni!

m∏
i=1

(1/m)ni

=
n!∏m
i=1 ni!

(1/m)n,

if m ≥ N+, and P (n1, . . . , nm | m) = 0 otherwise. Since n is fixed, and 0! = 1, the multinomial
coefficient in the conditional probability does not depend on m, so we may write

P (n1, . . . , nm | m) ∝ (1/m)n.

400 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

Thus, we have

P (n1, . . . , nm | m) =

{
K/mn ; N+ ≤ m
0 ; N+ > m

where K is a normalization constant which does not depend on m. This gives posterior
density

π(m | n1, . . . , nm) =

{
K ′πm/m

n ; N+ ≤ m
0 ; N+ > m

,

where K ′ is a normalization constant which does not depend on m, and Bayes classifier

m̂ = argmaxmπ(m | n1, . . . , nm).

(b) The following code calculates and plots the densities (Figure 28.1). From the plot of the
posterior density we have directly m̂ = 12.

●

●

●

●

●

●

●

●

●

●

●

10 12 14 16 18 20

0
.0

0
0

.1
0

0
.2

0

m

P
ri

o
r

D
e

n
si

ty

●

●

●

●

●

●

●

●

●
● ●

10 12 14 16 18 20

0
.0

0
0

.0
5

0
.1

0
0

.1
5

m

P
o

st
e

ri
o

r
D

e
n

si
ty

Figure 28.1: Figure for Problem 28.7 (b).

data (we only need the sum and the number of nonzero frequencies)

x0 = c(2,2,1,1,1,1,0,0,0,0)

n = sum(x0)

n.plus = sum(x0 > 0)

c(n,n.plus)

conditional density (up to normalization constant)

p.cond = (10:20)^(-n)

prior density (we’ll normalize this density, although its not strictly needed)

28.2. DATA ANALYSIS 401

p.prior = c(1:5,6,5:1)^2

p.prior = p.prior/sum(p.prior)

posterior density (we’ll normalize this density, although

its not strictly needed)

p.post = p.cond*p.prior

p.post = p.post/sum(p.post)

plot densities

pdf(’figq2b.pdf’)

par(mfrow=c(1,2),pty=’s’)

plot(10:20,p.prior,type=’b’,xlab=’m’,ylab=’Prior Density’)

plot(10:20,p.post,type=’b’,xlab=’m’,ylab=’Posterior Density’)

dev.off()

28.2 Data Analysis

Problem 28.8. Suppose we may observe a vector of random counts X = (X1, . . . , Xm) which
are statistically independent, with Xi ∼ Poisson(λi). The mean vector is then Λ = (λ1, . . . , λm).
Next, suppose we have a classification problem in which the vector of Poisson counts X comes from
class A or B, defined by respective mean vectors ΛA = (λA1 , . . . , λ

A
m) or ΛB = (λB1 , . . . , λ

B
m).

(a) Suppose ΛA,ΛB are known. Suppose that the respective classes have prior probabili-
ties πA, πB. Show that the Bayes classifier can be constructed, given observation X =
(X1, . . . , Xm), from two functions of X of the form:

hA(X) = a0 +

m∑
i=1

aiXi,

hB(X) = b0 +

m∑
i=1

biXi,

with the prediction being A if hA(X) > hB(X) and B if hB(X) > hA(X) (with the prediction
made randomly when hB(X) = hB(X)).

(b) Write an R function which uses training data to develop the Bayes classifier of part (a), then
applies the classifier to test data. Note that the Poisson parameter λ may be estimated
by a sample mean. Apply this function to files A2train.csv and A2test.csv (posted on
Blackboard). The files can be imported using the commands:

402 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

xmat.train = read.table(file=’A2train.csv’,header=T,sep=’,’)

xmat.test = read.table(file=’A2test.csv’,header=T,sep=’,’)

Apply also an LDA classifier and a KNN classifier (K = 1) to the same training and test
data. Report confusion matrices and error rates for each. How do the respective classifiers
differ in performance?

SOLUTION:
The density of the Poisson random variable with mean λ is

f(i) =
λi

i!
e−λ, i = 0, 1,

(a) By independence, for class y ∈ {A,B},

f(x1, . . . , xm | y = A) =
m∏
i=1

(λAi)xi

xi!
e−λ

A
i

f(x1, . . . , xm | y = B) =
m∏
i=1

(λBi)xi

xi!
e−λ

B
i

The Bayes classifier is

ŷ = argmaxy∈{A,B}f(x1, . . . , xm | y)πy.

If we take a log transformation we have, for y = A

log (f(x1, . . . , xm | A)πA) = log

(
m∏
i=1

(λAi)xi

xi!
e−λ

A
i

)

= log(πA) +

m∑
i=1

xi log(λAi)− log(xi!)− λAi ,

and similarly

log (f(x1, . . . , xm | B)πA) = log(πB) +
m∑
i=1

xi log(λBi)− log(xi!)− λBi .

If we subtract all terms of the form − log(xi!) from the preceding expressions (since they do
not depend on class) we have functions

hA(x1, . . . , xm) = a0 +

m∑
i=1

aixi,

hB(x1, . . . , xm) = b0 +
m∑
i=1

bixi,

28.2. DATA ANALYSIS 403

where

ai = log(λAi)

a0 = log(πA)−
m∑
i=1

λAi

bi = log(λBi)

b0 = log(πB)−
m∑
i=1

λBi

so the the Bayes classifier is equivalently given as

ŷ = argmaxy∈{A,B}hy(X),

with ties resolved randomly.
(b) The following code implements the classifiers:

read data

xmat.train = read.table(file=’A2train.csv’,header=T,sep=’,’)

xmat.test = read.table(file=’A2test.csv’,header=T,sep=’,’)

extract feature data

group vector gr is same for training and test data

n = 100

gr = rep(c(1,2),each=n)

xtrain = xmat.train[,2:4]

xtest = xmat.test[,2:4]

subroutine for Bayes classifier based on Poisson distribution

note that mest1 and mest2 are global objects

mest1 = apply(xtrain[gr==1,],2,mean)

mest2 = apply(xtrain[gr==2,],2,mean)

BayesPoiss = function(x) {

b1 = sum(x*log(mest1)) - sum(mest1)

b2 = sum(x*log(mest2)) - sum(mest2)

ans = 1*(b1 > b2) + 2*(b2 > b1) + sample(c(1,2),1)*(b1==b2)

return(ans)

}

apply subroutine

pr3 = apply(xtest,1,BayesPoiss)

confusion.matrix.bayes = table(pr3,gr)

404 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

accuracy.bayes = mean(pr3==gr)

apply LDA

fit1 = lda(xtrain,gr)

pr1 = predict(fit1,xtest)$class

confusion.matrix.lda = table(pr1,gr)

accuracy.lda = mean(pr1==gr)

apply KNN (K=1)

fit2= knn(xtrain,xtest,gr, k = 1)

pr2 = fit2

confusion.matrix.knn1 = table(pr2,gr)

accuracy.knn1 = mean(pr2==gr)

The output is shown below. We have a correct classification rate of 0.875, 0.87, 0.85 for the
Bayesian classifier, LDA, and KNN respectively. Although the Bayes classifier has (slightly)
higher accuracy, the others are close, and can both be considered approximations of the
Bayesian classifier.

> ### print results

>

> # Bayes classifier

>

> confusion.matrix.bayes

gr

pr3 1 2

1 81 6

2 19 94

> accuracy.bayes

[1] 0.875

>

> # LDA

>

> confusion.matrix.lda

gr

pr1 1 2

1 81 7

2 19 93

> accuracy.lda

[1] 0.87

>

> # KNN (K = 1)

>

> confusion.matrix.knn1

28.2. DATA ANALYSIS 405

gr

pr2 1 2

1 80 10

2 20 90

> accuracy.knn1

[1] 0.85

>

Problem 28.9. This question will make use of data downloaded from GEO (Gene Expression Om-
nibus) with series accession number GSE10245. This data set contains gene expression profiles from
non-small cell lung cancer tumor tissue. There are n = 58 gene expression profiles (from distinct
subjects), collected from two cancer subtypes, adenocarcinoma (AC) (n = 40) and squamous cell
carcinoma (SCC) (n = 18). The data to be used in this problem can be obtained from Blackboard,
but you may also consult the link:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10245

The data set is in file GSE10245.csv. It has 58 rows (one for each gene expression profile) and
51 columns. Column 1 identifies the group (1 = AC; 2 = SCC). The remaining columns contain
expressions from 50 genes. The gene symbols are given in the header. The file can be imported by
the following command:

GSE10245.data = read.table(file=’GSE10245.csv’,header=T,sep=’,’)

The object of this question is to evaluate distinct classifiers on multiple, but similar, data sets.

(a) Divide the data into 10 separate data sets, each consisting of 5 genes. Data sets should use
genes from columns 2− 6, 7− 11, . . . , 46− 51.

(b) Write a main function which accepts a class vector and a data set of features, and which
applies 5 classification methods to the data, giving an estimated classification error CE for
each:

(a) LDA, CE estimated using training data only;

(b) LDA, CE estimated using LOO cross-validation;

(c) QDA, CE estimated using training data only;

(d) QDA, CE estimated using LOO cross-validation;

(e) KNN, allowing K to vary over 1, 3, 5, . . . , 23, 25. For each model, estimate CE using
LOO cross-validation. Select K yielding the minimum CE. In the case of ties, select
the smallest K yielding the minimum CE.

Why would we only consider odd numbers for K in the KNN classifier?
(c) Apply the main function to each of the ten data sets. Construct a table with a row for each

data set and a column for each of the 5 classifier methods. The table entry will be CE.
(d) Compute the mean error for each method across the 10 data sets.

406 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

(a) Which methods report the lowest and highest CE?

(b) How do error rates differ between using training data only and using cross-validation
within the same method?

(c) Which method would you recommend?

(e) Instead of averaging error rates, we can average blocked ranks. That is, within each row,
replace CE with their (within row) ranks. Each row then contains the ranks 1-5. Repeat
part (d) using the average ranks. Is the conclusion the same?

(f) For the first 2 data sets, plot CE against K = 3, 5, . . . , 23, 25. For each data set, what are
the minimum and maximum values of K yielding the minimum CE?

SOLUTION:
Take the following steps

(a) The following code creates class vector gr and feature matrix gem1.

GSE10245.data = read.table(file=’GSE10245.csv’,header=T,sep=’,’)

gem1 = GSE10245.data[,2:51]

gr = GSE10245.data[,1]

(b) The following code implements the required algorithms. For the KNN classifier, if K is even,
the prediction will be randomized in case of ties.

main.function = function(gem1, gr) {

vector to contain CE

crate = rep(0,5)

LDA

fit.lda = lda(gem1,gr)

pr.lda = predict(fit.lda)$class

crate[1] = 1 - mean(pr.lda==gr)

LDA-CV

fit.ldacv = lda(gem1,gr,CV=T)

pr.ldacv = fit.ldacv$class

crate[2] = 1 - mean(pr.ldacv==gr)

QDA

fit.qda = qda(gem1,gr)

pr.qda = predict(fit.qda)$class

crate[3] = 1 - mean(pr.qda==gr)

28.2. DATA ANALYSIS 407

QDA-CV

fit.qdacv = qda(gem1,gr,CV=T)

pr.qdacv = fit.qdacv$class

crate[4] = 1 - mean(pr.qdacv==gr)

KNN

list of K values

k.list = seq(1,25,by=2)

nk = length(k.list)

error vector

knn.err = integer(nk)

loop through K values

for (i in 1:nk) {

fit.knn = knn.cv(gem1,gr,k=k.list[i],prob=T)

pr.knn = fit.knn

knn.err[i] = 1-mean(pr.knn==gr)

}

capture optimal K

k.best = min(k.list[knn.err==min(knn.err)])

refit with opimal K

fit.knn = knn.cv(gem1,gr,k=k.best)

pr.knn = fit.knn

crate[5] = 1 - mean(pr.knn==gr)

return error rates, and data from KNN algorithm

return(list(crate=crate, k.list=k.list, knn.err=knn.err, k.best=k.best))

}

(c) The following code may be used:

Read data

GSE10245.data = read.table(file=’GSE10245.csv’,header=T,sep=’,’)

gem1 = GSE10245.data[,2:51]

gr = GSE10245.data[,1]

Apply main.function() to data sets extracted by column subsetting of gem1

tab1 = NULL

408 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

for (i in 1:10) {tab1 = rbind(tab1, main.function(gem1[,c(1:5)+(i-1)*5], gr)$crate) }

(d) The following code may be used:

Append column averages, then label tab1

tab1 = rbind(tab1,apply(tab1,2,mean))

rownames(tab1) = c(paste(’Data Set’,1:10),"Average")

colnames(tab1) = c(’LDA’,’LDA-CV’,’QDA’,’QDA-CV’,’KNN’)

We get the following table:

> tab1

LDA LDA-CV QDA QDA-CV KNN

Data Set 1 0.08620690 0.08620690 0.05172414 0.1034483 0.08620690

Data Set 2 0.10344828 0.15517241 0.05172414 0.1379310 0.08620690

Data Set 3 0.05172414 0.05172414 0.08620690 0.1206897 0.05172414

Data Set 4 0.10344828 0.10344828 0.05172414 0.1379310 0.10344828

Data Set 5 0.08620690 0.10344828 0.12068966 0.1551724 0.08620690

Data Set 6 0.06896552 0.10344828 0.05172414 0.1034483 0.12068966

Data Set 7 0.10344828 0.10344828 0.06896552 0.0862069 0.10344828

Data Set 8 0.10344828 0.13793103 0.10344828 0.1206897 0.08620690

Data Set 9 0.08620690 0.08620690 0.08620690 0.1206897 0.08620690

Data Set 10 0.03448276 0.10344828 0.03448276 0.1379310 0.08620690

Average 0.08275862 0.10344828 0.07068966 0.1224138 0.08965517

(a) The lowest error is reported by QDA, the highest error is reported by QDA-CV.

(b) The reported error is always higher for the CV method.

(c) The choice should be based on cross-validated error, so the KNN predictor is the best
choice in this sense.

(e) The following code may be used:

tab2 = NULL

for (i in 1:10) {tab2 = rbind(tab2, rank(tab1[i,]))}

tab2 = rbind(tab2,apply(tab2,2,mean))

rownames(tab2) = c(paste(’Data Set’,1:10),"Average")

colnames(tab2) = c(’LDA’,’LDA-CV’,’QDA’,’QDA-CV’,’KNN’)

The following table is produced. The ordering of the methods, and therefore the conclusion,
is the same as for part (d).

> tab2

LDA LDA-CV QDA QDA-CV KNN

Data Set 1 3.0 3.0 1.00 5.00 3.0

Data Set 2 3.0 5.0 1.00 4.00 2.0

Data Set 3 2.0 2.0 4.00 5.00 2.0

Data Set 4 3.0 3.0 1.00 5.00 3.0

28.2. DATA ANALYSIS 409

Data Set 5 1.5 3.0 4.00 5.00 1.5

Data Set 6 2.0 3.5 1.00 3.50 5.0

Data Set 7 4.0 4.0 1.00 2.00 4.0

Data Set 8 2.5 5.0 2.50 4.00 1.0

Data Set 9 2.5 2.5 2.50 5.00 2.5

Data Set 10 1.5 4.0 1.50 5.00 3.0

Average 2.5 3.5 1.95 4.35 2.7

5 10 15 20 25

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

K

Cl
as

sif
ica

tio
n E

rro
r

Data Set 1

Best K = 3

5 10 15 20 25

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

K

Cl
as

sif
ica

tio
n E

rro
r

Data Set 2

Best K = 17

Figure 28.2: Plot for Problem 28.9 (f).

(f) The following code draws the required plots (Figure 28.2). The best K is, respectively, 3 and
17.

Refit data sets 1,2

i = 1

mf1 = main.function(gem1[,c(1:5)+(i-1)*5], gr)

i = 2

mf2 = main.function(gem1[,c(1:5)+(i-1)*5], gr)

Draw plot

par(mfrow=c(1,2))

plot(mf1$k.list,mf1$knn.err,type=’b’,ylim=c(0,0.20), xlab=’K’,

ylab=’Classification Error’)

title("Data Set 1")

410 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

text(12.5,.195,paste(’Best K = ’,mf1$k.best))

plot(mf2$k.list,mf2$knn.err,type=’b’,ylim=c(0,0.20), xlab=’K’,

ylab=’Classification Error’)

title("Data Set 2")

text(12.5,.195,paste(’Best K = ’,mf2$k.best))

Problem 28.10. This problem will make use of the biopsy data set from the MASS library. From
the help file:

This breast cancer database was obtained from the University of Wisconsin Hospitals,
Madison from Dr. William H. Wolberg. He assessed biopsies of breast tumours for 699
patients up to 15 July 1992; each of nine attributes has been scored on a scale of 1 to
10, and the outcome is also known. There are 699 rows and 11 columns.

The data contains features labeled V1, . . . , V9 and a response labeled class with binary tumor
outcomes benign and malignant. The object is to build a predictor which uses the nine features
to predict tumor class. A confusion table is a contingency table of the form:

true benign true malignant

predicted benign n11 n12

predicted malignant n21 n22

Any record used for testing the predictor is placed in exactly one of the four cells.

(a) Prepare the data by first removing the ID column, then removing records with missing values
using the na.omit() function. The new data set should have n = 683 records.

(b) Recall the odds representation of Baye’s Rule, in this application:

Odds(true malignant | predicted malignant) = LR+ ×Odds(true malignant)

Odds(true malignant | predicted benign) = LR− ×Odds(true malignant)

Express LR+ and LR− in terms of the elements (n11, n12, n21, n22) of the confusion table.
Create an R function that inputs the confusion table, and outputs a single vector with elements
(CE,LR+, LR−), where CE is classification error.

(c) Using the function lda() fit a classifier using linear discriminant analysis (LDA). Use the
function of Part (b) to record (CE,LR+, LR−). Do not use cross-validation to fit this clas-
sifier.

(d) Now, we will evaluate the LDA by spliting the data into training and test data. Do this four
ways, constructing the training data by indices

T1 = (1, 2, . . . , 340, 341)

T2 = (342, 343, . . . , 682, 683)

T3 = (1, 3, . . . , 681, 683)

T4 = (2, 4, . . . , 680, 682)

28.2. DATA ANALYSIS 411

In each case fit an LDA classifer with the training data, then construct a confusion table by
applying the predictor to the test data, combining the summary statistics (CE,LR+, LR−)
to those of Part (c) into a single table.

(e) Finally, create a confusion table using predictions obtained from leave-one-out cross-validation
(LOOCV). This may be done using the CV=TRUE option for the function lda(). Add summary
statistics (CE,LR+, LR−) to the table contructed in Part (d).

(f) Examine the summary statistics. Comment on the relative merits of LOOCV versus data
splitting.

SOLUTION:
Code for Parts (a)-(e) is given below. Comments folow.

(a)

library(MASS)

biopsy2 = biopsy[,-1]

biopsy2 = na.omit(biopsy2)

dim(biopsy2)

(b)

lrfp = function(m) { (m[2,2]/(m[1,2]+m[2,2]))/(m[2,1]/(m[1,1]+m[2,1])) }

lrfn = function(m) { (m[1,2]/(m[1,2]+m[2,2]))/(m[1,1]/(m[1,1]+m[2,1])) }

f0 = function(m) {c(1-sum(diag(m))/sum(m),lrfp(m),lrfn(m))}

(c)

fit.lda= lda(class~. , data=biopsy2)

confusion.matrix.lda = table(predict(fit.lda)$class,biopsy2$class)

we’ll need 6 rows.

lr.tab = matrix(NA,6,3)

lr.tab[1,] = f0(confusion.matrix.lda)

(d)

define training indices

train.ind.list = list(c(1:341), c(342:683), seq(1,683,2), seq(2,683,2))

loop through each training set

for (iii in 1:4) {

412 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

train.ind = train.ind.list[[iii]]

biopsy2.train = biopsy2[train.ind,]

biopsy2.test = biopsy2[-train.ind,]

fit.lda = lda(class~. , data=biopsy2.train)

confusion.matrix.lda = table(predict(fit.lda,biopsy2.test)$class,

biopsy2.test$class)

lr.tab[iii+1,] = f0(confusion.matrix.lda)

}

(e)

LOOCV with option CV=TRUE

fit.lda= lda(class~. , data=biopsy2, CV=TRUE)

confusion.matrix.lda = table(fit.lda$class,biopsy2$class)

confusion.matrix.lda

lr.tab[6,] = f0(confusion.matrix.lda)

(a) See above.
(b) The general for for Baye’s Rule using odds is:

Odds(A | E) =
P (E | A)

P (E | Ac)
×Odds(A).

Therefore, if

Odds(true malignant | predicted malignant) = LR+ ×Odds(true malignant)

we have

LR+ =
P (predicted malignant | true malignant)

P (predicted malignant | true benign)
=
n22/(n12 + n22)

n21/(n11 + n21)
.

Similarly, if

Odds(true malignant | predicted benign) = LR− ×Odds(true malignant)

we have

LR− =
P (predicted benign | true malignant)

P (predicted benign | true benign)
=
n12/(n12 + n22)

n11/(n11 + n21)
.

(c) See above.
(d) See above.
(e) See above.
(f) The table is printed below. Splitting the data in various ways results in considerable variation

in the estimated properties of the predictor (rows 2-5). On the other hand, LOOCV estimates
accuracy to be essentially the same as the original fit using the entire data set (rows 1 and
6).

28.2. DATA ANALYSIS 413

> ### (f)

>

> lr.tab

[,1] [,2] [,3]

[1,] 0.03953148 51.08787 0.08095659

[2,] 0.02046784 122.44444 0.06220506

[3,] 0.07917889 26.44620 0.13741686

[4,] 0.04985337 40.06441 0.10402737

[5,] 0.02923977 69.40496 0.05864736

[6,] 0.03953148 51.08787 0.08095659

Problem 28.11. This problem will make use of the biopsy data set from the MASS library used
in Problem 28.10.

(a) Repeat Parts (a) and (b) of Problem 28.10. Then normalize the 9 features V1, . . . , V9 by
subtracting the mean and dividing by the standard deviation within each feature. The features
now have mean 0 and standard deviation 1.

(b) We will build a KNN classifier for class based on the remaining 9 normalized features.
Create an R function which accepts a vector k.list of values of K (the neighborhood size
of the classifier), a training set of features, and a paired training set of classes. For each K
in k.list a KNN fit will be evaluated using LOOCV. Use the knn.cv() function from the
library class. The function should output a table with a row for each K in k.list consisting
of the summary statistics (CE,LR+, LR−) for that fit.

(c) Apply the function of Part (b) to the data set constructed in Part (a). Use k.list =

seq(1,15,2). What advantage is there to using only odd numbers for K?
(d) Given the output of Part (c), for each of the three summary statistics construct a plot of that

statistic against K. Also determine for each the optimal values of K. Do they conform to
each other?

SOLUTION:

(a) Code for Part (a) follows.

library(class)

library(MASS)

(a)

lrfp = function(m) { (m[2,2]/(m[1,2]+m[2,2]))/(m[2,1]/(m[1,1]+m[2,1])) }

lrfn = function(m) { (m[1,2]/(m[1,2]+m[2,2]))/(m[1,1]/(m[1,1]+m[2,1])) }

f0 = function(m) {c(1-sum(diag(m))/sum(m),lrfp(m),lrfn(m))}

414 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

library(class)

biopsy2 = biopsy[,-1]

biopsy2 = na.omit(biopsy2)

biopsy3 = biopsy2

for (i in 1:9) {

biopsy3[,i] = (biopsy2[,i] - mean(biopsy2[,i]))/sd(biopsy2[,i])

}

(b) The function can be written as follows.

(b)

knn.function = function(k.list, xtrain, gr) {

pr.tab = matrix(NA,length(k.list),3)

for (i in 1:length(k.list)) {

knn.fit = knn.cv(xtrain,gr,k=k.list[i],use.all=T)

cm = table(knn.fit,gr)

pr.tab[i,] = f0(cm)

}

return(pr.tab)

}

(c) The following commands apply the function. Using only odd numbers for K avoids the need
to break ties within the classification algorithm.

(c)

k.list = seq(1,15,2)

cv.tab = knn.function(k.list,biopsy3[,1:9],biopsy3[,10])

(d) The following commands create the required plots and summaries (Figure 28.3). Note that
smaller values of CE,LR− are preferred, but larger values of LR+ are preferred. For each
statistic, the optimal choices of K are 7 and 13.

>

> ### (d)

>

> pdf(’figq4.pdf’)

> par(mfrow=c(2,2))

> lbs = c(’CE’,’LR+’,’LR-’)

> for (i in 1:3) {plot(k.list,cv.tab[,i],type=’b’,xlab=’K’,ylab=lbs[i])}

> dev.off()

null device

1

28.2. DATA ANALYSIS 415

>

> k.list[cv.tab[,1]==min(cv.tab[,1])]

[1] 7 13

> k.list[cv.tab[,2]==max(cv.tab[,2])]

[1] 7 13

> k.list[cv.tab[,3]==min(cv.tab[,3])]

[1] 7 13

>

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14

0.
03

0
0.

03
5

0.
04

0
0.

04
5

K

CE

●

●

●

●

●

● ●

●

2 4 6 8 10 12 14

32
34

36
38

40
42

K

LR
+

●

●

● ●

● ●

● ●

2 4 6 8 10 12 14

0.
05

0.
06

0.
07

0.
08

K

LR
−

Figure 28.3: Figure for Problem 28.11 (d).

Problem 28.12. A Gaussian process is a stochastic process Xt in real time t ≥ 0 for which any
finite dimensional vector (Xt1 , Xt2 , . . . , Xtm), t1 < t2 < . . . , tm, possesses a multivariate normal
distribution. The following two functions simulate two distinct Gaussian processes on time points
t = 1, 2, . . . , 999, 1000.

416 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

Brownian motion

f0 = function() {

xv = rep(NA,1000)

xv[1] = 0

for (i in 2:1000) {

xv[i] = xv[i-1]+rnorm(1)*0.1

}

return(xv)

}

Brownian motion with negative feedback

f1 = function() {

xv = rep(NA,1000)

xv[1] = 0

for (i in 2:1000) {

xv[i] = xv[i-1]+rnorm(1)*0.1 - 0.01*xv[i-1]

}

return(xv)

}

Function f0() simulates the process

Xi = Xi−1 + εi, i = 2, . . . , 1000

X1 = 0,

while function f1() simulates the process

Xi = Xi−1 + εi − 0.01Xi−1 = 0.99Xi−1 + εi, i = 2, . . . , 1000

X1 = 0,

where the εi’s are an iid sample from N(0, 0.12).

(a) Using the following code, generate a 200 × 1000 matrix, such that rows 1-100 and 101-200
each consist of 100 simulations of the respective Gaussian processes. Construct plots of rows
1,2,3 and 101,102,103 against indices 1, . . . , 1000. Use something like par(mfrow=c(2,3)) to
draw all plots in a single window. Include the origin Xt = 0, and make sure the plots are
labeled by series number or type of process.

Simulate 100 trajectories of each type on time points 1,2,....,1000

xmat = matrix(NA,200,1000)

set.seed(12345)

for (i in 1:100) {xmat[i,] = f0()}

for (i in 101:200) {xmat[i,] = f1()}

28.2. DATA ANALYSIS 417

(b) We will attempt to construct a classifier able to distinguish between the two types of process.
First, construct a feature matrix, using as features the observed process at a subset of time
points t = 200, 400, 600, 800, 1000. Then create a data frame with a factor identifying the
class, or process type, and the 5 extracted features (X200, . . . , X1000).

(c) For each process derive E[Xt] as a function of t.
(d) Estimate separately for each process the 5 × 5 covariance and correlation matrices of the

extracted features.
(e) Use LDA to construct a classifier based on the extracted features. Use LOOCV to report a

confusion matrix. Do the same with QDA.
(f) Which classifier is more accurate? How are the answers to Part (c)-(d) related to this result?

SOLUTION:

(a) The following code creates the required plots (Figure 28.4):

par(mfrow=c(2,3))

for (i in c(1:3,101:103)) {

plot(xmat[i,],main=paste(’Series ’,i),xlab=’i’,ylab=’x[i]’)

abline(h=0,col=’red’)

}

(b) The following code creates the required data frame

(b)

xmat2 = xmat[,seq(200,1000,200)]

x.data = data.frame(xmat2, gr = as.factor(rep(0:1,each=100)))

(c) Function f0() simulates the process

Xi = Xi−1 + εi, i = 2, . . . , 1000

X1 = 0.

Taking the expectation of each side gives

E[Xi] = E[Xi−1] + E[εi] = E[Xi−1]

since E[εi] = 0. But E[X1] = 0, so by iteration we have E[Xt] = 0 for all t > 1. The argument
for the second process is identical:

E[Xi] = 0.99E[Xi−1] + E[εi] = 0.99E[Xi−1]

so we similarly have E[Xt] = 0 for all t > 1 since E[X1] = 0.
Thus for both processes, E[Xt] = 0 for all t.

(d) The covariance and correlation matrices can be calculated as follows

418 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

●●
●●●●
●●●●●●
●●●●●●●●
●●
●●
●
●
●●●
●●●
●
●
●●●●
●
●●●
●●●
●
●
●●●●●
●●●●●●
●
●
●●●●
●●
●●
●●●●●●
●
●●
●●●
●●
●●
●●
●●●●
●●●
●●●●●
●●●●●●●●●●
●●●●
●
●
●●●●●
●●
●
●●
●●●
●●●
●
●●
●●
●●●●●●●
●●
●●●●●
●●
●●●●●●
●●●●●●●●●●●●
●●●
●●●●●
●●●
●●●●●
●●
●●●●●●●●
●●
●●●●
●●●
●●●●●●●
●●●
●●●●●
●●●
●●●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●
●●●
●
●●●●●●●●
●●●
●●●●●●●●●
●●
●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●
●●●
●●●
●●●
●
●
●●●
●
●●●●
●●
●●
●●●●
●●●
●●●●
●●●
●●●
●●●●●
●●●●●●●●●●
●●●
●●●●●●
●●●●
●●●
●●●●●
●●●●●●●
●
●●●●
●●●●●●
●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●
●●
●●●●●●●●
●●
●
●●●●
●
●●●
●●●●
●●●●
●
●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●
●●●

●●●●●●
●
●●●
●●
●
●●●●●
●●●●●●●
●●●●●
●●●
●●●
●●●
●
●
●●
●
●●●●●
●
●
●●
●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●
●
●●●●●●●
●●
●●●
●●●
●●●
●
●●●
●●
●
●
●
●●●
●
●●●●●●●
●●
●●
●
●●●●●●
●●●
●
●●●●
●
●●
●
●
●●●
●●
●
●●●●●●●●●●●●●●
●●
●
●●●●●●●
●
●
●●●●●●●
●●
●●●●●●●●●
●

●
●●●●●
●●●●●●
●●●
●●●●
●●
●
●●
●●●●●
●●
●●●●●●●●
●●●
●●
●●
●●●●●●●
●●●●●
●●
●
●●
●●●●●●●●
●●●
●●●
●●●●●●●●●●●
●
●●
●●
●●●●●
●●
●●●●●
●●●
●●●●●●●
●●●●
●●●●●●●
●●●●●●●●
●●●
●●●
●●●
●●●●
●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●
●●
●
●●●
●●
●●●●●●●
●●●●●
●●
●●●●●●●●●●●●●
●
●●
●●●●●●●●
●●
●●
●
●●●
●●●●●●●
●●●●●
●●
●
●●

0 200 400 600 800

0
2

4
6

Series 1

i

x[
i]

●●
●●
●
●●

●●
●●●●●●
●
●●
●
●
●
●●

●
●●●
●●●
●
●
●●
●
●
●●
●●
●
●
●
●●
●●
●●
●●

●
●
●●●
●●●●●

●
●●
●
●●
●●●
●
●

●
●
●●
●●
●
●●●●●●
●
●●●

●
●●●
●●
●●
●●
●●●
●●

●
●
●
●●
●

●
●●
●●●
●
●●
●●●
●●●
●
●
●
●●
●
●●●

●●●
●
●
●
●
●

●●

●
●●
●●●
●
●●●
●●●
●
●●●●
●●●●●
●
●●
●
●
●●
●

●
●●●●

●
●
●●
●●●●

●
●
●
●
●●
●●●●
●
●●●●
●●●
●
●●●
●
●●
●
●
●
●●
●
●●●
●
●
●●
●

●
●●●
●
●

●●

●●
●●
●●
●●●●●●
●
●●
●●
●
●
●●●
●●
●●
●●
●
●
●
●●
●
●●●

●
●●
●●

●
●
●

●
●●●
●

●●●
●●
●

●
●
●●
●●
●
●

●
●

●
●●
●
●●
●●

●
●
●●

●
●
●

●
●●●
●
●●●●
●●
●
●
●●
●●●●●●

●
●●
●●●●●●●●

●●●●●
●
●●●
●●
●
●●●

●
●
●
●

●●
●●
●
●●●
●
●●●
●●
●
●●●●
●●●●●
●
●●
●
●
●●
●●
●
●
●
●
●
●
●●
●●●
●
●●
●●●
●
●

●
●
●●
●●
●●
●
●
●●
●
●
●●●●

●●
●●●
●●●●●●●●
●
●
●

●
●●
●
●
●
●
●
●●●●

●●
●●
●
●●
●
●

●●●●●
●●
●

●
●●
●●●●
●
●●●●●●

●
●
●●●●●●●
●
●

●
●
●●●
●

●
●●●

●●●●
●
●●●●●●●●

●
●
●
●●
●●●
●●

●
●

●●
●●●
●

●●
●●
●●●
●
●
●●●●
●
●●●●●
●
●
●
●
●

●●●●
●

●●

●
●●●
●

●
●
●●

●●
●●●●
●
●●
●
●●
●
●
●
●●
●
●
●●●●

●●
●
●
●●
●
●●
●●●
●
●●
●●●
●
●●●●
●●●●●●●●●●●●●●

●

●
●●●

●●
●

●
●●●

●●●●
●
●●●
●
●●●●
●●●
●
●●●●
●
●
●●
●●
●
●
●●
●
●●
●

●●●●●
●●●
●

●

●●

●●●
●●●●●●
●
●
●●●

●
●●
●●●●
●●●
●
●
●●●●
●
●●●●
●
●
●
●

●●●
●●●
●
●●●●
●●
●●
●●
●●●●●
●

●
●

●
●

●●●
●
●
●
●
●●

●●
●●

●●●●●●●●●
●
●●
●
●
●

●
●●
●
●
●
●
●●●
●●
●●
●
●●●
●●
●

●
●
●
●

●●●●●●●
●●
●
●●
●
●●
●●●
●
●
●●●
●
●●
●●●●●
●●●●
●●
●●
●

●●●
●

●●

●
●
●
●●●
●●
●●
●

●●
●
●
●●●●●
●
●●●
●●
●
●
●
●●
●●
●●
●
●

●●

●
●●
●●

●
●●
●●
●

●●●●●●
●

●
●
●
●●●
●●
●
●
●
●

●●●
●●●●
●●●●
●●

●
●●

●●

●
●
●●
●●
●
●
●●
●
●●
●
●
●
●
●●
●●
●●●
●
●●●●●●
●
●●
●●●
●
●
●●

0 200 400 600 800

−4
−3

−2
−1

0

Series 2

i

x[
i]

●●●
●
●●
●
●●

●
●
●

●
●●●●
●
●●

●
●
●●
●●

●
●
●●
●●
●●
●●
●
●
●●●●
●●

●●●
●
●
●
●
●
●
●

●
●
●
●●
●●
●●●●
●
●
●
●●
●

●●●
●
●●
●
●

●
●
●
●●
●
●●●●
●●●
●

●

●
●

●●
●●●●

●
●
●
●●●

●●
●●●

●
●●●●●

●●

●
●
●●

●

●●
●●
●●
●●
●
●●
●
●
●●
●
●●●
●
●
●●
●

●●
●

●
●●
●
●
●

●●
●●●●
●
●
●●
●
●

●●●
●
●
●●
●●
●
●●
●●
●●

●
●●
●
●●
●
●

●
●
●
●
●●
●●●●●●
●●
●●
●
●
●
●
●
●
●
●
●●●●●
●●●●●
●
●
●●
●
●

●
●

●●
●
●

●

●●

●●●●

●
●
●●●
●

●

●

●●
●
●●

●●●

●●●
●●●●●●●●●●

●●
●●●●
●●●

●●
●●●
●●
●
●●●
●

●●

●●●
●●●●

●
●●●
●

●●●
●
●●●●●●
●

●●●●

●
●●
●
●●
●●
●●●
●●
●
●●
●●●●
●●

●●
●●●
●●●●
●

●●
●●●●●●●●●

●●●
●●
●
●
●●

●
●●
●

●
●
●
●●●●
●
●
●
●
●●
●●●●
●
●
●●
●
●●●●●●●●

●
●●
●
●●
●
●

●●●
●

●

●
●●●●
●●
●

●

●

●●
●●
●●
●

●
●●
●

●

●
●
●●
●●●

●●
●●
●●●
●
●●●●
●●●●●
●

●
●●●●●
●
●
●●●
●

●●
●●●●
●●●●
●●●●●
●
●●●
●●
●
●●●●●
●
●
●●
●●●

●
●●

●●
●
●
●●
●
●
●
●●
●●
●●
●●
●●
●
●
●●●
●●●

●●
●●
●
●

●●
●●●●●●

●
●●

●
●
●
●●

●

●●●
●●
●
●
●●
●●●
●●

●●
●●
●
●●
●

●●●●
●
●
●●
●
●●●●●●
●●

●●●
●
●

●
●
●●●

●●
●

●
●
●●
●
●
●

●
●

●●●
●
●●●●

●●●●●
●
●●
●
●●●●
●
●●
●
●

●
●●

●
●

●●●

●●●●●●●
●
●●

●●
●●
●
●
●●
●●

●

●●●●●
●
●●
●●
●
●●
●
●
●●●
●
●

●
●●
●
●●
●●
●
●

●
●●
●
●
●●
●

●
●
●●
●●●
●
●●
●
●

●●●
●
●
●
●●
●●
●

●●

●●
●●●
●
●●
●●●
●
●●

●●●

●
●●

●

●●●●
●
●
●

●
●
●●●
●●●●●●
●
●
●●●●●●
●
●●

●

●
●
●●
●●
●
●●●

●
●●●●●●
●●
●●
●●●

●

●
●●●
●

●●●
●
●
●
●●●
●●●●

●●●●
●
●●

●

●
●●
●
●
●●

●●●●
●

●

●
●
●●●●
●●
●●
●

●●●
●
●●●●

●●
●
●●●
●●
●●●

●
●

●●●●●
●●●●
●

●
●

●
●
●●
●●
●
●

●●●
●
●●
●●
●

●
●●●
●
●●

●
●
●●
●
●
●●●●
●

●
●●

●●

●●●●
●
●
●●●
●
●
●●●

●
●●●●
●●●●●●
●
●
●
●●●●
●●
●
●
●
●●
●
●
●

●

●
●

●
●
●
●●

0 200 400 600 800

−3
−2

−1
0

Series 3

i

x[
i]

●●

●

●●

●
●
●

●

●
●
●

●
●
●●

●●

●
●

●

●●●●

●
●

●

●

●

●

●●

●●
●●

●●●●
●
●

●
●●●●

●

●
●

●

●

●●

●
●
●●●●
●

●

●
●

●●
●●
●

●
●
●
●
●●●●
●
●
●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●
●

●
●

●
●●
●
●
●
●●
●

●

●

●●●●●

●

●
●

●●●

●●

●
●

●

●●

●
●
●●
●

●●

●
●

●

●●

●

●●

●

●●

●●
●

●
●
●
●

●

●●
●

●●
●
●●

●●●●●
●

●

●●
●
●

●

●
●
●●●

●
●●●

●
●●

●
●
●●
●
●

●●●
●

●●
●●
●
●●

●●
●●
●

●

●
●
●

●
●●
●

●

●●

●

●

●●

●●●

●

●

●
●
●●●

●
●

●
●

●

●

●

●
●
●
●

●

●
●●

●●
●●

●

●

●●●

●

●

●●●
●
●●

●●

●●

●

●●

●●
●

●

●●

●

●
●
●●

●

●

●

●
●

●●
●●

●
●

●

●
●

●
●

●●
●
●

●●
●●

●
●

●●

●

●
●
●

●
●
●

●

●●

●

●
●

●
●
●

●
●
●
●
●●

●
●
●

●
●●●●

●
●

●

●
●●
●●
●
●
●
●●
●
●●

●●●

●
●
●
●●

●●

●

●
●●●
●

●
●●
●●

●
●

●
●

●●

●
●●

●

●
●●●
●
●●

●

●●●
●

●

●
●

●

●●
●

●
●
●●●●
●

●
●
●●

●●

●

●●●
●

●●

●●
●
●

●
●
●
●●
●
●

●●

●
●●

●

●

●●
●

●
●

●●

●

●●
●●
●●

●
●
●

●

●

●

●●

●

●●

●●●●
●
●

●●

●
●
●

●

●

●
●●

●●

●●●
●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●
●●
●●●

●

●●
●●
●

●
●●●
●

●
●
●●

●
●
●
●●

●

●

●

●
●

●
●●
●
●

●
●
●●●●

●

●
●●

●
●
●●
●
●

●●

●●
●

●●●●●
●

●
●

●●

●

●

●

●●●

●

●

●

●
●
●
●

●●
●

●
●
●●

●●

●●

●

●●

●●●

●

●●

●●
●

●

●

●
●
●
●
●

●

●

●

●

●
●

●●
●
●

●
●●

●●
●
●

●
●

●

●

●

●
●
●
●

●

●

●
●

●
●

●
●
●

●
●

●
●

●
●
●

●

●
●
●
●●●●●●●
●

●

●●
●

●
●
●
●

●

●●
●●

●●
●

●
●

●

●●

●
●●

●●●

●
●

●
●●

●
●
●
●
●
●
●
●

●

●
●●●
●

●●●

●●
●●●●
●

●

●

●
●●●

●
●

●
●●

●●

●●
●●●
●
●

●●
●

●●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●

●

●

●
●

●

●
●
●●

●

●

●
●
●●
●

●

●

●●●

●●
●
●●
●

●

●●

●●

●

●
●
●

●
●
●●●●
●
●
●
●
●

●
●
●

●●

●●
●●

●

●●●
●

●
●

●

●

●●

●
●
●
●

●

●
●●
●
●

●

●
●

●

●

●

●
●●

●
●●●

●

●
●

●

●●

●
●
●

●

●

●
●

●
●●●●
●

●

●

●●

●
●●

●
●●
●

●
●
●●
●

●

●●●●
●

●●

●
●
●
●

●
●
●

●
●●

●

●●
●
●●

●
●

●
●

●
●

●●

●●
●

●
●●●

●●●

●

●●

●
●

●●

●
●

●
●●
●

●●
●
●

●

●
●
●●
●
●●

●
●
●●
●

●

●●

●

●
●
●

●

●
●
●●●
●
●

●

●

●●

●
●
●

●

●
●

●●

●●●
●

0 200 400 600 800

−1
.0

−0
.5

0.
0

0.
5

1.
0

Series 101

i

x[
i] ●

●
●

●

●

●●

●

●
●●

●●

●
●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●●

●

●
●
●●
●
●
●●

●
●●

●

●

●
●

●
●

●

●
●

●

●●●
●

●

●●●

●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●
●●●
●

●

●
●

●

●●
●●

●

●
●
●
●

●

●

●●

●

●

●
●

●

●●●

●

●
●

●
●

●
●

●
●
●

●
●●
●

●

●●

●

●
●●

●●

●

●●●

●●

●●●
●

●

●
●
●

●●●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●
●

●
●
●

●
●

●

●
●●

●●●
●

●●

●●

●

●●
●

●

●

●●●●●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●
●

●●
●

●●

●

●
●
●

●●●
●●●

●

●

●
●
●

●

●●

●

●●
●

●
●

●
●
●●

●

●
●
●

●
●

●
●●
●

●

●
●
●●
●

●

●

●
●
●

●
●●●

●●
●

●

●

●

●●●●●●
●

●

●
●
●●
●

●●

●●

●
●
●

●
●

●●
●

●

●
●
●
●

●

●

●

●●
●

●●
●

●

●

●
●

●

●●

●

●●
●

●

●

●
●
●
●

●●
●

●●●●

●
●

●

●●

●

●
●
●
●

●
●●
●
●●

●

●●
●

●

●
●

●
●

●
●

●
●
●
●
●

●

●●●

●
●
●

●
●

●
●
●●

●

●

●
●

●
●
●
●●●
●
●●

●●●

●

●●

●
●
●

●

●

●
●
●
●
●

●
●

●●
●
●

●

●●

●
●

●

●
●
●

●
●

●
●
●

●

●
●●●

●●

●

●
●

●

●

●
●

●

●

●●●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●●
●
●
●

●

●

●

●
●

●

●

●
●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●
●
●
●
●

●

●

●●
●
●
●

●●
●

●●

●

●

●●

●
●

●●
●

●

●

●

●
●●
●●●

●
●

●●

●
●●
●●

●

●

●

●●●

●●

●

●

●
●●
●
●
●

●●
●

●

●
●

●

●
●

●●

●●

●
●●

●
●●

●●●●●●
●

●
●

●

●
●

●

●●

●

●●
●●

●
●
●●
●●
●●

●
●

●
●
●
●
●●

●
●●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●●●

●
●

●

●

●

●●●
●●

●

●

●
●

●●

●

●

●

●
●
●●

●
●

●●

●
●
●
●
●●

●

●

●●●
●

●●

●

●

●●

●
●

●
●
●●●

●●

●
●
●

●
●●●
●
●

●
●
●
●

●
●
●

●

●
●

●

●●

●

●
●

●●

●
●

●
●

●
●●

●
●

●

●

●

●

●●●

●
●

●

●
●

●

●●

●

●
●

●●

●●●

●

●●
●

●

●●●
●●
●

●

●
●

●
●
●

●

●

●
●
●
●●

●

●

●●
●

●

●
●●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●●●
●

●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●●

●●

●

●●
●

●
●
●
●
●
●
●●

●●

●
●●
●

●

●
●
●

●

●

●●

●●●

●
●
●

●●
●

●

●

●●●

●
●

●

●
●

●

●

●
●
●●●
●

●

●
●●
●

●

●
●
●
●●

●●

●
●

●●
●
●
●
●
●

●

●

●

●
●
●
●●
●

●
●

●●

●●
●
●
●
●
●

●

●

●

●
●

●

●

●

●●

●

●
●●

●
●●
●
●

●

●

●

●

●
●
●

●

●

●

●

●●●
●●●
●
●

●

●
●
●

●

●

●
●
●

●
●

0 200 400 600 800

−1
.0

−0
.5

0.
0

0.
5

Series 102

i

x[
i]

●
●●●
●●
●

●

●
●●●●
●

●
●●●

●●
●
●
●●
●

●●

●●

●
●

●●●
●

●

●

●
●●●●
●

●●●

●

●

●
●

●
●
●
●●

●
●
●

●

●
●
●
●
●●

●●

●

●
●
●
●●
●
●
●●
●
●●●●
●●
●
●
●
●
●●●

●

●
●●

●
●
●

●●
●●
●
●
●●
●

●●

●

●

●●●
●
●
●
●

●●
●

●●●●●●●

●●●
●

●

●
●
●
●

●
●
●
●●

●●●●●●●
●

●

●
●

●

●

●●
●●●●●●●●●
●
●

●●
●

●

●

●●
●

●●
●
●●
●●
●●

●●
●

●●
●
●●●
●
●

●

●
●

●
●

●
●●●
●
●●

●
●
●●●
●

●●
●

●●
●●●●
●
●

●

●
●●

●
●

●
●

●

●

●

●

●

●
●●●
●●●●●

●●
●●

●
●●

●●●
●●●
●

●●●
●
●
●
●●
●●
●

●
●
●
●
●●
●●
●

●●
●

●
●●
●

●●
●
●

●
●

●

●●●
●
●
●

●

●
●●
●●●
●
●●●●●
●●

●●
●

●

●●
●●

●
●
●
●●

●●
●●
●●
●
●●●
●
●
●

●●

●

●

●
●●
●●●●

●

●
●
●

●●●
●

●●●
●
●
●●
●●●
●
●●

●
●
●●
●
●●
●
●
●
●

●

●●●●
●

●
●

●
●●●●●
●●
●
●
●●
●●
●
●
●●
●
●●
●

●

●

●●

●●
●
●

●
●●

●
●
●●●●
●
●

●●●
●

●
●●
●●

●
●●●
●

●●

●

●
●●

●●

●

●
●

●●●●
●
●

●
●
●

●
●
●●●
●
●
●
●
●
●●
●

●

●
●

●
●●
●

●
●

●
●●●

●●

●●
●●
●

●●
●
●
●●●●

●
●

●

●

●
●
●

●
●
●
●●
●
●●
●
●●●●
●

●●
●●●
●

●
●
●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●●

●●

●●
●●●
●●
●●
●●●
●
●

●
●
●●●●
●

●

●●
●●
●●
●●
●

●
●
●
●

●

●●●
●

●●●

●

●
●
●

●
●
●

●●●●
●●●

●
●●

●

●●

●

●●●
●
●
●●
●
●●

●
●
●
●●●
●●

●

●

●●
●

●●●

●
●●
●
●
●
●
●●

●

●

●
●●
●●
●●●●
●
●
●●
●
●
●

●

●
●
●

●
●

●●

●●
●

●

●●
●
●

●
●

●
●●●●●

●
●●

●●
●

●
●
●
●●

●
●●
●
●
●●
●

●●
●
●

●
●●

●●
●●●●●

●●

●●
●
●
●

●
●

●
●●●
●
●
●

●
●
●
●●●
●
●●
●●●●●

●
●●
●●●
●●

●●
●
●

●
●
●

●
●
●

●●

●
●●●
●
●●

●

●

●●
●
●
●

●

●●●●
●
●●
●
●●
●●
●

●●

●
●

●

●

●●

●●
●

●
●●

●

●●

●●●
●●

●

●●
●●

●
●●
●
●
●●

●

●
●●●●
●
●
●

●

●●

●
●
●

●
●

●●
●●

●

●

●●●
●●●

●
●●
●
●
●
●
●
●●
●

●

●

●
●

●
●

●

●
●●
●
●

●
●
●
●●

●
●●●
●●

●●

●
●
●
●●
●
●

●
●
●●●
●
●●

●
●
●●●

●●

●●
●

●

●●●●
●

●

●

●
●●●●

●
●●●

●●

●

●●
●
●●

●
●

●●

●●
●●

●
●
●
●
●

●

●●●●
●
●●●

●
●
●
●

●●
●
●
●

●●

●
●

●●●●

●●●

0 200 400 600 800

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Series 103

i

x[
i]

Figure 28.4: Figure for Problem 28.12 (a).

> ### (d)

>

> ### covariance and correlation matrix of process 1

>

> cov(xmat2[1:100,])

[,1] [,2] [,3] [,4] [,5]

[1,] 2.050972 2.541355 2.337354 2.370614 2.524570

[2,] 2.541355 5.059651 4.713319 4.832294 4.675420

[3,] 2.337354 4.713319 6.052238 5.798473 5.459291

[4,] 2.370614 4.832294 5.798473 7.291808 6.816338

[5,] 2.524570 4.675420 5.459291 6.816338 7.784094

> cor(xmat2[1:100,])

[,1] [,2] [,3] [,4] [,5]

28.2. DATA ANALYSIS 419

[1,] 1.0000000 0.7889059 0.6634170 0.6130043 0.6318348

[2,] 0.7889059 1.0000000 0.8517430 0.7955647 0.7450000

[3,] 0.6634170 0.8517430 1.0000000 0.8728467 0.7953792

[4,] 0.6130043 0.7955647 0.8728467 1.0000000 0.9047518

[5,] 0.6318348 0.7450000 0.7953792 0.9047518 1.0000000

>

>

> ### covariance and correlation matrix of process 2

>

> cov(xmat2[101:200,])

[,1] [,2] [,3] [,4] [,5]

[1,] 0.42521705 0.11694985 0.03711661 -0.03884944 -0.06101522

[2,] 0.11694985 0.49399796 0.17225558 0.01587851 -0.04457461

[3,] 0.03711661 0.17225558 0.40604060 0.11259178 -0.04279566

[4,] -0.03884944 0.01587851 0.11259178 0.68059012 0.05875723

[5,] -0.06101522 -0.04457461 -0.04279566 0.05875723 0.42133232

> cor(xmat2[101:200,])

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00000000 0.25517127 0.08932607 -0.07221652 -0.14415192

[2,] 0.25517127 1.00000000 0.38461480 0.02738446 -0.09770406

[3,] 0.08932607 0.38461480 1.00000000 0.21418012 -0.10346718

[4,] -0.07221652 0.02738446 0.21418012 1.00000000 0.10972513

[5,] -0.14415192 -0.09770406 -0.10346718 0.10972513 1.00000000

>

(e) The LDA and QDA fits, with the respective confusion matrices can be calculated as follows

> ### (e)

>

> ### confusion matrix for LDA

>

> fit = lda(gr~. , data=x.data, CV=TRUE)

> table(fit$class,gr)

gr

0 1

0 49 50

1 51 50

>

> ### confusion matrix for QDA

>

> fit = qda(gr~. , data=x.data, CV=TRUE)

> table(fit$class,gr)

gr

0 1

0 78 7

1 22 93

420 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

>

(f) Clearly, QDA is more accurate. In fact, LDA does not do better than chance. Recall that
what distinguishes LDA and QDA is that in LDA the covariance matrix is assumed to be the
same for each class. From Part (d) we can see that this is clearly not the case. The variances
are noticeably larger for the first process. In addition, the features of the first process have
very high positive correlation, in comparison to the second. Clearly, the assumption of equal
covariance matrices made by the LDA classifier does not hold.

Because of the constant variance assumption, LDA relies on differences in means to distinguish
between classes. However, in Part (c) it was shown that the feature means are the same for
both classes. Thus, the unsuitability of LDA for this application goes beyond assumptions
concerning variances.

Problem 28.13. This question will make use of data downloaded from GEO (Gene Expression
Omnibus) identified by series accession number GSE364. From an abstract describing the study:

We analyzed the expression profiles of HCC [hepatocellular carcinoma] samples with-
out or with intra-hepatic metastases. Using a supervised machine-learning algorithm,
we generated for the first time a molecular signature that can classify metastatic HCC
patients and identified genes that were relevant to metastasis and patient survival [Ye
et al (2003) “Predicting hepatitis B virus-positive metastatic hepatocellular carcino-
mas using gene expression profiling and supervised machine learning.” Nature Medicine
(4):416–423].

Original data can be found at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE364

The file GSE364n50.csv contains 50 gene expression profiles from the GSE364 data set. Use
the following command

gem = read.table(file=’GSE364n50.csv’,sep=’,’,row.names=1,header=F)

Then gem will be a data frame with 50 rows, each representing the gene expression profile of a single
sample. There are 5913 columns, each representing the expression of a particular gene. The gene
names themselves are not included here, and can simply be labelled 1 - 5913. The R expression
row.names(gem) gives labels for the samples themselves. Otherwise, every element in gem is a
numerical gene expression level.

Finally, two classes are represented among the 50 gene expression profiles. Metastasis occurs
when, for example, a cancerous tumor spreads to a new site. Samples represented in rows 1-30 are
from metastatic tissue, while rows 31-50 are from non-metastatic tissue. The problem considered
here is to build a classifier with which tissue can be classified as metastatic or non-metastatic based
on gene expression profiles (which therefore constitute the feature set). Therefore, you will have to
create a factor variable which classifies each row accordingly.

28.2. DATA ANALYSIS 421

(a) Use the prcomp() function (from library stats) to create a matrix of principal components,
using the gene expressions as a feature set. Use centering, but not scaling. Then construct a
QDA classifier for metastasis class, using the first four principal components as features. Use
the CV=TRUE option. Also, specify a uniform prior distribution for the classes (to do this, use
option prior=c(0.5,0.5)).

(i) If do not specify the prior probabilities, what values will be used?
(ii) The object output from the function qda contains a matrix giving the posterior probabil-

ity of each class (the predicted class is, of course, the one with the highest posterior prob-
ability). Create a single vector giving the maximum posterior probability pmax for each
observation. What is the correct classification rate for observations with pmax ≥ 0.75,
and for observations with pmax < 0.75? Use a Wilcoxon rank-sum test to determine
whether or not there is a difference in the distribution of pmax between observations
that were correctly classified and those that weren’t. Report a P -value.

(iii) Create a grid of pairwise scatterplots for the first four principal components, using the
pairs function. Use colors black and red for metastasis -ve and +ve observations,
respectively. In addition, use plotting character “+” (pch=3) for correctly classified
observations, and “◦” (pch=1) for incorrectly classified observations. In general terms,
how do the correctly and incorrectly classified observations differ graphically?

(b) We will next use cross-validation to determine the number of principal components to include
in the classifier. We take the model parameter to be K if the first K principal components
are used. We use two methods:

• The PCA is done first, using the entire data set. The principal components are accepted
as the new feature set. Then K is varied using values 1, 2, . . . , 17, 18. For each K,
LOOCV is used to evaluate a QDA classifier accepting the first K principal components
as the feature set.

• Again, K is varied using values 1, 2, . . . , 17, 18. For each K, LOOCV is applied. The
PCA is recalculated for each new training data set considered. Whenever principal
components are calculated for test data, the loadings used are those calculated using the
training data only.

Obtain classification error rates for each K using both CV methods. Use the matplot function
to plot classification error against K, placing both methods on the same graph. How do the
methods compare? What would be the recommended number of principal components K?

SOLUTION:

The following code may be used for this problem. Comments follow.

>

> #############

> ############# Q1

> #############

>

> library(class)

422 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

PC1

−
10

−
5

0
5

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

−5 0 5 10 15

−
6

−
2

2
4

6
8

●

●

●

●

●

●●
●

−10 −5 0 5

●

●

●
●

●

●
●

●

PC2

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

PC3

−6 −2 2 4 6

●

●

●

●

●

● ●
●

−6 −2 2 4 6 8

−
5

0
5

10
15

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

−
6

−
2

2
4

6

●

●

●
●

●

●

●

●

PC4

Figure 28.5: Plot for Problem 28.13 (a).

> library(MASS)

> library(stats)

>

> gem = read.table(file=’GSE364n50.csv’,sep=’,’,row.names=1,header=F)

> cl = c(rep(’Yes’,30), rep(’No’,20))

> cl = as.factor(cl)

>

> ### (a)

>

> # Do principal components analysis

>

> prc<-prcomp(gem, scale.=F)

>

> # Build QDA with LOOCV and uniform prior distribution

>

28.2. DATA ANALYSIS 423

1

1 1

1

1

1

1

1 1

1

1

1

1 1

1

1 1

1

5 10 15

4
6

8
10

12
14

Number of Principal Components

C
la

ss
ifi

ca
tio

n
E

rr
or

s
ou

t o
f 5

0

2

2

2

2

2

2 2

2

2 2

2

2 2

2 2

2

2

2

1 − Full CV
2 − PCA not included in CV

Figure 28.6: Plot for Problem 28.13 (b).

> nf = 4

> fit.qda = qda(x = prc$x[,1:nf], grouping = cl, CV=T, prior=c(0.5,0.5))

>

> ### (a)-(i)

>

> # Prior probabilities will be the proportions represented in the sample.

>

> table(cl)/length(cl)

cl

No Yes

0.4 0.6

>

> ### (a)-(ii)

>

> # Posterior probabilities will be in the rows of the fit.qda$posterior matrix.

424 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

>

> post.qda = apply(fit.qda$posterior,1,max)

>

> # Obtain correct classificaiton rates for (post.qda >= 0.75)

> # and (post.qda < 0.75) groups

>

> thr = 0.75

> table(post.qda >= thr, (cl==fit.qda$class))

FALSE TRUE

FALSE 4 7

TRUE 4 35

>

> # Rank-sum test

>

> wilcox.test(post.qda ~ (cl==fit.qda$class))

Wilcoxon rank sum test

data: post.qda by cl == fit.qda$class

W = 76, p-value = 0.01336

alternative hypothesis: true location shift is not equal to 0

>

>

> ### (a)-(iii)

>

> # The col and pch options are used vector-wise to create points of distinct

> # shape and color

>

> pdf("figa4q1aiii.pdf")

> pairs(prc$x[,1:4],col=1+(cl==’Yes’), pch=1+2*(cl==fit.qda$class))

> dev.off()

null device

1

>

> ### (b)

>

> # Function first uses training data to calculate principal

> # components and build QDA classifier.

> #

> # Then the principal components for the test data are calculated. Note that the

> # PC loadings depend only on the training data.

> #

> # Finally, the QDA classifier is applied to the PCs calculated for the test data.

28.2. DATA ANALYSIS 425

> #

>

> #

> # Main classifier function. Accepts training and test data

> # (other than test responses)

>

> class1 = function(x.train, y.train, x.test) {

+

+ prc = prcomp(x.train,scale.=F)

+ prc.new = predict(prc, newdata=x.test)

+ prcx = prc$x[,1:nf]

+ if (!is.matrix(prcx)) {prcx = matrix(prcx,ncol=1)}

+ fit.qda = qda(x = prcx, grouping = y.train, prior=c(0.5,0.5))

+ return(predict(fit.qda,newdata=prc.new[1:nf])$class)

+

+ }

>

> #

> # Set up main CV loop

> #

>

> x = gem

> y = cl

> prc.all<-prcomp(x, scale.=F)

> ce1 = NULL

> ce2 = NULL

>

> #

> # Evaluate classifier based on 1 through 18 principal components

> #

>

> for (nf in c(1:18)) {

+

+ # PCA included in CV loop

+

+ pred.cv1 = rep(NA,50)

+ for (i in 1:50) {pred.cv1[i] = class1(x[-i,],y[-i],x[i,])}

+ mm = table(pred.cv1,y)

+ ce1 = c(ce1, 50 - sum(diag(mm)))

+

+ # PCA not included in CV loop. CV implemented via CV=T option in qda()

+

+ prcx = prc.all$x[,1:nf]

+ if (!is.matrix(prcx)) {prcx = matrix(prcx,ncol=1)}

+ fit.qda = qda(x = prcx, grouping = cl, CV=T, prior=c(0.5,0.5))

426 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

+

+ mm = table(cl,fit.qda$class)

+ ce2 = c(ce2, 50 - sum(diag(mm)))

+ }

>

> # Draw plots

>

> pdf("figa4q1b.pdf")

> matplot(1:18, cbind(ce1,ce2),type=’b’,

+ xlab="Number of Principal Components",ylab="Classification Errors out of 50")

> legend(6,14,legend=c("1 - Full CV", "2 - PCA not included in CV"))

> dev.off()

(a) See code above.

(i) By default, qda uses as the prior the class proportions found in the data. Here, from
the output above, that would give prior probabilities πY es = 0.6 = 1− πNo.

(ii) The relevant output from above is

> thr = 0.75

> table(post.qda >= thr, (cl==fit.qda$class))

FALSE TRUE

FALSE 4 7

TRUE 4 35

>

For pmax ≥ 0.75 the correct classification rate is 35/39 ≈ 0.897. For pmax < 0.75 the
correct classification rate is 7/11 ≈ 0.636. For the rank-sum test we have p-value =

0.01336, which suggests that the distributions of pmax differ by classification correctness.
(iii) See Figure 28.5. The incorrectly classified observations tend to be concentrated in the

interior of clusters. In contrast, observations located near the minima and or maxima of
one or more principal components tends to be correctly classified.

(b) See Figure 28.6. Both methods give similar estimates of classification error as a function of K,
but the error estimates are generally larger when the PCA is included in the cross-validation
procedure. Since the PCA is formally part of the classifier, this is appropriate. Using the full
CV curve, the minimum estimated error is attained for K = 10, 13, 14. We can accept the
smallest value, K = 10.

28.3 Theoretical Complements

Problem 28.14. One question to consider when constructing classifiers is whether or not the
method is location-scale invariant. This property holds if subjecting any subset of features in the
training data to a linear transformation cannot change the prediction. For example, a classifier

28.3. THEORETICAL COMPLEMENTS 427

is location-scale invariant if changing the units of a feature from feet to inches, or from degrees
fahrenheit to celsius, does not change the predictions (as long as the transformation is consistently
applied to all classes and test data).

This is a crucial question, since if a classifier is not location-scale invariant, we need to decide how
to make the units of each feature comparable. One way of doing this is to standardize quantitative
features, typically by subtracting the mean then dividing by the standard deviation, so that each
feature has mean zero and standard deviation 1. Doing this makes them essentially unitless.
However, for some applications this may not be a suitable approach to this problem.

For this problem use data set fgl from the MASS package. This is a forensic application. The
observations consist of fragments of broken glass. The type column gives the type of glass. The
RI column gives refractive index (but see description from help(fgl)). The remaining 8 columns
are percentages by weight of oxides. The row totals of these 8 columns are approximately 100%.

The object is to build a classifier which predicts glass type from the measured RI and chemical
composition of a glass fragment. We will consider three questions: (i) What form of classifier should
be used? (ii) Which features should be included? (iii) How should the features be standardized
(if this is needed)?

(a) For this exercise we will only consider 4 glass types: window float glass (WinF), window
non-float glass (WinNF), vehicle window glass (Veh), and vehicle headlamps (Head). Create a
subset of the data accordingly.

(b) We will consider three types of classifiers: KNN, LDA and QDA. Prove that QDA (and
therefore LDA) is location-scale invariant. To do this, suppose a p-dimensional feature vector
ẋ is transformed to

ẏ = Aẋ+ b

where ẋ and ẏ are interpreted as p × 1 column vectors, A is an invertible p × p matrix, and
b is a p × 1 column vector. Then each class-dependent mean vector and covariance matrix
must be transformed accordingly. An important observation is that neither A nor b depend
on the class.

(c) Is the KNN classifier, assuming Euclidean distance is used, location-scale invariant? Why or
why not?

(d) For any classifier that is not location-scale invariant, we will use the following strategy. We
are given an n-dimensional class vector Y and an n × 9 feature matrix X. First, standardize
only the RI column to zero mean and unit variance. Then multiply the standardized RI

column by a selected scale value α. Use the resulting feature matrix for the classification, and
capture the classification error CE. Vary α, selecting the value yielding the minimum CE.
Then, write a main function which accepts a class vector and a data set of features, and which
applies 3 classification methods to the data, giving an estimated CE for each:

(i) LDA, CE estimated using LOO cross-validation;
(ii) QDA, CE estimated using LOO cross-validation;
(iii) KNN, allowing K to vary over 1, 2, . . . , 25. For each model, estimate CE using LOO

cross-validation. Select K yielding the minimum CE. In the case of ties, select the
smallest K yielding the minimum CE.

Make sure the scale procedure just described is used for any classifier which is not location-
scale invariant. Use α values generated by RI.scale = c(1:150)/10. The function should

428 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

return enough information to identify the classifier with the smallest CE. The minimum
output would be the minimum CE and the associated classifier, including the parameter K
if that classifier is KNN, and any relevant scale factor α. Of course, more information can be
returned.

(e) The main function will be used within the following heuristic, which sequentially removes
features from the initial feature set B = (1, 2, . . . , 9) (ie the full feature set).

Blist is a list of Index Subsets

Blist = NULL

CElist is a list of Classification Errors

CElist = NULL

CEarray is a numerical array with elements addressed by index

Initial feature set

B = (1,...,9)

CE = minimum possible CE using B

Store classification results

Blist = append(Blist,B)

CElist = append(CElist,CE)

while length(B) > 1 {

For each index I in B {

Remove index I from B, copy into B’

B’ = B - {I}

CEarray[I] = minimum possible CE using B’

}

I* = Index from B which minimizes CEarray[I]

Update and store current feature set

B = B - {I*}

Blist = append(Blist,B)

CElist = append(CElist,CEarray[I*])

}

Then select the feature set from Blist with the smallest CE (stored in CElist).

28.3. THEORETICAL COMPLEMENTS 429

(f) Identify the exact classifier selected by the algorithm, including K and α, if needed. Report
CE, and construct a confusion matrix.

(g) Use the pairs function to construct all pairwise scatterplots among the selected features (RI
need not be scaled, if selected). Use symbols and/or colors to distinguish the four classes.
Also, indicate which predictions are correct (for example, use colors to distinguish the classes,
and symbols to indicate the prediction success). What does this plot suggest regarding why
the classification method selected by the heuristic might be preferred?

SOLUTION:
The required script follows. The plot is given in Figure 28.7.

> library(MASS)

> library(class)

>

> ### (a)

>

> table(gr)

gr

Head Veh WinF WinNF

29 17 70 76

> fglex = subset(fgl, type %in% c(’WinF’,’WinNF’,’Head’,’Veh’))

> gem1 = fglex[,1:9]

> gr = as.character(fglex$type)

>

> ### (d)

>

> main.function = function(gem1, gr, alpha.list=NULL) {

+

+ ### vector to contain CE

+

+ crate = rep(0,3)

+

+ ### LDA-CV

+

+ fit.ldacv = lda(gem1,gr,CV=T)

+ pr.ldacv = fit.ldacv$class

+ crate[1] = 1 - mean(pr.ldacv==gr)

+

+ ### QDA-CV

+

+ fit.qdacv = qda(gem1,gr,CV=T)

+ pr.qdacv = fit.qdacv$class

+ crate[2] = 1 - mean(pr.qdacv==gr)

+

+ ### KNN

430 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

+

+ k.list = (1:25)

+

+ if (is.null(alpha.list)) {

+

+ # list of K values

+

+ nk = length(k.list)

+

+ # error vector

+ knn.err = integer(nk)

+

+ # loop through K values

+ for (i in 1:nk) {

+ fit.knn = knn.cv(gem1,gr,k=k.list[i],prob=T)

+ pr.knn = fit.knn

+ knn.err[i] = 1-mean(pr.knn==gr)

+ }

+

+ # capture optimal K

+ k.best = c(min(k.list[knn.err==min(knn.err)]),NA)

+

+ # refit with opimal K

+ fit.knn = knn.cv(gem1,gr,k=k.best[1],prob=T)

+ pr.knn = fit.knn

+ crate[3] = 1 - mean(pr.knn==gr)

+

+ } else {

+

+ # list of K values

+

+ nk = length(k.list)

+ nalpha = length(alpha.list)

+

+ # error vector

+ knn.err = matrix(NA, nalpha, nk)

+

+ # loop through K values

+

+ for (i in 1:nalpha) {

+ gem2 = gem1

+ gem2[,1] = alpha.list[i]*(gem1[,1] - mean(gem1[,1]))/sd(gem1[,1])

+ for (j in 1:nk) {

+ fit.knn = knn.cv(gem2,gr,k=k.list[j],prob=T)

+ pr.knn = fit.knn

28.3. THEORETICAL COMPLEMENTS 431

+ knn.err[i,j] = 1-mean(pr.knn==gr)

+ }

+ }

+

+ # capture optimal K

+

+ ki = which(knn.err==min(knn.err),arr.ind=T)

+ if (is.matrix(ki)) {ki = ki[1,]}

+ k.best = c(k.list[ki[2]], alpha.list[ki[1]])

+

+ # refit with optimal paramaters

+

+ gem2 = gem1

+ gem2[,1] = k.best[2]*(gem1[,1] - mean(gem1[,1]))/sd(gem1[,1])

+

+ fit.knn = knn.cv(gem2,gr,k=k.best[1],prob=T)

+ pr.knn = fit.knn

+ crate[3] = 1 - mean(pr.knn==gr)

+

+ }

+

+

+ # return error rates, and data from KNN algorithm

+ return(list(crate=crate, knn.err=knn.err, k.best=k.best))

+

+ }

>

>

> ### (e)

>

> RI.scale = c(1:150)/10

>

>

> crate.table = NULL

> vsel.list = list()

>

> vsel = 1:9

> cerr = main.function(gem1,gr,RI.scale)$crate

> crate.table=rbind(crate.table,cerr)

> vsel.list[[1]] = vsel

>

> for (iii in 1:8) {

+

+ cerr.temp = NULL

+ for (jjj in 1:length(vsel)) {

432 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

+ if ((1 %in% vsel[-jjj]) & (length(vsel[-jjj])>1)) {

+ alpha.list = RI.scale

+ } else {

+ alpha.list = NULL

+ }

+ cerr = main.function(as.matrix(gem1[,vsel[-jjj]]),gr,alpha.list)$crate

+ cerr.temp = rbind(cerr.temp,cerr)

+ }

+ cerr.min = apply(cerr.temp,1,min)

+ jjj.min = which.min(cerr.min)

+ vsel = vsel[-jjj.min]

+ crate.table = rbind(crate.table,cerr.temp[jjj.min,])

+ vsel.list[[iii+1]] = vsel

+ }

> crate.table

[,1] [,2] [,3]

cerr 0.3385417 0.4062500 0.1562500

0.3958333 0.4166667 0.1510417

0.3854167 0.4218750 0.1354167

0.3854167 0.3593750 0.1354167

0.3854167 0.3802083 0.1354167

0.3489583 0.4062500 0.1614583

0.3645833 0.4479167 0.1822917

0.3697917 0.4479167 0.2083333

0.6458333 0.6093750 0.3697917

>

> ### (f)

>

> # Get best CE for each feature set

>

> ce.row.best = apply(crate.table,1,min)

>

> # Which row contains the minimum CE (pick the smallest feature set

> # to break times)?

>

> best.row = max(which(ce.row.best==min(ce.row.best)))

>

> # KNN is the best classifier for the best feature set

>

> crate.table[best.row,]

[1] 0.3854167 0.3802083 0.1354167

>

> # Identify the feature set

>

> best.feature.set = vsel.list[[best.row]]

28.3. THEORETICAL COMPLEMENTS 433

> colnames(gem1)[best.feature.set]

[1] "RI" "Mg" "K" "Ca" "Fe"

>

> # Redo classifier selection

>

> class.obj = main.function(gem1[,best.feature.set],gr,RI.scale)

>

> ### For best classifier, K = 1, alpha = 1.3

>

> k.best = class.obj$k.best

> k.best

[1] 1.0 1.3

>

> ### Redo classification

>

> gem2 = gem1

> gem2[,1] = k.best[2]*(gem1[,1] - mean(gem1[,1]))/sd(gem1[,1])

> fit.knn = knn.cv(gem2[,best.feature.set],gr,k=k.best[1],prob=T)

>

> ### CE matches best CE reported

>

> 1-mean(fit.knn==gr)

[1] 0.1354167

>

> ### Confusion matrix

>

> table(gr,fit.knn)

fit.knn

gr Head Veh WinF WinNF

Head 24 0 0 5

Veh 0 13 4 0

WinF 0 3 65 2

WinNF 1 3 8 64

>

> par(mfrow=c(1,1))

> pairs(gem1[,best.feature.set], panel = function(x,y) {

+ points(x,y,pch=1+2*(fit.knn==gr),

+ col=c("red","green","blue","orange")[unclass(as.factor(gr))],cex=0.5)

+ legend(’topright’,legend=c(attr(as.factor(gr),"levels"),"Correct",’Incorrect’),

+ col=c("red","green","blue","orange","gray","gray"),

+ pch=c(3,3,3,3,3,1),cex=0.35,bty=’n’)

+ })

(a) See above.

434 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

(b) For QDA the class j discriminating function for ẋ ∼ N(µµµj ,Σj) is

hj(ẋ) = −1

2
Qj(ẋ)− 1

2
log(det(Σj)) + log(πj)

where
Qj(ẋ) = (ẋ−µµµj)TΣ−1

j (ẋ−µµµj).

Then, if
ẏ = Aẋ+ b

we have ẏ ∼ N(µµµ′j ,Σ
′
j) where

µµµ′ = Aµµµ+ b, Σ′j = AΣjA
T .

Then the discriminating function for ẏ is

h′j(ẏ) = −1

2
Q′j(ẏ)− 1

2
log(det(Σ′j)) + log(πj)

= −1

2
Q′j(ẏ)− 1

2
log(det(AΣjA

T)) + log(πj)

= −1

2
Q′j(ẏ)− 1

2
log(det(Σj))− log(det(A)) + log(πj)

where

Q′j(ẏ) = (ẏ −µµµ′j)T
[
Σ′j
]−1

(ẏ −µµµ′j)
= (Aẋ+ b−Aµµµj − b)T (AΣjA

T)−1(Aẋ+ b−Aµµµj − b)
= (ẋ−µµµj)TAT [AT]−1Σ−1

j A−1A(ẋ−µµµ)

= (ẋ−µµµj)TΣ−1
j (ẋ−µµµ)

= Qj(ẋ),

where we rely on identities (AB)T = BTAT , det(AB) = det(A) det(B), det(A) = det(AT),
(AB)−1 = B−1A−1 for two square invertible matrices A,B. Assembling everything gives

h′j(ẏ) = hj(ẋ)− log(det(A)).

The result follows after noting that the difference between h′j(ẏ) and hj(ẋ) does not depend
on j.

(c) The KNN algorithm depends on a distance matrix between observations. Suppose one feature
is multiplied by a factor α, which is allowed to increase indefinitely. Then the classification
will eventually be dominated by that feature. Applying this transformation to a different
feature may result in a distinct classification. The classifier is therefore not location-scale
invariant.

(d) See above.
(e) See above.
(f) From above, the feature set selected is (RI, Mg, K, Ca, Fe). The best classifier is KNN, K = 1,

α = 1.3, with CE = 0.1354167 (the smallest feature set is selected in case of ties). The
confusion matrix, from above, is:

28.3. THEORETICAL COMPLEMENTS 435

fit.knn

gr Head Veh WinF WinNF

Head 24 0 0 5

Veh 0 13 4 0

WinF 0 3 65 2

WinNF 1 3 8 64

(g) LDA or QDA assumes that the features possess a multivariate normal density. This is appro-
priate when features within a class cluster about a single point in a stable way. Examining
Figure 28.7, this clearly does not occur. KNN, on the other hand, makes no such assumption.
For example, we can see that some glass fragments of class type == WinNF have 0% Mg,
while other have > 0% Mg. KNN is able to incorporate this structure into the prediction.

436 CHAPTER 28. PRACTICE PROBLEMS - CLASSIFICATION

RI

0 1 2 3 4

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●
●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

6 8 12 16

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●● ●
●

●

●

●

●

●
●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

−
5

0
5

10
15

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

0
1

2
3

4

● ●

●

●
●

●
●

●
●

●

●

● ●
●

●●
●●

●
●

●

● ●
●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

Mg

● ●

●

●
●

●
●

●
●

●

●

●●
●

●●
●●

●
●

●

●●
●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

● ●

●

●
●

●
●

●
●

●

●

●●
●

●●
● ●

●
●

●

● ●
●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

●●

●

●
●

●
●

●
●

●

●

● ●
●

●●
●●

●
●

●

●●
●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

●

●

●

●

●
●

●

●

●
●●
●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

K
●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

0.
0

1.
0

2.
0

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

6
8

12
16

●

●

●

●

●

●

●
●

●
●●
●

●

●

●●
●

● ● ●
●

●
●

●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●●●
●

●
●

●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●●●
●

●
●

●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

Ca
●

●

●

●

●

●

●
●
●

●●
●

●

●

●●
●

●● ●
●

●
●

●

●

●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

−5 0 5 10 15

● ● ●● ●

●

●

● ●

●

●●

●

●●●

●

● ●

●

●

● ● ●●●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

●● ●●●

●

●

●●

●

●●

●

● ●●

●

●●

●

●

●●●●●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

0.0 1.0 2.0

● ●● ●●

●

●

●●

●

● ●

●

● ●●

●

●●

●

●

●●● ●●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

● ● ●● ●

●

●

● ●

●

● ●

●

●●●

●

●●

●

●

● ● ● ●●

●

Head
Veh
WinF
WinNF
Correct
Incorrect

0.0 0.1 0.2 0.3

0.
0

0.
1

0.
2

0.
3

Fe

Figure 28.7: Plots for Problem 28.14.

Chapter 29

Practice Problems - Unsupervised
Learning

29.1 Exercises

Problem 29.1. Suppose we have n = 5 observations of a feature vector. The distances between
observations i and j, denoted dij , are given in the following distance matrix:

1 2 3 4 5

1 0.000 8.853 9.022 9.540 10.982
2 8.853 0.000 7.803 9.537 10.753
3 9.022 7.803 0.000 9.377 10.562
4 9.540 9.537 9.377 0.000 9.957
5 10.982 10.753 10.562 9.957 0.000

Using the compact agglomeration method, for which cluster distance is defined by

D(A,B) = max
i∈A,j∈B

dij

for any two clusters A,B, construct a hierarchical cluster for this data. Justify each step precisely.
Sketch a dendogram, indicating precisely the height of each node.

SOLUTION:

The compact distance between two clusters A and B is

D(A,B) = max
i∈A,j∈B

dij .

To construct the clustering, we use the following steps:

1. Start with clusters {1},{2},{3},{4},{5}.

437

438 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

5

4

1

2 3

Cluster Dendrogram

hclust (*, "complete")

7.803

9.022

9.540

10.982

Figure 29.1: Dendogram for Problem 29.1.

2. First join the two nearest observations, which are 2 and 3 (d2,3 = 7.803). This gives clusters
{1}, {4}, {5} and {2, 3} joined at distance 7.80.

3. The cluster distances are now

D({1}, {4}) = d1,4 = 9.540,

D({1}, {5}) = d1,5 = 10.982,

D({4}, {5}) = d4,5 = 9.957,

D({1}, {2, 3}) = max{d1,2, d1,3} = max{8.853, 9.022} = 9.022,

D({4}, {2, 3}) = max{d4,2, d4,3} = max{9.540, 9.377} = 9.540,

D({5}, {2, 3}) = max{d5,2, d5,3} = max{10.753, 10.562} = 10.753.

The smallest cluster distance is D({1}, {2, 3}) = 9.022, so combine clusters {1} and {2, 3}.
This gives clusters {1, 2, 3}, {4} and {5}, joined at distance 9.022.

4. The cluster distances are now

D({1, 2, 3}, {4}) = max{d1,4, d2,4, d3,4} = max{9.540, 9.537, 9.377} = 9.540,

D({1, 2, 3}, {5}) = max{d1,5, d2,5, d3,5} = max{10.982, 10.753, 10.562} = 10.982,

D({4}, {5}) = max{d4,5} = max{9.96} = 9.96.

The smallest cluster distance is D({1, 2, 3}, {4}) = 9.540, so combine clusters {1, 2, 3} and
{4}. This gives clusters {1, 2, 3, 4} and {5}, joined at distance 9.540.

29.1. EXERCISES 439

5. Join the remaining two clusters, at cluster distance

D({1, 2, 3, 4}, {5}) = max{d1,5, d2,5, d3,5, d4,5} = max{10.982, 10.753, 10.562, 9.957} = 10.982.

This gives the dendogram shown in Figure 29.1.

Problem 29.2. Suppose in an unsupervised learning application we are given observations
ẋ1, . . . , ẋn. Recall the within cluster sum of squares, for K clusters A1, . . . , AK where d is a distance
function and g(Ai) is a cluster centroid:

SSwithin =
K∑
i=1

∑
j∈Ai

d(ẋj , g(Ai))
2.

A K-means clustering algorithm was applied to the data, allowing the number of clusters K to
vary from 1 to 6. The following table gives the separate sum of squares within each cluster:

1 2 3 4 5 6

1 38608.0 - - - - -
2 258.3 4911.1 - - - -
3 501.9 258.3 218.6 - - -
4 191.6 112.6 94.8 258.3 - -
5 53.5 42.1 94.8 191.6 112.6 -
6 42.1 77.3 40.9 53.5 112.6 38.8

Let R2 be the proportion of total variation explained by the clustering. If we accept as the number
of clusters the smallest value of K for which R2 ≥ 95%, what is this number?

SOLUTION:
The total sum of squares SStotal is simply the SS for the K = 1 model, so

SStotal = 38608.0.

Otherwise, SSwithin is the sum of the individual cluster sums of squares. Then

R2 = 1− SSwithin
SStotal

.

This gives, for K = 1, 2, 3:

R2[1] = 1− SStotal
SStotal

= 0,

R2[2] = 1− 258.3 + 4911.1

38608.0
= 0.866,

R2[3] = 1− 501.9 + 258.3 + 218.6

38608.0
= 0.975.

The smallest number of clusters that yield at least 95% variation explained is K = 3.

440 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

Problem 29.3. A principal components analysis was performed on 4 measured psychometric
scales: Happiness, Joy, Mirth and Contentment. The loadings on the PCs are given in the
following table:

PC1 PC2 PC3 PC4

Happiness -0.58 0.07 -0.56 -0.58
Joy -0.57 0.01 -0.23 0.79

Mirth -0.58 0.01 0.79 -0.19
Contentment 0.05 1.00 0.03 0.03

The scree plot for the principal components is shown in Figure 29.2. What conclusion can be
reached from the loadings and the scree plot regarding the issue of dimension reduction?

PC1

PC2

PC3

PC4

Scree Plot

Va
ria

nc
es

0.0
0.5

1.0
1.5

2.0

Figure 29.2: Scree plot for Problem 29.3.

SOLUTION:
From the scree plot, most of the variance is explained by the first two principal components. The
loadings on the first PC are nearly equal for Happiness, Joy and Mirth, and relatively smaller for
Contentment. The loadings on the second PC are concentrated on Contentment. We conclude
that Happiness, Joy and Mirth are highly correlated, and together form a single dimension, while
Contentment forms a second independent dimension.

Problem 29.4. Suppose we are given an n × 3 matrix X, with columns defining 3 standardized
predictors x1, x2, x3. The three principal components are then calculated, and given in form

PCj = a1jx1 + a2jx2 + a3jx3, j = 1, 2, 3.

Suppose the matrix of variable loadings aij is given, in part, by

A =

 1/2 a12 a13

1/2 a22 a23

a31 1/
√

2 a33

29.1. EXERCISES 441

Determine all values of the variable loadings aij left unspecified. For convenience, you may assume
a31 > 0 and a13 > 0.

SOLUTION:
1st PC: The sum of squares of each column of A equals 1. Therefore

a2
31 = 1− (1/2)2 − (1/2)2 = 1/2.

Since a31 > 0 we must have a31 = 1/
√

2.

2nd PC: The columns of A are orthogonal. This means

a12/2 + a22/2 + 1/2 = 0.

In addition,

a2
12 + a2

22 + 1/2 = 1.

Substition gives

(1 + a22)2 + a2
22 + 1/2 = 1,

or equivalently,

2a2
22 + 2a22 + 1/2 = 2(a22 + 1/2)2 = 0.

The unique solution is a22 = −1/2. Then substituting gives a12 = −1/2.

3rd PC: The columns of A are mutually orthogonal. This means

a13/2 + a23/2 + a33/
√

2 = 0

−a13/2 +−a23/2 + a33/
√

2 = 0.

Adding the equations gives 2a33/
√

2 = 0, or a33 = 0. This then implies a13 = −a23. If a13 > 0,
and the sum of squares of each column equals, we must then have a13 = −a23 = 1/

√
2.

To summarize, we then have

A =

 1/2 −1/2 1/
√

2

1/2 −1/2 −1/
√

2

1/
√

2 1/
√

2 0

Problem 29.5. Suppose we have n = 5 observations of features, for which the following distance
matrix is calculated:

Using the single link agglomeration method, construct a hierarchical cluster for this data. Sketch
a dendogram, indicating precisely the height of each node.

442 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

1 2 3 4 5

1 0.00 14.29 15.43 17.25 16.45
2 14.29 0.00 12.36 17.50 15.52
3 15.43 12.36 0.00 18.13 16.22
4 17.25 17.50 18.13 0.00 13.84
5 16.45 15.52 16.22 13.84 0.00

SOLUTION:
The single link distance between two clusters A and B is

D(A,B) = min
i∈A,j∈B

dij .

To construct the clustering, we use the following steps:

(i) Start with clusters {1},{2},{3},{4},{5}.
(ii) First join the two nearest observations, which are 2 and 3 (d2,3 = 12.36). This gives clusters
{1}, {4}, {5} and {2, 3} joined at distance 12.36.

(iii) The cluster distances are now

D({1}, {4}) = d1,4 = 17.25,

D({1}, {5}) = d1,5 = 16.45,

D({4}, {5}) = d4,5 = 13.84,

D({1}, {2, 3}) = min{d1,2, d1,3} = min{14.29, 15.43} = 14.29,

D({4}, {2, 3}) = min{d4,2, d4,3} = min{17.50, 18.13} = 17.50,

D({5}, {2, 3}) = min{d5,2, d5,3} = min{15.52, 16.22} = 15.52.

The smallest cluster distance is D({4}, {5}) = 13.84, so combine clusters {4} and {5}. This
gives clusters {1}, {2, 3} and {4, 5}, joined at distance 13.84.

(iv) The cluster distances are now

D({1}, {2, 3}) = min{d1,2, d1,3} = min{14.29, 15.43} = 14.29,

D({1}, {4, 5}) = min{d1,4, d1,5} = min{17.25, 16.45} = 16.45,

D({2, 3}, {4, 5}) = min{d2,4, d2,5, d3,4, d3,5} = min{17.50, 15.52, 18.13, 16.22} = 15.52.

The smallest cluster distance is D({1}, {2, 3}) = 14.29, so combine clusters {1} and {2, 3}.
This gives clusters {1, 2, 3} and {4, 5}, joined at distance 14.29.

(v) Join the remaining two clusters, at cluster distance

D({1, 2, 3}, {4, 5}) = min{d1,4, d1,5, d2,4, d2,5, d3,4, d3,5}
= {17.25, 16.45, 17.50, 15.52, 18.13, 16.22}
= 15.52.

This gives the dendogram shown in Figure 29.3.

29.1. EXERCISES 443

4 5

1

2 3

Cluster Dendrogram

hclust (*, "single")

He
igh

t

12
.36

13
.84

14
.29

15
.52

Figure 29.3: Dendogram for Problem 29.5.

Problem 29.6. Suppose in an unsupervised learning application we are given observations
ẋ1, . . . , ẋn. Recall the within cluster sum of squares, for K clusters A1, . . . , AK where d is a distance
function and g(Ai) is a cluster centroid:

SSwithin =
K∑
i=1

∑
j∈Ai

d(ẋj , g(Ai))
2.

A K-means clustering algorithm was applied to the data, allowing the number of clusters K to
vary from 1 to 6. The following table gives the separate sum of squares within each cluster:

1 2 3 4 5 6

1 12679.5 - - - - -
2 1741.7 1503.0 - - - -
3 606.8 399.8 446.0 - - -
4 197.8 161.4 188.6 177.3 - -
5 57.4 182.6 151.9 89.6 64.8 -
6 93.6 49.0 86.6 50.6 34.0 79.0

444 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

Let R2 be the proportion of total variation explained by the clustering. If we accept as the number
of clusters the smallest value of K for which R2 ≥ 90%, what is this number?

SOLUTION:
The total sum of squares SStotal is simply the SS for the K = 1 model, so

SStotal = 12679.5.

Otherwise, SSwithin is the sum of the individual cluster sums of squares. Then

R2 = 1− SSwithin
SStotal

.

This gives, for K = 1, 2, 3, 4:

R2[1] = 1− SStotal
SStotal

= 0,

R2[2] = 1− 1741.7 + 1503.0

12679.5
= 0.7441,

R2[3] = 1− 606.8 + 399.8 + 446.0

12679.5
= 0.8854,

R2[4] = 1− 197.8 + 161.4 + 188.6 + 177.3

12679.5
= 0.9428.

R2[5] = 1− 57.4 + 182.6 + 151.9 + 89.6 + 64.8

12679.5
= 0.9569.

R2[6] = +1− 93.6 + 49.0 + 86.6 + 50.6 + 34.0 + 79.0

12679.5
= 0.9690.

The smallest number of clusters that yield at least 90% variation explained is K = 4.

Problem 29.7. We observe n observations of the random vector X̃ = (X1, X2, X3). Each compo-
nent has zero mean and unit variance. The correlation matrix is

Λ =

 1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

 .
A scaled principal components analysis is performed on the data, yielding the following principal
component loadings:

PC1 PC2 PC3

X1 0.73 -0.02 -0.68
X2 0.68 -0.02 0.73
X3 -0.03 -1.00 0.00

and the scree plot shown in Figure 29.4. Which of the correlations in Λ could plausibly be 0, and
which are likely to be positive? Explain your answer.

29.2. DATA ANALYSIS 445

PC1

PC2

PC3

Scree Plot

Va
ria

nc
es

0.0
0.5

1.0
1.5

Figure 29.4: Scree plot for Problem 29.7.

SOLUTION:
By the scree plot, most variation is explained by the first 2 PCs. The first PC has loadings primarily
on X1, X2, of the same sign. We therefore expect ρ12 = ρ21 > 0. Most of the loadings on the second
PC is on X3, so we expect X3 to be approximately independent of X1 and X2, this means we could
have ρ13 = ρ31 = ρ23 = ρ32 = 0.

29.2 Data Analysis

Problem 29.8. For this problem use data set fgl from the MASS package. This is a forensic
application. The observations consist of fragments of broken glass. The type column gives the type
of glass. The RI column gives refractive index. See description from help(fgl). The remaining
8 columns are percentages by weight of various oxides. The row totals of these 8 columns are
approximately 100%.

In this problem the ability of hierarchical clustering to distinguish between types of glass based
on forensic samples of chemical composition and refractive index will be examined.

(a) For this exercise we will only consider 3 glass types: window float glass (WinF), window non-
float glass (WinNF) and vehicle headlamps (Head). Create a subset of the data from only these
glass types. Then standardize each column to zero mean and unit variance.

(b) Using the function hclust plot dendograms for hierarchical clusterings using agglomeration
methods single, complete and average. Generally, do the observations appear to cluster
by class gr in any of the dendograms? Substitute single character labels when plotting the
histograms, since WinF and WinNF will be difficult to distinguish visually.

(c) There are various ways to quantify the ability of a hierarchal clustering to accurately
distinguish classes. Suppose we create a single clustering of size k = c.size, using
cutree(hfit,k=c.size). Suppose one sample from each of the 3 types of glass is cho-
sen at random. Let αk be the probability that the 3 observations are in different clusters.
Suppose pjs is the proportion of samples of glass type j ∈ {1, 2, 3} in cluster s ∈ {1, . . . , k}.
Give an expression for αk in terms of the proportions pjs.

(d) The proportions pjs can be easily estimated by cross-tabulating glass type and cluster mem-
bership. Write an R program that estimates and plots αk for each of the hierarchical cluster-

446 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

ings created in Part (b). Superimpose the three plots on a single graph, and use the range
k = 1, . . . , 10. In general, how do the agglomeration methods compare in terms of accuracy?

(e) One way to assess whether or not αk is significantly large is to use a permutation procedure.
Suppose the original types are contained in the vector gr. Then, create a new class vector
gr.perm by randomly permuting the original class vector gr (you can use function sample()).
Create a new sequence α′k, k = 1, . . . , 10 with the same procedure used in Part (d), except
that gr is replaced by gr.perm. Do the permutation 25 times, superimposing all αk and α′k
sequences on the same plot. Make sure the sequence types are easily distiguishable (say, use
green for αk and gray for each α′k). Do this for each of the hierarchical clusterings created in
Part (b). Use separate plots for each, but use the ylim=c(0,1) option when plotting so that
the scales will be comparable. Which clusterings are compatible with the actual glass types?

SOLUTION:

The following code may be used for the analysis. Comments follow.

library(MASS)

(a)

fgl2 = subset(fgl, type %in% c("WinF","WinNF","Head"))

gr = as.factor(as.character(fgl2$type))

gri = as.integer(gr)

xf = fgl2[,1:9]

xf = apply(xf,2,function(x) {(x - mean(x))/sd(x)})

(b)

par(mfrow=c(3,1))

hfit1 = hclust(dist(xf),method=’single’)

plot(hfit1,labels=gri)

hfit2 = hclust(dist(xf),method=’complete’)

plot(hfit2,labels=gri)

hfit3 = hclust(dist(xf),method=’average’)

plot(hfit3,labels=gri)

(d)

this function is used to calculate alpha[k]

f0 = function(x) {

x[1]*x[2]*(1-x[3]) + x[1]*x[3]*(1-x[2]) + x[2]*x[3]*(1-x[1]) + x[1]*x[2]*x[3]

}

n = dim(fgl2)[1]

29.2. DATA ANALYSIS 447

3
1

3 3 1 1 1 1 1 3
1

1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 3 2 3 3 3

3 2 2 3 3 1 3 3 3 3 3 3 2 3 3 2 3 2 3 2 2 3 3 3 2 2 3 2 2 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 3 3 3 3 3 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 3 2 3 3 2 2 3 3 2 2 2 3 2 3 3 3 2 3 3 2 2 2 2 3 2 3 3
2 2 2 2 2 2

2 2 2 2 2 2 2
2 2 2 2 2

3 3
3 3

0
2

4
6

Cluster Dendrogram

hclust (*, "single")
dist(xf)

H
e

ig
h

t

3
3 3

3
3 3

1 1
3

3 3 3 3
2

2 2 2 2 2
2 2 2 2 2 2 2 2 2

2
3 3 3 3 2 3 3 2 3 2 3 2 3 2 3 2 2 2 3 3 3 2 3 3 2 2 3 2 3 2 3 2 3
3 3

3
3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 3 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 1 2 2 3 2 2
2 2 2 2 2

3
1 1 1 1 1 1 1 1 1 1 1 1

1 1
1 1 1 1 1 1 1 1

1
1

1 10
4

8
1

2

Cluster Dendrogram

hclust (*, "complete")
dist(xf)

H
e

ig
h

t

3
1

3 3
3

3
3 3

1
1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1
1

1 1 1 1 1 1 1 1
3

3 3 3
3 3 3 3 2

2 2 2 2 2 2
2 2 2

2 2 2 2 2 2 2 2
2 2

3
3 3

3 1 3 3 3 2 3 3 2 3 2 3 2 3 2 2 2 2 3
3 2 3 2 2 2 2 3 3 3 3 2 3 2 3 2 2 2 2 3 2 2

2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2
2 3 3 3 3 3

3 2 3 2 3 3 2 2 2 3 2 3 2 3
3 2 3 3 3 3

0
2

4
6

8

Cluster Dendrogram

hclust (*, "average")
dist(xf)

H
e

ig
h

t

Figure 29.5: Plot for Problem 29.8 (b).

par(mfrow=c(1,1))

448 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

l2 = NULL

for (i in 1:10) {

mm = table(gr,cutree(hfit1,k=i))

mmp = apply(mm,1,function(x) {x/sum(x)})

mmp = matrix(mmp,ncol=3)

mmp = t(mmp)

pp1 = 1-sum(apply(mmp,2,f0))

mm = table(gr,cutree(hfit2,k=i))

mmp = apply(mm,1,function(x) {x/sum(x)})

mmp = matrix(mmp,ncol=3)

mmp = t(mmp)

pp2 = 1-sum(apply(mmp,2,f0))

mm = table(gr,cutree(hfit3,k=i))

mmp = apply(mm,1,function(x) {x/sum(x)})

mmp = matrix(mmp,ncol=3)

mmp = t(mmp)

pp3 = 1-sum(apply(mmp,2,f0))

l2 = rbind(l2, c(pp1,pp2,pp3))

}

matplot(1:10, l2,type=’b’,xlab=’cluster size k’, ylab=’alpha[k]’,lwd=2,ylim=c(0,1))

legend(’bottomright’,legend=c(’single’,’complete’,’average’),pch=NA,lty=1:3,col=1:3)

(e)

permuted class vector

create list of permuted alpha[k] values

l2.perm.list = list()

method.names = c(’single’,’complete’,’average’)

hfit.list = list(hfit1,hfit2,hfit3)

do each cluster method

set.seed(12345)

nperm = 25

for (iii in 1:3) {

l2.perm = matrix(NA, 10, nperm)

for (jjj in 1:nperm) {

grp = sample(gr)

l2v = NULL

for (i in 1:10) {

29.2. DATA ANALYSIS 449

mm = table(grp,cutree(hfit.list[[iii]],k=i))

mmp = apply(mm,1,function(x) {x/sum(x)})

mmp = matrix(mmp,ncol=3)

mmp = t(mmp)

pp = 1-sum(apply(mmp,2,f0))

l2v = c(l2v, pp)

}

l2.perm[,jjj] = l2v

}

l2.perm.list[[iii]] = l2.perm

}

plot results

par(mfrow=c(2,2))

for (iii in 1:3) {

matplot(1:10,l2.perm.list[[iii]], col=’gray’,lty=1,pch=NULL,type=’l’,

xlab=’cluster size k’, ylab=’alpha[k]’,ylim=c(0,1),main=method.names[iii])

lines(1:10,l2[,iii],col=’green’,type=’b’)

legend(’topleft’,legend=c(’Original’,’Permuted’),lty=1,col=c(’green’,’grey’))

}

(a) See code.
(b) To some degree, glass types appear to cluster for each agglomeration method (Figure 29.5).
(c) Let A = {at least 2 two samples in the same cluster}, As =
{at least 2 two samples in cluster s}. Then A = ∪ks=1As. Furthermore, because at
most one cluster can contain at least 2 samples, the sets As are mutually exclusive. This
means

αk = 1− P (A) = 1−
k∑
s=1

P (As).

Then we have

P (As) = P ({Type 1 and 2 only in cluster s}) + P ({Type 1 and 3 only in cluster s})
+P ({Type 2 and 3 only in cluster s}) + P ({Type 1, 2 and 3 in cluster s})

= p1sp2s(1− p3s) + p1sp3s(1− p2s) + p2sp3s(1− p1s) + p1sp2sp3s.

This gives

αk = 1− P (A) = 1−
k∑
s=1

[p1sp2s(1− p3s) + p1sp3s(1− p2s) + p2sp3s(1− p1s) + p1sp2sp3s] .

(d) Higher values of αk signify more accurate clustering. By this criterion, the complete method
is the most successful, while the single method is the least successful. (Figure 29.6).

(e) The observed values of αk are compatible with the permutation method values for the single
and average method, so we cannot conclude that these clusterings are compatible with the

450 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

cluster size k

a
lp

h
a

[k
]

● ●
● ● ●

●

●
●

● ●

● ● ● ●
● ● ●

● ●
●

single
complete
average

Figure 29.6: Plot for Problem 29.8 (d).

true glass types, using this criterion. For the complete method, the observed values of αk are
notably larger than the permutation values, for k ≥ 7. These clusterings are to some degree
compatible with the true glass types. (Figure 29.7).

29.3 Theoretical Complements

Problem 29.9. A classifier requires variation within a set of features, which can be quantified
and analyzed in various ways. The purpose of a classifier can be thought of as to determine what
portion of the variation can be explained by class. Sometimes, it is possible to identify, then remove,
feature variation which we know will not be explained by class.

For this problem use data set crabs from the MASS package. This contains data on 200 crabs.
There are 5 morphological measurements (columns 4-8). The variable sp identifies the crab by
species (B for blue, O for orange). The variable sex identifies the sex (M or F).

(a) By combining sp and sex we can identify 4 classes of crab in total. Create a class variable
gr which does this.

(b) Create a pairwise plot using all 5 morphological features (leave them all in their original units
of millimeters mm). Color each class separately (they need not be labeled). How would you
characterize feature variation attributable to class? What other form of variation is there
which is not explainable by class?

(c) Calculate the principal components for the 5 morphological features. Using centering but not
scaling. Create a pairwise plot using all 5 principal components, using separate coloring for
each class (again, classes need not be labeled). What form of variation does the first principal

29.3. THEORETICAL COMPLEMENTS 451

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

single

cluster size k

al
ph

a[
k]

● ● ● ● ● ● ● ● ● ●

Original
Permuted

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

complete

cluster size k

al
ph

a[
k]

● ● ● ● ●

●

● ●
● ●

Original
Permuted

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average

cluster size k

al
ph

a[
k]

● ● ● ● ● ● ●

● ● ●

Original
Permuted

Figure 29.7: Plot for Problem 29.8 (e).

component capture. What subset of principal components appears to best capture variation
due to class?

(d) Create a function that inputs a feature matrix X, number of classes K and class vector gr, and
which performs the following steps:

(i) Calculates a K-means cluster solution based on the input X and K.
(ii) Draws pairwise plots using all features, and superimposes the centers output with clus-

tering solution (see lecture code). Classes need not be visually distinguished, but this
won’t be discouraged, as long as the centers are clearly distinguishable.

(iii) Calculates R2 = 1− SSwithin/SStotal.
(iv) Calculates the classification error rate. Because K-means clustering is an unsupervised

learning algorithm, we need to define ‘error’ carefully. Assign to each true class the
highest frequency cluster among observations of that class. Take that cluster to be a
correct prediction, then calculate classification error accordingly.

(e) Apply the function of part (d) to the original feature matrix X, the (centered but unscaled)
principal components P , and to the feature matrix P (−1) defined by principal components
2,3,4 and 5 .

(f) It can be shown that the principal components are an orthonormal transformation R of the
original data, which is isometric, or distance-preserving:

‖x− y‖ = ‖xR− yR‖.

452 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

What role does this fact play in the results of part (e)?
(g) Suppose we wish to construct a classifier for (species, sex), and we can choose between any

of the three feature matrices used in part (e). Which have the highest R2 and which have
the lowest classification error? What form of variation is the K-means solution for feature
matrix X attempting to explain? What form of variation is the K-means solution for feature
matrix P (−1) attempting to explain?

SOLUTION:

(a) Use the following code:

> xf = crabs[,4:8]

> gr = as.factor(paste(crabs$sp,crabs$sex,sep=’’))

> gri = as.integer(gr)

> nf = dim(xf)[1]

> table(gr)

gr

BF BM OF OM

50 50 50 50

(b) Use the following code:

my.pch = gri

nf = dim(xf)[1]

pairs(xf,col=my.pch)

There appear to be distinct classes in the form of approximate linear relationships between
the features. The class groups can be distinguished, by varying degrees, by the slope of these
lines. Of course, within each class there is significant variation along the line, clearly driven
by the overall size of an individual crab. This is the same within each class. See Figure 29.8.

(c) Use the following code:

> crab.pc = prcomp(xf,center=T,scale.=F)

> xfp = crab.pc$x

> pairs(xfp,col=my.pch)

> crab.pc$rotation

PC1 PC2 PC3 PC4 PC5

FL 0.2889810 0.3232500 -0.5071698 0.7342907 0.1248816

RW 0.1972824 0.8647159 0.4141356 -0.1483092 -0.1408623

CL 0.5993986 -0.1982263 -0.1753299 -0.1435941 -0.7416656

CW 0.6616550 -0.2879790 0.4913755 0.1256282 0.4712202

BD 0.2837317 0.1598447 -0.5468821 -0.6343657 0.4386868

>

PC1 has little information about class. By the loadings, we can see that PC1 is related to size.
On the other hand PC2 and PC3 cluster very clearly by class. See Figure 29.9.

29.3. THEORETICAL COMPLEMENTS 453

(d) The following function performs the required tasks:

my.kmeans = function(x,k,gr) {

calculate fit

nf = dim(x)[1]

fit = kmeans(x,centers=k,nstart=100)

construct plot

x = rbind(x,fit$centers)

colv=c(rep(1,nf),rep(2,k))

pchv=c(rep(3,nf),rep(19,k))

pairs(x,col=colv,pch=pchv)

calculate metrics

conf.mat = table(gri,fit$cluster)

err = 1 - sum(apply(conf.mat,1,max))/nf

r2 = fit$betweenss/fit$totss

ans = c(err,r2)

names(ans) = c(’err’,’r2’)

return(ans)

}

(e) Use the following code:

> my.kmeans(xf,4,gr)

err r2

0.6450000 0.8932867

>

> my.kmeans(crab.pc$x,4,gr)

err r2

0.6450000 0.8932867

>

> my.kmeans(crab.pc$x[,2:5],4,gr)

err r2

0.0650000 0.7444877

>

my.kmeans(xf,4,gr)

my.kmeans(crab.pc$x,4,gr)

my.kmeans(crab.pc$x[,2:5],4,gr)

See Figures 29.10-29.12.

454 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

(f) K-means clustering is based on Euclidean distances. Therefore, a K-means solution for
feature matrix X will be equivalent to that for feature matrix XR for any distance-preserving
transformation R. For this reason, the cluster solutions for X and P of part (e) are identical.

(g) R2 is maximized for X, P , while classification error is minimized for P (−1). The feature
matrix P (−1) is more suitable to this particular classification problem. Although X,P has a
higher R2, it is clear from the plots that the K-means cluster for X is attempting to explain
variation by size, not by class.

29.3. THEORETICAL COMPLEMENTS 455

FL

6 10 14 18

●
●●
●●

● ●●● ●●●
●●●●●●●

●●●
●●●●●

●●● ●●●●●●●●●●●
●●

●●● ●●●

●

●

●●●●
●●●

●●
●● ●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●● ●●

● ●
●●

●

●
●●

●
●● ●●● ●●●●●●●●●●

●●● ●●●
●●●●●●●●●

●●●●
●●

●●●●●● ●●
●●

●
●

● ●●
● ●● ●●●

●●●●●●●
●●
●●●● ● ●●●●●●● ●●●

●● ●●●● ●●● ●●●●
●

●

●
●●

●●
●●

●●●●●●
●●●●●●

●●●
●●●●●

●●●●●●● ●●●●●●
●●●

●●●
●●●

●

●

●●●●
●●●

●●
●●●●●●●●●

●●●●●●●
●●●

●●●●●●● ●●●●●●●●
●● ●

●●

●

●
●●

●
●●●●●●

●●●●●●●●●
●●●

●●
●

●●●●●●●●●●●
●●

●●
● ●●

●●●●●
●●

●
●

●●●
●●●

●●●
●●●●●●
●●

●●●●●● ●●●●●●●●●●
●●●●●
●●●● ●●●●

●
●

20 30 40 50

●
●●●

●
●●

●●●●●●
●●●●●●

●●●
●●●●●

●●●●●●●●●●●●●●
●●

●●●●●●

●

●

●●●●
●●●

●●
●●●●●●●●●

●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●

●●

●

●
●●

●
●●●●●●

●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●
●●
●●●

●●● ●●
●●

●
●

●●●
●●●

●●●
●●●●●●●

●●
●●●●● ●●●●●●●●●●

●● ●●●●●●● ●●●●
●

●

1
0

1
5

2
0

●
●●

●●
●●
●●●●●●●●●●●●

●●●●●●●●
●●● ●●●●●●

●●●●●
●●

●●●●●●

●

●

●●●●
●●●●●● ●●●●●●●●

●●●●●●●
●● ●

●● ●●●●● ●●●●●●● ●● ●●
●●

●

●
●●

●
●●●●

●●
●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●
● ●●

●●●●●
●●

●
●

●●●
●●●
●●●

●●●●●●
●●●

●●●●● ●●●●●● ●● ●●
●●●●●● ●●● ●●●●

●
●

6
1

0
1

4
1

8

●
●●●●

●
●
●
●
●●
●
●●
●●●●
●●

●●●
●●
●●
●●
●

●
●
●●
●
●●●●
●●

●●

●

●●

●
●●

●

●

●●●●
●●
●●●●

●
●●●●
●
●●
●
●
●●
●●
●●
●
●

●
●
●●
●●
●
●●
●
●●
●
●
●●

●

●
●● ●

●

●●● ●●
●
●
●
●
●
●●●●●
●●●●●●

●●●
●●
●
●●●
●●●●●●●

●●●
●
●
●●
●
●●

●
●

●
●

●

●●
●
●
●
●●
●

●
●●●●●●

●●●●●●
●

●
●●●
●●
●

●
●●
●●

●

●
●

●

●●
●

●●
●●●

●

RW

●
●●●●

●
●
●
●
●●●

●●
●●●●
●●

●●●
●●
●●

●●
●

●
●
●●

●
●●
●●
●●

●●

●

●●

●
●●

●

●

●●●●
●●
●●●●

●
●●●●

●
●●

●
●
●●
●●
●●
●

●
●
●

●●
●●
●

●●
●
●●
●
●
●●

●

●
●● ●

●

●●
●●●

●
●
●
●

●
●●●●●
●●●●●●

●●●
●●
●
●●●

●●●●●●●●
●
●

●
●

●●
●

●●
●
●

●
●

●

●●
●

●
●

●●
●

●
●●●●●●
●●●●●

●
●

●
●●●

●●
●

●
●●

●●

●

●
●

●

●●
●

●●
●●●

●

●
●●●●

●
●
●
●

●●●
●●
●●●●
●●

●●●
●●
●●

●●
●

●
●

●●
●

●●●●
●●
●●

●

●●

●
●●

●

●

●●●●
●●
●●●●

●
●●●●
●

●●
●
●
●●
●●
●●

●
●
●
●
●●
●●
●

●●
●
●●
●

●
●●

●

●
●● ●

●

●●
●●●

●
●

●
●

●
●●●●●
●●●●●●

●●●
●●

●
●●●

●●●●●●●●
●
●

●
●

●●
●

●●
●
●

●
●

●

●●
●
●
●

●●
●

●
●●●●●●

●●●●●
●
●

●
●●●

●●
●

●
●●
●●

●

●
●

●

●●
●

●●
●●●

●

●
●●●●

●
●
●

●
●●●

●●
●●●●
●●

●●●
●●
●●

●●
●

●
●

●●
●
●●
●●

●●
●●

●

●●

●
●●

●

●

●●●●
●●
●●●● ●

●●●●
●

●●
●

●
●●
●●
●●
●

●
●

●
●●

●●
●

●●
●

●●
●
●

●●

●

●
●● ●

●

●●
●●●

●
●
●
●

●
●●●●●
●●●●●●

●●●
●●

●
●●●

●●●●●●●
●●●

●
●

●●
●

●●
●
●

●
●

●

●●
●
●
●
●●

●

●
●●●●●●

●●●●●
●
●

●
●●●
●●
●

●
●●

●●

●

●
●

●

●●
●

●●
●●●

●

●
●●

●●
●●

●●●
●●●●●●

●●●
●
●●●●

●●●

●
●●●
●●●
●
●●●●
●●●●

●●●●
●●

●

●

●●●●
●●●
●●●●

●●●
●●●●

●●●
●●●●●

●
●●●

●●●●●
●
●●●●
●●●●●

●
●●

●

●

●●
● ●●

●●●●
●●●●●●
●●●

●●●
●●●

●●●●
●●●
●●●●●
●●●

●
●●

●●
●
●●

●●

●●
●●
●

●
●●

●●●
●●●●●●●

●●
●●
●●
●

●

●●
●●
●●
●
●●
●●●●●●●

●
●

●
●●
●●

●

●
●●
●●

● ●●● ●
●●●●●●
●●●
●
●●●●●●●

●
●● ●●●●

●
●●●●

●●
●●

●●● ●
●●

●

●

●●●●
●●●

●●●●
●●●

●●
●● ●●●

●●●●●●
●●●

●●●●●
●
●●●●●● ●●●

●
●●

●

●

●●
●●●

●●● ●
●●●●●●
●●●
●●●

●●●

●●●●
●●●

●●●●●
●●●
●

●●
●●

●
●●

●●

●●
● ●●

●
●●
●●● ●●●●●●●

●●
●●
●● ●

●

●●
●●

●● ●
●●

●● ●●●● ●
●

●

●
●●●

●

●

CL

●
●●●

●
●●

●●●
●●●●●●
●●●
●

●●●●
●●●

●
●●●●●●

●
●●●●

●●
●●

●●●●
●●

●

●

●●●●
●●●

●●●●
●●●
●●
●●

●●●
●●●●●

●
●●●

●●●●●
●
●●●●●●●●●

●
●●

●

●

●●
●●●

●●●●
●●●●●●
●●●
●●●
●●●

●●●●
●●●

●●●●●
●●●●

●●
●●

●
●●
●●

●●
●●●

●
●●
●●●

●●●●●●●●●
●●

●●
●

●

●●
●●

●●●
●●
●● ●●●●●

●
●

●
●●
●●

●

1
5

2
5

3
5

4
5

●
●●

●●
●●
●●●
●●●●●●
●●●

●
●●●●●●

●

●
●● ●●●●

●
●●●●●●

●●

●●●●
●●

●

●

●●●●
●●●●●● ●

●●●
●●
●●●

●●
●●●●●
●

●●●
●●●●●

●
●●●●●● ●● ●

●
●●

●

●

●●
●●●

●●●
●

●●●●●●
●●●
●●●
●●●

●●
●●

●●●
●●●●●

●●●
●

●●
●●

●
●●
●●

●●
●●●

●
●●
●●●●

●●●●●●
●●

●●
●●●

●

●●
●●

● ●●
●●

●●●●●● ●
●

●

●
●●●

●

●

2
0

3
0

4
0

5
0

●
●
●●●

●●
●●
●
●●●●●●

●●●●
●●●

●●●●
●
●●
●●●●
●
●●●●
●●●●

●
●●
●●●

●

●

●●●●
●●●
●●●

●
●●●●
●●●

●●●●●
●●●
●●●●

●●●●●
●●●●●
●●
●●●

●
●●

●

●

●●
● ●●

●
●●●

●●●●●●
●
●
●●
●●●

●●

●●
●●
●●
●
●●●
●●
●●●

●
●●

●●
●
●
●

●●

●●
●●
●

●●●
●●●

●●●●
●●●
●●

●●
●●
●

●
●●
●●
●●
●●●

●●
●
●●●
●●●

●
●●●

●

●

●
●
●●●

● ●
●●

●
●●●●●●
●●●●

●●●●●●●
●
●●
●●●●

●
●●●●

●●●●

●
●●

●●●

●

●

●●●●
●●●

●●●
●

●●●●
●●●

●●●●●●●●●●●●
●●●●●
●●●●●
●●
●●●

●
●●

●

●

●●
●●●

●
●● ●
●●●●●●
●
●
●●
●● ●●●

●●
●●
●●●

●●●
●●
●●●
●

●●
●●

●
●
●

●●

●●
● ●●

● ●●
●●●
●●●●●
●●

●●
●●
●● ●

●
●●
●●

●● ●●●
●●

●
●●●

●●●

●
●●●

●

●

●
●
●●●

●●
●●
●

●●●●●●
●●●●

●●●
●●●●

●
●●
●●●●

●
●●●●

●●●●

●
●●
●●●

●

●

●●●●
●●●

●●●
●

●●●●
●●●
●●●●●●●●

●●●●
●●●●●

●●●●●
●●
●●●

●
●●

●

●

●●
●●

●
●
●●●

●●●●●●
●
●

●●●●●●●

●●
●●

●●
●

●●●
●●

●●●
●

●●
●●

●
●

●
●●

●●
●●

●
●●●

●●●
●●●●
●●●
●●

●●
●●

●

●
●●

●●
●●●

●●
●●
●
●●●
●●
●

●
●●●

●

●

CW

●
●
●●●

●●
●●
●
●●●●●●
●●●●

●●●●●●●
●
●●

●●●●
●
●●●●

●●●●

●
●●
●●●

●

●

●●●●
●●●●●● ●

●●●●
●●●
●●●●●
●●●

● ●●●
●●●●●

●●●●●
●●

●● ●
●

●●

●

●

●●
●●●

●
●●●

●●●●●●
●

●
●●●●●●●

●●
●●

●●
●
●●●
●●

●●●
●

●●
●●

●
●

●
●●

●●
●●●

●●●
●●●

●●●●
●●●

●●
●●

●●●

●
●●
●●

● ●● ●●
●●
●
●●●

●●●

●
●●●

●

●

10 15 20

●●●
●●

●●
●
●
●
●●●●●●●●●

●
●
●●●●●●

●●●
●●●●●●

●●●
●●

●
●

●●
●
●
●●

●

●

●●●●
●●●●

●
●
●
●●●●
●●●

●
●
●●●●●
●●
●

●●

●●●●●

●
●●
●
●
●●
●

●
●●

●●
●

●

●●
●

●●
●●●●

●●●●●●
●
●●
●●●
●●●

●●●
●
●●
●●
●●●●
●●●●

●●

●●●
●
●

●●

●●
●
●●

●●●●
●
●●●●●●●●

●●
●●

●
●●

●
●●●
●

●

●
●

●●
●●●●
●
●
●●

●

●
●
●●●

●

● ●●
●●

● ●
●
●

●
●●●●●●●●●
●
●

●●●●●●
●●●
●●●●●●
●●●
●●

●
●

●●
●

●
●●

●

●

●●●●
●●●●

●
●
●

●●●●●●● ●
●
●●●●●●●

●
●●

●●●●●

●
●●

●
●

●●
●

●
● ●

●●
●

●

●●
●
●●

●●● ●
●●●●●●
●
●●
●●●

●●●
●●●
●
●●

●●
●●●●
●●●●

●●

●●●
●
●

●●

●●
●

●●
● ●● ●●
● ●●●●●●●

●●
●●

●
● ●

●
●●●

●

●

●
●

●●
●● ●●
●

●
●●

●

●
●

●●●
●

15 25 35 45

●●●
●●

●●
●
●
●

●●●●●●●●●
●

●
●●●●●●

●●●
●●●● ●●

●●●
●●

●
●

●●
●
●

●●

●

●

●●●●
●●●●

●
●
●

●●●●●●●
●
●
●●●●●

●●
●
●●

●●●●●

●
●●
●
●
●●
●

●
● ●

●●
●

●

●●
●
●●

●●●●
●●●●●●
●
●●
●●●

●●●
●●
●
●

●●
●●●●●●

●●●●

●●

●●●
●

●
●●

●●
●
●●

●●●●●
●●●●●●●●

●●
●●

●
●●

●
●●●

●

●

●
●

●●
●●●●
●
●
●●

●

●
●
●●●

●

●●●●●

●●
●
●

●
●●●●●●●●●

●
●
●●●●●●

●●●
●●●●●●

●●●
●●
●
●

●●
●

●
●●

●

●

●●●●
●●●●

●
●
●

●●●●
●●●

●
●
●●●●●

●●
●
●●

●●●●●

●
●●
●

●
●●
●

●
●●

●●
●

●

●●
●
●●

●●●●
●●●●●●
●
●●
●●●
●●●

●●●
●
●●

●●●●●●
●●●●

●●

●●●
●

●
●●

●●
●
●●

●●●●●
●●●●●●●●

●●
●●

●
●●

●
●●●●

●

●
●

●●
●● ●●
●
●
●●

●

●
●
●●●

●

10 15 20

1
0

1
5

2
0

BD

Figure 29.8: Pairwise plots for X Problem 29.9 (b).

456 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

PC1

−3 −1 1 2

●
●●●●

● ●● ●
●

● ●●● ● ●●● ●
●

●●●●● ●●
●

●●
●●●●

●
●●●●
●● ●●

●● ●
●● ●

●

●

●●●●
●●●
●●●●
●● ●●
●
●●

●● ●●●● ●● ●
●●●

●●●●●
●●●●●
●●
●●●

●
●●

●

●

●●
● ●●
●
●● ●
●●●●● ●
●● ●
●●● ●●●

●●● ●
●● ●

●●● ●●
● ●●●

● ●
●●
●

● ●
●●

●●
● ●●

●
●●
●●●
●● ●●●● ●

●●
●●

●● ●

●
●●●●

●
● ●●●
●●
●● ●●

●●
●

●
●●●

●

●

●
● ●●●

● ●●●
●

●●● ●●● ●●●
●

●●●●●●●
●

●●
● ●● ●

●
●●●●

●●
●●

●● ●
●●●

●

●

●●●●
● ●● ●●●●

●●●●
●

●●
●● ●●● ●●● ●

●● ●
●●●● ●
● ●●● ●

●●
● ●●

●
●●

●

●

●●
●●●

●
●● ●

●●●●●●
● ●●

● ●●●
●●

●●
● ●

● ●●
●●●●●

●● ●●
● ●

●●
●

●●
●●

●●
● ●●

●
●●
●●●

● ●●●●●●
●●
●●
●● ●

●
●● ●●

●
● ●●●
●●

●●●●
●●●

●
●●●

●

●

−1.0 0.0 1.0

●
● ●●●

●●
● ●
●

●● ● ●●● ●●●
●

●● ●●●● ●
●

● ●
● ● ●●

●
●● ●●

● ●● ●

● ● ●
●● ●

●

●

●●● ●
● ●● ●● ●●

●● ●●
●

●●
●● ●● ● ●●●●

● ● ●
●● ●● ●

● ●●● ●
● ●

● ●●
●

●●
●

●

● ●
● ●●

●
● ●●

●● ●● ●●
● ●●

●● ●● ● ●

●●
●●

●●●
●● ●●●
● ●● ●
● ●

● ●
●

● ●
● ●

● ●
●●●

●
● ●

●●●
●●● ● ●●●

● ●
●●

●●●

●
●●●●

●
● ●●●

● ●
● ●● ●

●● ●

●
●●● ●

●

−
3

0
−

1
0

1
0

●
● ●●●

●● ●●
●

● ●● ●● ●●● ●
●

● ● ●●●●●
●

● ●
●●● ●

●
●● ●●

●●●●

●●●
● ●●

●

●

● ●●●
●●●● ●● ●

●●●●
●

●●
●●●● ●●●● ●

●● ●
●● ● ●●

● ●● ●●
●●

●● ●
●

● ●
●

●

●●
● ●●

●
●●●

● ●● ●● ●
●● ●

●● ●● ●●

●●
● ●

●● ●
● ●●● ●

●●●
●
● ●
●●

●
●●

● ●

●●
●● ●

●
● ●
●● ●

●●● ● ● ●●
●●

●●
● ●●

●
●● ●●

●
●●● ●

● ●
●● ● ●

●●
●

●
● ●● ●

●

−
3

−
1

1
2

●
●
●●● ●

●

●

●
●

●
●

●
●

●

●

●
●
●
●

●
●
●●
●
●

●
●

●

●

●●
●●

●
●●●●

●●
●
●

●

●

●

●

●
●

●

● ●●●●
●●
●●
●
●●●

●

●

●●●●
●
●
●
●

●
●

●

●
●●
●
●●●
●●
●

●●

●●
●●
●

●●

●

●●
●

●● ●
●

●
●
●

●●
●

●●

●●
●●

●●

●

●●
●●

●

●
●

●●●
●

●●

●

●
●●

●
●

●

●●

●●
●

●●
● ●

● ●

●

●
● ●

●

●●●●
●
●
●

●
●
●

●
●●
●●●

●
●

●

●

●
●

●●
●

●

●
●

●

●
●●●

●

●

●

●

●

●
●

●

●

●●
●

●

PC2 ●
●

●●● ●

●

●

●
●

●
●

●
●

●

●

●
●
●

●
●

●
●●

●
●

●
●

●

●

● ●
● ●

●
●●●● ●●

●
●

●

●

●

●

●
●

●

● ●●
●●
● ●● ●

●
●● ●
●

●

● ●●●
●

●
●
●

●
●

●

●
●●

●
●●●

●●
●

● ●

●●
● ●

●

● ●

●

●●●

●●●
●
●

●
●

● ●
●

●●

●●
●●

●●

●

●●
●●

●

●
●

●●●
●

● ●

●

●
●●

●
●

●

● ●

●●
●

●●
● ●

●●

●

●
●●

●

●● ●●
●

●
●

●
●

●

●
●●
●●●

●
●

●

●

●
●

●●
●

●

●
●

●

●
●●●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●●●●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●●
●
●

●
●

●

●

● ●
●●

●
●● ●●● ●

●
●

●

●

●

●

●
●

●

●●
●
● ●

● ●● ●
●

●●●
●

●

●● ●●
●

●
●

●

●
●

●

●
●●

●
●●●

●●
●

● ●

●●
●●

●

● ●

●

●●
●

● ●●
●

●
●

●
● ●

●

●●

● ●
● ●

●●

●

●●
● ●

●

●
●

●● ●
●

●●

●

●
● ●

●
●

●

●●

●●
●

● ●
●●

●●

●

●
●●

●

● ●● ●
●

●
●

●
●
●

●
●●

●● ●

●
●

●

●

●
●

●●
●

●

●
●

●

●
●● ●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●●● ●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●

●

●●
● ●

●
●● ●● ●●

●
●

●

●

●

●

●
●

●

●● ●
●●

●●●●
●

● ●●
●

●

●● ●●
●

●
●

●

●
●

●

●
●●●

● ●●
● ●

●
● ●

● ●
● ●
●

●●

●

● ●
●

●●●
●

●
●

●
●●
●

●●

●●
●●

●●

●

●●
● ●

●

●
●

●●●
●

●●

●

●
●●

●
●

●

●●

●●
●

●●
● ●

●●

●

●
● ●

●

● ●● ●
●

●
●

●
●
●

●
● ●

● ●●

●
●

●

●

●
●

●●
●

●

●
●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●
●
●

●

●

●
●

●
●
●

●

●●

●

●●●

●

●

●●
●●●●

●
●

●

●

●
●
●

●

●●
●
●

●●

●●

●

●
●

●

●●

●

●

●

●
●
●
●

●
●

●

●
●●

●

●
●

●

●

●●

●

●

●●
●

●
●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●●●

●●

●

●

●

●●

●●
●●●
●

●

●
●
●
●●

●

●

●
●

●
●●

●●
●

●●

●●

●
●

●

●
●

● ●●
●

●
●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●
●●
●
●●●●●

●

●

●

●

●

●
●

●

●●
●

●

●●

●
●

●

●

●
●

●●●
●●

●●●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

● ●

●

●● ●

●

●

●●
●●

●●

●
●

●

●

●
●
●

●

●●
●
●

●●

●●

●

●
●

●

● ●

●

●

●

●
●
●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●●●

●●

●

●

●

●●

●●
●● ●

●

●

●
●

●
● ●
●

●

●
●

●
●●

● ●
●

●●

●●

●
●

●

●
●

●●●
●

●
●
●

●

●

●●

●
●
●

●

●

●
●

●

●

●
●●

●
● ●●●●

●

●

●

●

●

●
●

●

● ●
●

●

●●

●
●

●

●

●
●

●●●
● ●

●●●

●

PC3
●

●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●●●

●

●

● ●
●●

● ●

●
●

●

●

●
●

●

●

●●
●

●

● ●

● ●

●

●
●

●

● ●

●

●

●

●
●

●
●

●
●

●

●
●●

●

●
●

●

●

●●

●

●

●●
●

●
●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
● ●●

●●

●

●

●

●●

● ●
● ●●

●

●

●
●
●

●●
●

●

●
●

●
●●

●●
●

● ●

●●

●
●

●

●
●

●● ●
●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●
● ●

●
●●● ●●

●

●

●

●

●

●
●

●

● ●
●

●

●●

●
●

●

●

●
●

●● ●
● ●

●● ●

●

−
2

−
1

0
1

2

●

●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●● ●

●

●

● ●
●●

●●

●
●

●

●

●
●

●

●

●●
●

●

●●

●●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●
● ●

●

●
●

●

●

●●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

● ●
●

●

●
●●●

●●

●

●

●

●●

●●
●● ●

●

●

●
●

●
●●

●

●

●
●

●
●●

● ●
●

●●

● ●

●
●

●

●
●

●●●
●

●
●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●
● ●

●
●● ●● ●

●

●

●

●

●

●
●

●

●●
●

●

● ●

●
●

●

●

●
●

●●●
● ●

●● ●

●

−
1

.0
0

.0
1

.0

●●
●
●
●

●●
●

●

●
●

●

●

●

●
●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●
●●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●
●

●
●●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●
●
●

●

●
●●
●

●
●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●
●

●

● ●●
●

●
●

● ●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●●
●●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●

●
● ●
●

●
● ●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●
●

●

● ● ●
●

●
●

● ●
●

●

●
●

●

●

●

●
●

●
●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

● ●

●●
●●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

●
●●

●
●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●
●

●

●
PC4 ●●

●
●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

● ●
● ●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●

●

●

●

−30 −10 10

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 −1 0 1 2

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●● ●

●●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.5 0.0 0.5

−
0

.5
0

.0
0

.5

PC5

Figure 29.9: Pairwise plots for principal components P Problem 29.9 (c).

29.3. THEORETICAL COMPLEMENTS 457

FL

6 10 14 18

●

●

●

●

●

●

●

●

20 30 40 50

●

●

●

●

1
0

1
5

2
0●

●

●

●

6
1

0
1

4
1

8

●

●

●

● RW
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

CL

●

●

●

●

1
5

2
5

3
5

4
5

●

●

●

●

2
0

3
0

4
0

5
0

●

●

●

●

●

●

●

●

●

●

●

●

CW

●

●

●

●

10 15 20

●

●

●

●

●

●

●

●

15 25 35 45

●

●

●

●

●

●

●

●

10 15 20

1
0

1
5

2
0

BD

Figure 29.10: Clustering solution for X Problem 29.9 (e).

458 CHAPTER 29. PRACTICE PROBLEMS - UNSUPERVISED LEARNING

PC1

−3 −1 1 2

●

●

●

●

●

●

●

●

−1.0 0.0 1.0

●

●

●

●

−
3

0
−

1
0

1
0

●

●

●

●

−
3

−
1

1
2

● ●●● PC2 ●● ●● ●●●● ●●●●

●

●
●

●
●

●
●

● PC3 ●

●
●
●

−
2

−
1

0
1

2

●

●
●

●

−
1

.0
0

.0
1

.0

● ●●● ●●●● ●● ●● PC4 ●●●●

−30 −10 10

● ●
●

● ●●
●

●

−2 −1 0 1 2

●●
●

● ●●
●
●

−0.5 0.0 0.5

−
0

.5
0

.0
0

.5

PC5

Figure 29.11: Clustering solution for P Problem 29.9 (e).

29.3. THEORETICAL COMPLEMENTS 459

PC2

−2 −1 0 1 2

●

●

●

●

●

●

●

●

−0.5 0.0 0.5

−
3

−
2

−
1

0
1

2

●

●

●

●

−
2

−
1

0
1

2

●

●

●

●

PC3 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PC4

−
1

.0
0

.0
0

.5
1

.0

●

●

●

●

−3 −2 −1 0 1 2

−
0

.5
0

.0
0

.5

●●● ●
● ●●●

−1.0 0.0 0.5 1.0

●● ●● PC5

Figure 29.12: Clustering solution for P (−1) Problem 29.9 (e).

Chapter 30

Practice Problems - Model Selection
and Splines

30.1 Exercises

Problem 30.1. Suppose we fit a simple linear regression model:

y = β0 + β1x+ ε, (30.1)

and after examing the residuals, suspect that the relationship between x and y is not linear.

(a) Assume that the range of x is [10, 45]. We wish to consider a model of the form

y = f(x) + ε,

where f(x) is a continuous piecewise linear function with knots at 20 and 35. Find a way of
constructing this model using the form

y = β0 + β1x+ β2b1(x) + β3b2(x) + ε, (30.2)

where b1(x) and b2(x) are two basis functions. Identify the basis functions precisely.
(b) Suppose models (30.1) and (30.2) are fit using the same data with sample size n = 54, and the

resulting error sums of squares are SSE1 = 2398.45 and SSE2 = 2103.23. Does the model
(30.2) significantly reduce the SSE compared to (30.1)?

SOLUTION:

(a) The required basis functions are

b1(x) = (x− 20)+

b2(x) = (x− 35)+

where (y)+ = y if y ≥ 0 and (y)+ = 0 if y < 0.

460

30.1. EXERCISES 461

(b) The models (1) and (2) have 2 and 4 degrees of freedom, respectively. We may take (2) to be
a full model and (1) to be a reduced model, giving F -statistics

F =
(SSER − SSEF)/2

SSEF /(n− 4)
=

(2398.45− 2103.23)/2

2103.23/(54− 4)
= 3.509126

We can use R to get the P-value:

> 1 - pf(3.509126,2,54-4)

[1] 0.03748889

so that model (2) is a significant improvement over model (1) at a α = 0.05 significance level.

Problem 30.2. The following full linear regression model is considered:

Y = β0 + β1X1 + β2X2 + β3X3 + ε.

An all subsets model selection procedure is to be used to determine which of the predictors
X1, X2, X3 to retain. The sample size is n = 150. The AIC score will be used, in the form
AIC = n log(SSE/n) +C. The error sum of squares for each tested model is given in the following
table. What will be the selected model?

Model SSE

1 Y = 1 1940.373
2 Y = X1 1399.735
3 Y = X2 485.242
4 Y = X3 1940.367
5 Y = X1 +X2 0.268
6 Y = X1 +X3 1399.713
7 Y = X2 +X3 485.239
8 Y = X1 +X2 +X3 0.267

SOLUTION:
Formula is

AIC = n log(SSE/n) + 2k,

where k is the number of parameters. We can construct table:

462 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

Model k SSE AIC

1 Y = 1 1 1940.37 386.00
2 Y = X1 2 1399.74 339.01
3 Y = X2 2 485.24 180.10
4 Y = X3 2 1940.37 388.00
5 Y = X1 +X2 3 0.27 -943.35
6 Y = X1 +X3 3 1399.71 341.01
7 Y = X2 +X3 3 485.24 182.10
8 Y = X1 +X2 +X3 4 0.27 -941.41

The model Y = X1 +X2 has the lowest AIC (= -943.35).

Problem 30.3. A regression model is to be developed for a response Y and single predictor X
in range X ∈ [100, 200], based on n = 11 paired observations. The following two models were
considered, and the resulting error sum of squares is reported:

(i) Simple linear regression model Y = β0 + β1X + ε [SSE = 67813.35].
(ii) Cubic spline with single knot at X = 150 [SSE = 53599.91].

Using the BIC score, which is the best model? Use the form BIC = n log(SSE/n) + C.

SOLUTION:
The formula is

BIC = n log(SSE/n) + log(n)k,

where k is the number of parameters. We can construct table:

Model k SSE BIC

linear 2.00 67813.35 100.79
cubic spline 5.00 53599.91 105.39

The linear model has the lowest BIC (= 100.79).

Problem 30.4. Given a single predictor x and response y, a polynomial regression model is
considered:

y = β0 + β1x+ β2x
2 + ε.

Suppose we consider four models (full model and 3 reduced models). Suppose further that the
sample size is n = 75, and that the four models are fit, yielding the following error sums of squares
SSE:

30.1. EXERCISES 463

Table 1:
MODEL SSE

M0 y = β0 + ε 239.2
M1 y = β0 + β1x+ ε 82.8
M2 y = β0 + β2x

2 + ε 87.9
M12 y = β0 + β1x+ β2x

2 + ε 79.8

Determine the model selected by the AIC and the BIC criterion. Use the form n log(SSE/n)+C.

SOLUTION:
We have scores:

AIC = n log(SSE/n) + 2q,

BIC = n log(SSE/n) + log(n)q,

where q is the number of parameters, and n = 75. This leads to table:

Model q AIC BIC

M0 1 88.99 91.30
M1 2 11.42 16.06
M2 2 15.90 20.54
M12 3 10.65 17.61

The AIC selection is M3, while the BIC selection is M1.

Problem 30.5. A regression model is to be developed for a response Y and single predictor X in
range X ∈ [10, 24], based on n = 29 paired observations. The following four models were considered,
and the resulting error sum of squares is reported:

(i) Constant model Y = β0 + ε [SSE = 576983.05].
(ii) Simple linear regression model Y = β0 + β1X + ε [SSE = 16546.78].
(iii) Linear spline with knots at X = 15, 20 [SSE = 13819.92].
(iv) Linear spline with knots at X = 12, 17, 19, 22 [SSE = 12169.24].

Using the AIC score, which is the best model?

SOLUTION:
We have two methods for calculating AIC:

AIC1 =
1

σ̂2
SSE + 2k

AIC2 = n log(SSE/n) + 2k,

464 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

where k is the number of parameters, and σ̂2 is an estimate of the error variance (here, use the
estimate obtained from model 4, σ̂2 = SSE/(n − 6)). For a linear spline with N knots and an
intercept, we have k = 2 + N . This means the number of parameters for the four models is
k = 1, 2, 4, 6, respectively. The AIC values are in the following table:

Model k AIC1 AIC2

1 1 1092.50 289.05
2 2 35.27 188.05
3 4 34.12 186.83
4 6 35.00 187.14

For both versions of the AIC, model (iii) is the selected model.

Problem 30.6. We wish to fit a model of the form

yi = g(xi) + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent error terms, and xi is a predictor variable. Suppose g(x) is a
piecewise polynomial with knots at ξ = 0, 1 of the form:

g(x) =

α ; x ≤ 0
ax3 + bx2 + cx+ d ; x ∈ (0, 1]
β ; x > 1

.

It is further required that g(x) is continuous at both knots, and that the first derivative of g(x) is
continuous and equal to 0 at both knots. See Figure 30.1 for an example of g(x).

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

x

f(
x)

●

●

α

β

Figure 30.1: Example of g(x) for Problem 30.6.

(a) Express the coefficients a, b, c, d as functions of α and β.
(b) How many degrees of freedom does the model have?

30.1. EXERCISES 465

SOLUTION:

(a) Note that
d

dx
(ax3 + bx2 + cx+ d) = 3ax2 + 2bx+ c.

So, we have constraints:

α = d

0 = c

β = a+ b+ c+ d

0 = 3a+ 2b+ c.

Directly, we have c = 0, d = α. Substitution gives

a+ b = β − α
3a+ 2b = 0.

To summarize:

a = 2(α− β)

b = −3(α− β)

c = 0

d = α.

(b) 6 parameters with 4 constraints yields 2 = 6− 4 model degrees of freedom.

Problem 30.7. We wish to fit a model of the form

yi = g(xi) + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent error terms, and xi ∈ [10, 20] is a predictor variable. We
consider the following six models

M1 g(x) = β1x, where β1 is to be estimated.

M2 g(x) = β0 + β1x, where β0, β1 are to be estimated.

M3 g(x) = β0 + β1x+ β2x
2, where β0, β1, β2 are to be estimated.

M4 g(x) = β0 + β1x+ β2x
2 + β3x

3, where β0, β1, β2, β3 are to be estimated.

M5 g(x) is a continuous piecewise linear spline with 1 knot at ξ = 13.

M6 g(x) is a natural cubic spline with 2 knots at ξ = 15, 17 (note that g(x) is continuous, and
possesses continuous derivatives, at each knot).

466 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

Model SSE

M1 607.807
M2 32.163
M3 14.116
M4 8.707
M5 6.263
M6 9.523

The relevant SSE values are given in the following table. The sample size is n = 181. Which
model is preferred based on the BIC score (use form BIC = n log(SSE/n) + C)?

SOLUTION:
The equation is

BIC = n log(SSE/n) + log(n)k,

where k is the number of parameters. Other than σ2, the number of parameters is

M1 β1, k = 1.

M2 β0, β1, k = 2.

M3 β0, β1, β2, k = 3.

M4 β0, β1, β2, β3, k = 4.

M5 4 parameters with one constraint, so k = 4− 1 = 3.

M6 2+4+2 parameters with 4 constraints, so k = 8− 4 = 4.

The number of parameters does not include σ2, but if this was included the model selection proce-
dure would be unchanged, since we would simply add 1 to each k.

We can construct table:

Without σ2 With σ2

Model SSE k BIC k BIC

M1 607.807 1 224.455 2 229.653
M2 32.163 2 -302.313 3 -297.115
M3 14.116 3 -446.171 4 -440.973
M4 8.707 4 -528.429 5 -523.231
M5 6.263 3 -593.260 4 -588.062
M6 9.523 4 -512.217 5 -507.018

So, model M5 has the lowest BIC, and is therefore the preferred model.

30.1. EXERCISES 467

Problem 30.8. We wish to fit a model of the form

yi = g(xi) + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent error terms, and xi ∈ [0, 100] is a predictor variable. We will
assume that g(x) is a continuous linear spline with two knots at ξ = 25, 75. One way to do this is
to use the basis functions

b1(x) = x; b2(x) = (x− 25)I{x > 25}; b3(x) = (x− 75)I{x > 75},

then set g(x) = β0 +
∑3

j=1 βjbj(x). Suppose we then consider alternative basis functions hj(x),
j = 1, 2, 3 shown in the following graph:

x

h
j(x

)

0 25 50 75 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h1

h2

h3

Each hj(x) is a continuous piecewise linear spline with hj(0) = 0. The maximum of each hj(x)
on the range x ∈ [0, 100] is 1, and the discontinuites in slope occur at the knots ξ = 25, 75.
Note that in the plot the functions overlap at various places on the horizontal axis. We then set
g(x) = β∗0 +

∑3
j=1 β

∗
jhj(x).

(a) Write explicitly each basis function hj(x), j = 1, 2, 3 as a linear combination of the functions
b1(x), b2(x), b3(x).

(b) Suppose we use multiple linear regression to estimate the coefficients βj using basis functions
b1, b2, b3. Suppose then that we use multiple linear regression to estimate the coefficients β∗j
using basis functions h1, h2, h3. Show that the fitted values will be identical.

SOLUTION:

(a) If we write

h(x) = α1b1(x) + α2b2(x) + α3b3(x)

then h(0) = 0, since bj(0) = 0 for j = 1, 2, 3. Clearly, h(x) is also a linear spline with knots
ξ = 25, 75. In addition, the slope of h(x) is α1 for x < 25, α1 + α2 for x ∈ (25, 75), and
α1 + α2 + α3 for x > 75.

468 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

Then note that the slope of h1(x) is 1/25 for x < 25, -1/50 for x ∈ (25, 75), and 0 for x > 75.
Therefore, if

h1(x) = α1b1(x) + α2b2(x) + α3b3(x)

then we must have α1 = 1/25, α2 = −1/50− α1 = −3/50, α3 = 0− α1 − α2 = 1/50.

Next, the slope of h2(x) is 0 for x < 25, 1/50 for x ∈ (25, 75), and -1/25 for x > 75.
Therefore, α1 = 0, α2 = 1/50, α3 = −1/25− α2 = −3/50.

Finally, h3(x) = (1/25) · b3(x). To summarize:

h1(x) = (1/25) · b1(x)− (3/50) · b2(x) + (1/50) · b3(x)

h2(x) = 0 · b1(x) + (1/50) · b2(x)− (3/50) · b3(x)

h3(x) = 0 · b1(x) + 0 · b2(x) + (1/25) · b3(x).

(b) The easiest approach is to note that the two sets of basis functions are related by a linear
transformation: h1

h2

h3

 =

 1/25 −3/50 1/50
0 1/50 −3/50
0 0 1/25

 b1
b2
b3

 .
From Part (a) we have shown that any function hj(x) is a linear combination of the basis
functions b1, b2, b3. Since the linear transformation is clearly invertible, any function bj(x) is
a linear combination of the basis functions h1, h2, h3. Therefore, each set of basis functions
span the same function space. This in turn implies that the least squares estimate of g(x)
will be the same using either set of basis functions.

Problem 30.9. We wish to fit the model

yi = g(xi) + εi, i = 1, . . . , n, (30.3)

where εi ∼ N(0, σ2) are independent error terms, and xi is a predictor variable. The function g(x)
has the following properties:

(i) There are two knots ξ1 < ξ2.
(ii) g(x) is continuous at the knots.

(iii) g(x) possesses a continuous first derivative at the knots.
(iv) g(x) is a first order polynomial g(x) = a0 + b0x for x < ξ1.
(v) g(x) is a second order polynomial g(x) = a1 + b1x+ c1x

2 for x ∈ (ξ1, ξ2).
(vi) g(x) is a first order polynomial g(x) = a2 + b2x for x > ξ2.

(a) How many linear constraints are imposed on the parameters (a0, b0, a1, b1, c1, a2, b2) by prop-
erties (i)-(vi)? Write these explicitly.

(b) Assume the knots ξ1, ξ2 are known, but the parameters (a0, b0, a1, b1, c1, a2, b2) are to be
estimated. How many degrees of freedom does this estimation problem possess (that is, how
many free parameters are required to completely define g(x))?

30.1. EXERCISES 469

SOLUTION:

(a) Continuity of g(x) and continuity of the first derivative each represent a single linear constraint
at each knot, so there are 4 linear constraints. These are

a0 + b0η1 = a1 + b1η1 + c1η
2
1

a1 + b1η2 + c1η
2
2 = a2 + b2η2

for continuity, and

b0 = b1 + 2c1η1

b1 + 2c1η2 = b2,

for continuity of the first derivative.
(b) The three polynomials together have 7 coefficients. With 4 constraints, this leaves 7 - 4 = 3

degrees of freedom.

Problem 30.10. We wish to fit a model of the form

yi = g(xi) + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent error terms, and xi is a predictor variable in the range [1, 10].
We consider the following six models

M1 g(x) = β1x, where β1 is to be estimated.

M2 g(x) = β0 + β1x, where β0, β1 are to be estimated.

M3 g(x) = β1
√
x, where β1 is to be estimated.

M4 g(x) = β0 + β1
√
x, where β0, β1 are to be estimated.

M5 g(x) is a continuous piecewise linear spline with 1 knot at ξ = 4.

M6 g(x) is a cubic spline with 2 knots at ξ = 3, 6.

The relevant SSE values are given in the following table. The sample size is n = 91. Which model
is preferred based on the AIC score and on the BIC score (use form n log(SSE/n) + C for each)?
Does this model minimize SSE among those considered?

SOLUTION:
The equations are

AIC = n log(SSE/n) + 2k,

BIC = n log(SSE/n) + log(n)k,

where k is the number of parameters. Other than σ2, the number of parameters is

470 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

Model SSE

M1 74.007
M2 3.441
M3 9.258
M4 2.811
M5 2.935
M6 2.744

M1 β1, k = 1.

M2 β0, β1, k = 2.

M3 β1, k = 1.

M4 β0, β1, k = 2.

M4 2 +Nknots, where Nknots = 1 is the number of knots, so k = 3.

M5 4 +Nknots, where Nknots = 2 is the number of knots, so k = 6.

The number of parameters does not include σ2, but if this was included the model selection proce-
dure would be unchanged, since we would simply add 1 to each k.

We can construct table:

Without σ2 With σ2

Model SSE k AIC BIC k AIC BIC

M1 74.007 1 -16.809 -14.299 2 -14.809 -9.788
M2 3.441 2 -294.036 -289.014 3 -292.036 -284.503
M3 9.258 1 -205.973 -203.463 2 -203.973 -198.952
M4 2.811 2 -312.430 -307.408 3 -310.430 -302.897
M5 2.935 3 -306.497 -298.964 4 -304.497 -294.453
M6 2.744 6 -306.622 -291.557 7 -304.622 -287.046

So, model M4 has the lowest AIC and BIC (M4 happens to be the model used to simulate the
data).

Problem 30.11. We wish to fit a model of the form

yi = g(xi) + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) are independent error terms, and xi is a predictor variable. We consider the
following five models

M1 g(x) = β0 + β1x, where β0, β1 are to be estimated.

30.1. EXERCISES 471

M2 g(x) = β1/
√
x, where β1 is to be estimated.

M3 g(x) = β0 + β1/
√
x, where β0, β1 are to be estimated.

M4 g(x) is a continuous piecewise linear spline with 2 knots at ξ = 3, 8.

M5 g(x) is a cubic spline with 1 knot at ξ = 5.

The relevant SSE values are given in the following table. The sample size is n = 91. Which model
is preferred based on the AIC score (use form AIC = n log(SSE/n) + C).

Model SSE

M1 3.171
M2 2.814
M3 2.812
M4 2.801
M5 2.780

SOLUTION:
The formula is

AIC = n log(SSE/n) + 2k,

where k is the number of parameters. Other than σ2, the number of parameters is

M1 β0, β1, k = 2.

M2 β1, k = 1.

M3 β0, β1, k = 2.

M4 2 +Nknots, where Nknots = 2 is the number of knots, so k = 4.

M5 4 +Nknots, where Nknots = 1 is the number of knots, so k = 5.

We can construct table:

Model SSE k AIC k + 1 AIC (with σ2)

1 M1 3.171 2 -301.481 3 -299.481
2 M2 2.814 1 -314.339 2 -312.339
3 M3 2.812 2 -312.400 3 -310.400
4 M4 2.801 4 -308.749 5 -306.749
5 M5 2.780 5 -307.452 6 -305.452

So, model M2 has the lowest AIC (including σ2 in the parameter count necessarily yields the same
conclusion).

472 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

Problem 30.12. Data for a linear predictive model consists of responses Y , and five feature
variables X1, . . . , X5. There are n = 100 observations. Each feature is standardized to a mean
of 0 and a standard deviation of 1. The principal components PC1, . . . , PC5 are calculated. The
coefficients (loadings) are given below:

PC1 PC2 PC3 PC4 PC5

X1 0.4846410 0.02535008 -0.64416209 0.4756905738 -0.35107564

X2 0.4967931 0.04064938 -0.05731951 -0.8099920823 -0.30359769

X3 0.4659406 0.24895000 0.74092022 0.3366118674 -0.24218360

X4 0.5001321 0.13595192 -0.08208782 0.0003119937 0.85126166

X5 0.2260240 -0.95772959 0.16145740 0.0657545280 0.03570757

The following linear regression models (along with error sum of squares SSE) are fit:

Model SSE

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε 2287.042
Y = β0 + β1PC1 + ε 10264.414
Y = β0 + β1PC1 + β2PC2 + ε 2150.351
Y = β0 + β1PC1 + β2PC2 + β3PC3 + ε 2150.351

(a) Which model is preferred based on the BIC score (use form BIC = n log(SSE/n) + C)?
(b) Suppose the predictor is to take the form of a linear combination of the five feature variables,

plus an intercept term. One of the three strategies is to be used:

(i) Use whichever linear combination minimizes the SSE.
(ii) Use only the unweighted mean X̄ = (X1 + . . . + X5)/5 of the feature variables, that is

Y ≈ β0 + β1X̄.
(iii) Use the predictor of part (ii) but add one more feature, say, m ∈ {1, 2, 3, 4, 5}, that is

Y ≈ β0 + β1X̄ + β2Xm.

Based on your BIC analysis, and the principal component loadings, which of the three strate-
gies seems preferable?

SOLUTION:

(a) The formula is
BIC = n log(SSE/n) + log(n)k,

where k is the number of parameters. We can construct table:

Model SSE k BIC

1 Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε 2287.042 6 340.615
2 Y = β0 + β1PC1 + ε 10264.414 2 472.337
3 Y = β0 + β1PC1 + β2PC2 + ε 2150.351 3 320.637
4 Y = β0 + β1PC1 + β2PC2 + β3PC3 + ε 2150.351 4 325.242

Model 3 Y = β0 + β1PC1 + β2PC2 + ε is selected by the BIC score.

30.1. EXERCISES 473

(b) For PC1 the loadings are nearly equal for X1, X2, X3, X4. On the other hand, PC2 is domi-
nated by X5. The best BIC model is based on PC1, PC2, and most closely resembles strategy
(iii) with Xm = X5.

Problem 30.13. We are given a multiple regression model, with sample size n = 17:

y = β0 + β1x1 + β2x2 + β3x1x2 + ε.

Suppose we are given the following error sums of squares SSE for the model, and all reduced
models:

MODEL SSE

M0 y = β0 + ε 1,152,144.09
M1 y = β0 + β1x1 + ε 19,874.28
M2 y = β0 + β2x2 + ε 14,783.91
M1+2 y = β0 + β1x1 + β2x2 + ε 12,762.61
M1×2 y = β0 + β1x1 + β2x2 + β3x1x2 + ε 12,291.50

Which model should be selected using the Bayesian information criterion (BIC)? Use the form
BIC = −2LL+ C, where LL is the log-likelihood function.

SOLUTION:
The BIC score is

BIC = −2LL+ log(n)d

where LL is the log-likleihood

LL = −n
2

log(SSE/n)

and d is the number of unknown parameters. If p is the number of model predictors (here, ranging
from 0 to 3) it would be acceptable to set d = p, p+ 1 or p+ 2, the largest number incorporating
parameters β0, σ

2. However, any choice will yield exactly the same rankings. Here, we’ll take d = p.
This gives

BIC = n log(SSE/n) + log(n)p.

Using

R2
adj = 1− SSE/(n− p− 1)

SSTO/(n− 1)

will also be accepted. Here, SSTO equals SSE for the null model M0. This gives calculations:

Model SSE p BIC R2
adj

1 M0 1,152,144.09 1 189.1067 0.0000
2 M1 19,874.28 2 122.9207 0.9816
3 M2 14,783.91 2 117.8906 0.9863
4 M1+2 12,762.61 3 118.2245 0.9873
5 M1×2 12,291.50 4 120.4183 0.9869

474 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

Model M2 is selected by the BIC score, while model M1+2 is selected by R2
adj .

Problem 30.14. We wish to fit the model

yi = g(xi) + εi, i = 1, . . . , n, (30.4)

where εi ∼ N(0, σ2) are independent error terms, and xi is a predictor variable. We set

g(x) =

{
a1x

3 + b1x
2 + c1x+ d1 ; x < ξ

a2x
3 + b2x

2 + c2x+ d2 ; x ≥ ξ , (30.5)

where ξ is fixed, and the polynomial coefficients aj , bj , cj , dj , j = 1, 2 are to be estimated. However,
the coefficients must be constrained so that g(x) is continuous, and possesses continuous first and
second derivatives, at ξ.

(a) Give precisely the linear constraints on the coefficients required for the given continuity con-
ditions. How can these constraints be used to determine the model degrees of freedom?

(b) Show that the model

yi = β0 + β1xi + β2x
2
i + β3x

3
i + β4(xi − ξ)3

+ + εi, i = 1, . . . , n, (30.6)

is equivalent to (30.4)-(30.5). HINT: First show this is true for ξ = 0.

SOLUTION:

(a) Equate the polynomial sections, and their first and second derivatives, at x = ξ:

a1ξ
3 + b1ξ

2 + c1ξ + d1 = a2ξ
3 + b2ξ

2 + c2ξ + d2,

3a1ξ
2 + 2b1ξ + c1 = 3a2ξ

2 + 2b2ξ + c2,

6a1ξ + 2b1 = 6a2ξ + 2b2.

There are 8 parameters, with 3 constraints. This leaves 8 - 3 = 5 model degrees of freedom.
(b) First, set ξ = 0. The constraints then become equivalent to:

d1 = d2,

c1 = c2,

b1 = b2.

Therefore, the coefficients associated with the 1, x and x2 are the same on both sides of the
knot, so we get the equivalent model

yi = β0 + β1xi + β2x
2
i + β3x

3
i + β4(xi)

3
+ + εi, i = 1, . . . , n.

Then consider the transformation ui = xi+ξ. Substituting xi = ui−ξ gives the more general
model.

30.2. DATA ANALYSIS 475

30.2 Data Analysis

Problem 30.15. For this problem use data set Cars93 from the MASS package. There is data on 93
makes of automobile, including Manufacturer, Model, Type, Origin, and miscellaneous technical
data (Wheelbase, RPM, etc). The purpose of this analysis is to show how hierarchical clustering
may be useful in exploratory analysis.

(a) Select the features for this analysis using the following column indices:

xf = Cars93[,c(5,7,8,12,13,14,15,17,19,20,21,22,25)]

Standardize each column to zero mean and unit variance. Then, create a class vector gr from
variable Man.trans.avail. This identifies whether or not manual transmission is available.

(b) Using the function hclust plot dendograms for hierarchical clusterings using agglomeration
methods single, complete and average. Label the observations by gr. Do the observations
appear to cluster by class gr in any of the dendograms?

(c) There are a number of quantities which may be used to determine whether or not a clustering
conforms well to a known class variable. Suppose we create a single clustering of size c.size

(using cutree(hfit,k=c.size). Suppose gr contains exactly two classes. Let αk be the
probability that two observations, one randomly chosen from each class, are in the same
cluster, given k clusters. This can be easily estimated by cross-tabulating class and cluster
frequencies. Smaller values of αk suggest that the cluster conforms to the class.

(i) Show that αk+1 ≤ αk for k ≥ 1.
(ii) Show that αk approaches 0 as k approaches sample size n.

(d) For each of the hierarchical clusterings, plot αk for k = 1, . . . , 93 (plot all three on the same
graph). Does one agglomeration method have smaller αk for most cluster sizes k?

(e) One way to assess whether or not αk is significantly small is to use a permutation procedure.
Suppose the class vector is randomly permuted. This should eliminate any association be-
tween class and cluster. To see this, using the agglomeragtion method selected in part (d),
plot again αk for k = 1, . . . , 25. Then, create a new class vector gr.perm by randomly per-
muting the original class vector gr (you can use function sample()). Create a new sequence
α′k, k = 1, . . . , 25, using the same procedure, except that gr is replaced by gr.perm. Do the
permutation 10 times, superimposing all αk and α′k sequences on the same plot. Make sure
the sequence types are easily distiguishable (say, use black for αk and gray for each α′k). Does
the plot suggest that there is a statistically significant association between cluster and class?

(f) Finally, calculated a LASSO fit using gr as response and the feature matrix xf (use the
binomial model). Examine the coefficients for the fit$lambda.min solution. Do the selected
variables seem related to class? In other words, what type of cars tend to have manual
transmission?

476 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s N
o

Ye
s

Ye
s N

o
N

o
N

o
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s Ye
s

Ye
s

Ye
s

Ye
s

Ye
s N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

N
o Ye

s
Ye

s
Ye

s
Ye

s
Ye

s Ye
s

N
o

Ye
s

N
o

N
o N
o

N
o

N
o

N
o

N
o Ye
s

N
o

N
o

N
o

N
o

0
1

2
3

Cluster Dendrogram

hclust (*, "single")
dist(xf)

H
ei

gh
t

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s N
o

N
o

N
o N

o
N

o
N

o
N

o Ye
s

N
o

N
o Ye

s
Ye

s N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s N

o
Ye

s
Ye

s
N

o
N

o N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

Ye
s

Ye
s N

o
Ye

s
N

o
N

o
N

o Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
N

o
N

o N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

0
5

10

Cluster Dendrogram

hclust (*, "complete")
dist(xf)

H
ei

gh
t

Ye
s

Ye
s Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s Ye

s
Ye

s
Ye

s
Ye

s Ye
s

Ye
s

Ye
s

Ye
s Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

N
o N

o
N

o
N

o
N

o
Ye

s
N

o
N

o
N

o
N

o
N

o
N

o
N

o Ye
s

Ye
s

N
o

N
o N
o

Ye
s N

o
N

o
N

o
N

o
N

o
N

o
Ye

s
Ye

s Ye
s

N
o

N
o

N
o

N
o

N
o

N
o N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s Ye
s

Ye
s

0
2

4
6

Cluster Dendrogram

hclust (*, "average")
dist(xf)

H
ei

gh
t

Figure 30.2: Dendograms for Problem 30.15 (b).

SOLUTION:

(a) Use code:

30.2. DATA ANALYSIS 477

library(MASS)

xf = Cars93[,c(5,7,8,12,13,14,15,17,19,20,21,22,25)]

xf = apply(xf,2,function(x) {(x - mean(x))/sd(x)})

gr = Cars93$Man.trans.avail

gri = as.integer(gr)

(b) Use code:

par(mfrow=c(3,1))

hfit1 = hclust(dist(xf),method=’single’)

plot(hfit1,labels=gr)

hfit2 = hclust(dist(xf),method=’complete’)

plot(hfit2,labels=gr)

hfit3 = hclust(dist(xf),method=’average’)

plot(hfit3,labels=gr)

Clustering by class is evident in all dendograms. See Figure 30.2.
(c) Suppose pij is the probability that an observation of class i is in cluster j. Then

αk =

k∑
s=1

p1sp2s.

Let n1, n2 be the number of observations of each class. Let nij be the number of observations
of class i in cluster j. Then substitute estimate pij ≈ nij/ni.

(i) A new cluster is created by splitting one previous cluster. Suppose (without loss of
generality) that cluster k is the one split. Then probabilities p1k, p2k are replaced by
probabilities p′1,k, p

′
1,k+1 and p′2,k, p

′
2,k+1. Then

αk+1 =
k−1∑
s=1

p1sp2s + p′1kp
′
2k + p′1,k+1p

′
2,k+1.

However, we must also have

p1k = p′1,k + p′1,k+1

p2k = p′2,k + p′2,k+1.

Then

αk − αk+1 = p1kp2k − p′1kp′2k − p′1,k+1p
′
2,k+1

= (p′1,k + p′1,k+1)(p′2,k + p′2,k+1)− p′1kp′2k − p′1,k+1p
′
2,k+1

= p′1,kp
′
2,k+1 + p′1,k+1p

′
2,k

≥ 0,

which completes the proof.
(ii) Eventually, for k = n, all clusters contain only one observation. This means for any

cluster j either n1j = 0 or n2j = 0. Using the above method, this forces αn = 0.

478 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

(d) Use code:

par(mfrow=c(1,1))

l2 = NULL

for (i in 1:25) {

mm1 = table(gr,cutree(hfit1,k=i))

pp1 = sum(mm1[1,]*mm1[2,])/prod(table(gr))

mm2 = table(gr,cutree(hfit2,k=i))

pp2 = sum(mm2[1,]*mm2[2,])/prod(table(gr))

mm3 = table(gr,cutree(hfit3,k=i))

pp3 = sum(mm3[1,]*mm3[2,])/prod(table(gr))

l2 = rbind(l2, c(pp1,pp2,pp3))

}

matplot(l2,type=’l’,xlab=’cluster size k’, ylab=’alpha[k]’,lwd=2)

legend(’topright’,legend=c(’single’,’complete’,’average’),pch=NA,lty=1:3,col=1:3)

Method 2 (complete agglomeration) possesses smallest αk over the largest range of k. See
Figure 30.3.

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cluster size k

al
ph

a[
k]

single
complete
average

Figure 30.3: Plots of αk for Problem 30.15 (d).

(e) The following code can be used:

original class vector

l2 = NULL

l2v = NULL

30.2. DATA ANALYSIS 479

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cluster size k

al
ph

a[
k]

Figure 30.4: Plots of αk (black), α′k (gray) for Problem 30.15 (e).

for (i in 1:25) {

mm2 = table(gr,cutree(hfit2,k=i))

l2v = c(l2v, sum(mm2[1,]*mm2[2,])/prod(table(gr)))

}

permuted class vector

nperm = 10

l2 = l2v

for (iii in 1:nperm) {

grp = sample(gr)

l2v = NULL

for (i in 1:25) {

mm2 = table(grp,cutree(hfit2,k=i))

l2v = c(l2v, sum(mm2[1,]*mm2[2,])/prod(table(grp)))

}

l2 = cbind(l2,l2v)

}

matplot(l2, col=c(’black’,rep(’gray’,nperm)),lty=1,pch=NULL,type=’l’)

The values α′k from the permuted class vector fall mostly above the original αk values. This
may be taken as statistical evidence of an association between class and cluster. See Figure
30.4.

(f)

480 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

The following code can be used:

> y = 1*(gr==’Yes’)

> fit = cv.glmnet(xf,y, family=’binomial’, alpha=1)

> coef = coef(fit, s = fit$lambda.min)

> coef

14 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 1.3151061

Price .

MPG.city .

MPG.highway .

EngineSize .

Horsepower .

RPM .

Rev.per.mile 0.6072918

Fuel.tank.capacity .

Length -1.0850563

Wheelbase -0.7461718

Width .

Turn.circle -0.5325136

Weight .

>

There are three selected features Length, Wheelbase and Turn.circle which are all directly related
to car size. Also, the coefficients are negative. This means smaller cars are more likely to offer
manual transmission.

Problem 30.16. Consider the crabs data set from library MASS, and in particular the three
variables:

crab$sp = species - ”B” or ”O” for blue or orange

crab$RW = rear width (mm)

crab$BD = body depth (mm).

We are interested in determining the functional relationship between response Y = RW and pre-
dictor X = BD.

(a) Create a data set with columns RW , BD using only species ‘B’.
(b) Fit a simple linear regression model

Y = β0 + β1X + ε. (30.7)

Examine a residual vs fit plot (you can use the generic function plot with option which =

1). Does the linear model seem appropriate? What is the predicted value of Y for X = 0?
Does this make sense?

30.2. DATA ANALYSIS 481

(c) Suppose we force the estimated function to pass through the origin, by fitting model

Y = β1X + ε. (30.8)

Examine a residual vs fit plot. Does this model seem appropriate?
(d) Suppose we consider model

Y = αXτ + ε. (30.9)

Use the estimated coefficients from model

log(Y) = β0 + β1 log(X) + ε′ (30.10)

to estimate α and τ , where ε′ is a suitably transformed error term. Perform a formal hypoth-
esis test for which the null hypothesis is linearity, that is, that model (30.8) is correct, against
the alternative model (30.9).

(e) Plot the original untransformed data, and superimpose the fitted models (30.7), (30.8), (30.9).
In addition, fit a smoothing spline with 4 degrees of freedom, and superimpose this fit as well.
Comment on the ability of each model to accurately predict Y at the model extremes, around
X < 8 and X > 18. Which model would be most useful for predicting W outside the range
X ∈ [6, 20]?

SOLUTION:

(a) Use index subsetting:

x = crabs[crabs$sp=="B",]$BD

y = crabs[crabs$sp=="B",]$RW

(b) Use the following commands. The residual plot (Figure 30.5) suggests significant curvature,
so that modeling a linear relationship between y and x is not appropriate. From the output
below, the estimated coefficients are β̂0 = 3.47492 and β̂1 = 0.67179. So the fitted value at
X = 0 is β̂0 + β̂1X = β̂0 = 3.47492, with a standard error of Sβ̂0 = 0.41501, so that the
intercept is significantly greater than 0, which is not what we would expect.

482 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

8 10 12 14 16

−2
−1

0
1

2

Fitted values

Re
sid

ua
ls

lm(y ~ x)

Residuals vs Fitted

95
97 98

Figure 30.5: Plot for Problem 30.16 (b).

> fit1 = lm(y~x)

> summary(fit1)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.93271 -0.71994 -0.09354 0.72853 2.38726

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.47492 0.41501 8.373 4.03e-13 ***

x 0.67179 0.03205 20.959 < 2e-16 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9784 on 98 degrees of freedom

Multiple R-squared: 0.8176,Adjusted R-squared: 0.8157

F-statistic: 439.3 on 1 and 98 DF, p-value: < 2.2e-16

> plot(fit1,which=1)

(c) The intercept is removed from the model by including -1 in the formula. We have estimate
β̂1 = 0.932597. Even more than for model (30.7), the model defined in (30.8) is clearly
inappropriate, since functional structural remains in the residual plot (Figure 30.6).

30.2. DATA ANALYSIS 483

6 8 10 12 14 16 18

−3
−2

−1
0

1
2

Fitted values

Re
sid

ua
ls

lm(y ~ x − 1)

Residuals vs Fitted

4845
50

Figure 30.6: Plot for Problem 30.16 (c).

> fit2 = lm(y~x-1)

> summary(fit2)

Call:

lm(formula = y ~ x - 1)

Residuals:

Min 1Q Median 3Q Max

-3.1463 -0.7875 0.6106 1.0502 2.2369

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x 0.932597 0.009847 94.71 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.275 on 99 degrees of freedom

Multiple R-squared: 0.9891,Adjusted R-squared: 0.989

F-statistic: 8970 on 1 and 99 DF, p-value: < 2.2e-16

> plot(fit2,which=1)

> abline(h=0)

(d) The transformation can be directly incorporated into the lm() function as shown below. The
hypothesis of linearity is equivalent to Ho : τ = 1, where after the transformation β1 = τ .
Normally, we test against null hypothesis Ho : β1 = 0, but there is not reason we can’t test

484 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

against null hypothesis Ho : β1 = 1. To do so, we use t-statistic

T =
β̂1 − 1

Sβ̂1
=

0.73151− 1

0.03005
= −8.934775.

The sample size is n, so the degrees of freedom for the t-statistics is n− 2 = 98. P-value is

> 2*pt(-8.934775,df=98)

[1] 2.476081e-14

so we reject Ho : τ = 1, and linearity, at a significance level of α = 0.05 (and much lower
significance levels).

> fit3 = lm(log(y)~log(x))

> summary(fit3)

Call:

lm(formula = log(y) ~ log(x))

Residuals:

Min 1Q Median 3Q Max

-0.151254 -0.057241 -0.000531 0.054963 0.166132

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.62990 0.07554 8.339 4.77e-13 ***

log(x) 0.73151 0.03005 24.346 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07664 on 98 degrees of freedom

Multiple R-squared: 0.8581,Adjusted R-squared: 0.8567

F-statistic: 592.7 on 1 and 98 DF, p-value: < 2.2e-16

>

(e) The following code draws the required plot (Figure 30.7). Model (30.7) overestimates E[Y]
for X < 8, but seems to work well for X > 18. Model (30.8) underestimates E[Y] for X < 8
and overestimates E[Y] for X > 18. The remaining models work well at both extremes.
The spline, however, becomes more variable at high values X > 18. Because model (30.9)
has a single analytical form, it is suitable for making predictions outside the observed range,
especially since it is contrained to pass through the origin. The spline is defined piecewise,
so it would be difficult to extrapolate outside the observed range.

30.2. DATA ANALYSIS 485

6 8 10 12 14 16 18 20

6
8

10
12

14
16

18
20 β0 + β1X

β1X

αX τ

smooth spline DF = 64

Figure 30.7: Plot for Problem 30.16 (e).

par(mfrow=c(1,1))

xgrid = seq(min(x),max(x),by=0.1)

plot(x,y,xlim=c(6,20),ylim=c(6,20),pch=19)

model (3)

lines(xgrid,predict(fit1,newdata=list(x=xgrid)),col=’green’)

model (4)

lines(xgrid,predict(fit2,newdata=list(x=xgrid)),col=’orange’)

model (5)

lines(xgrid,exp(predict(fit3,newdata=list(x=xgrid))),col=’blue’)

smooth spline

fit4 = smooth.spline(x,y,df=6)

lines(fit4,col=’red’)

ex1 = expression(paste(beta[0]," + ", beta[1], italic(X),sep=’’))

ex2 = expression(paste(beta[1], italic(X),sep=’’))

ex3 = expression(paste(alpha, italic(X)^tau ,sep=’’))

legend(’topleft’,legend=c(ex1,ex2,ex3,’smooth spline DF = 6’),

486 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

col=c(’green’,’orange’,’blue’,’red’),lty=1,cex=0.8)

Problem 30.17. This problem will make use of the biopsy data set from the MASS library. See
help(biopsy) for details.

(a) Prepare the data by first removing the ID column, then removing records with missing values
using the na.omit() function. The new data set should have n = 683 records. Column 10
is now the class variable, containing the tumor class (benign or malignant). Columns 1-9
now contain quantitative tumor features with which to discrimate between tumor types. In
this analysis, instead of normalizing the features to zero mean and unit variance, subject each
feature to a log transformation (use the natural logarithm).

(b) Calculate K-means cluster solutions based on the 9-log transformed features. Use K =
1, . . . , 25. For each K calculate R2 = 1− SSwithin/SStotal, then plot R2 against K. Between
which two values of K does the greatest increase in R2 occur? How does this relate to the
true number of clusters?

(c) Calculate the principal components of the 9 log transformed features using the prcomp()

function. Use centering but not scaling, that is, use options center=T and scale.=F. Create
a pairwise plot (using function pairs()) for the first 4 principal components, using separate
coloring for each class (the classes need not be labeled). Then create a scree plot. This can
be done using the command plot(pr.fit), where pr.fit is the principal components object
created by the prcomp() function. How do the various plots suggest that most of the dis-
criminating information regarding tumor type is contained by the first principal component?

(d) Finally, calculate a LASSO fit using response Yi = 1 if class is malignant and Yi = 0
otherwise (use the binomial model). Use cross-validition with function cv.glmnet() and
options family=’binomial’ and alpha=1. Do this using the original log-transformed features
as predictors, then using the 9 principal components calculated in Part (c) as predictors.
Examine the coefficients for the fit$lambda.1se solution for each set of predictors. Do these
conform to what you see in Part (c)? (Note that since cross-validation is random, repeated
fits will yield different coefficients. However, the overall conclusion should be the same).

SOLUTION:
The following code may be used for the analysis of Parts (a)-(c). Comments follow.

library(MASS)

library(glmnet)

(a)

biopsy2 = biopsy[,-1]

biopsy2 = na.omit(biopsy2)

xf = biopsy2[,1:9]

xf = apply(xf,2,function(x) {log(x)})

30.2. DATA ANALYSIS 487

(b)

set.seed(13579)

r2 = rep(NA, 10)

for (i in 1:20) {

fit = kmeans(xf,centers=i,nstart=100)

r2[i] = fit$betweenss/fit$totss

}

pdf(’A4fig4.pdf’)

plot(r2,ylim=c(0,1),xlab=’K’,ylab=’R-squared’,type=’b’,pch=20)

dev.off()

(c)

pr.fit = prcomp(xf,center=T,scale.=F)

pdf(’A4fig5.pdf’)

pairs(pr.fit$x[,1:4],col=1+(biopsy2$class==’malignant’),pch=3)

dev.off()

pdf(’A4fig6.pdf’)

plot(pr.fit)

dev.off()

(a) See code.
(b) The greatest increase in K clearly occurs between K = 1 and K = 2 (Figure 30.8). This is

what we would expect to see if the true number of clusters was K = 2.

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K

R
−s

qu
ar

ed

Figure 30.8: Plot for Problem 30.17 (b)

488 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

(c) In any plot including the first principal component (PC1) the two tumor classes clearly separate
with little overlap, with a boundary definable as a fixed value of PC1 (Figure 30.9). In addition,
the scree plot indicates that most variation is contained in the first principal component
(Figure 30.10). This indicates that most of the discriminating information regarding tumor
type is contained in the first principal component.

PC1

−1.0 0.0 1.0 2.0 −2 −1 0 1

−
4

−
2

0
1

2

−
1.

0
0.

0
1.

0
2.

0

PC2

PC3

−
2

−
1

0
1

−4 −2 0 1 2

−
2

−
1

0
1

−2 −1 0 1

PC4

Figure 30.9: Plot for Problem 30.17 (c) (pairwise principal component plots)

pr.fit

V
ar

ia
nc

es

0
1

2
3

4

Figure 30.10: Plot for Problem 30.17 (c) (scree plot)

(d) See the following code. When using the original log-transformed features, the coefficient
values range from 0.1048410 to 1.0555343. All features have been selected, in the sense that
no estimated coefficient is zero. On the other hand, when using principal components, only
the first is selected. This reinforces the conclusion of Part (c), that most of the discriminating
information is contained in the first principal component. (Note that since cross-validation
is random, repeated fits will yield different coeffients. However, the overall conclusion should

30.2. DATA ANALYSIS 489

be the same).

>

> ### (d)

>

> y = 1*(biopsy2$class==’malignant’)

> fit = cv.glmnet(xf,y, family=’binomial’, alpha=1)

> coef = coef(fit, s = fit$lambda.1se)

> coef

10 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) -5.1130697

V1 0.5533361

V2 0.7405122

V3 0.8847965

V4 0.1544626

V5 0.1048410

V6 1.0555343

V7 0.6348426

V8 0.2876825

V9 0.1596633

>

>

> y = 1*(biopsy2$class==’malignant’)

> fit = cv.glmnet(pr.fit$x,y, family=’binomial’, alpha=1)

> coef = coef(fit, s = fit$lambda.1se)

> coef

10 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) -1.342705

PC1 -1.767733

PC2 .

PC3 .

PC4 .

PC5 .

PC6 .

PC7 .

PC8 .

PC9 .

>

Problem 30.18. For this problem use data set biopsy from the MASS package. Biopsies of 699
breast tumors were examined and classified as benign or malignant. Nine attributes (features)

490 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

were scored on a scale of 1 to 10, higher scores signifying evidence that the tumour is malignant
(use help(biopsy) for details).

We consider how to consolidate the features into a single quantitative predictor for malignancy.
The simplest method is to sum the features to yield a single score S on a scale of 9 to 90, which the
use of a 10 point scale suggests. This would be equivalent to a linear model in which all coefficients
βi are equal, other than the intercept. On the other hand, it is always possible that a combination
of model selection and unequal coefficients will yield a strictly better predictor.

(a) Remove observations with missing values using the na.omit function. There should be n =
683 observations remaining. The 9 biopsy features can then be used to create 683× 9 feature
matrix X. Label the ith feature (column of X) Fi.

(b) Calculate the principal components of the 9 features. Set option center = TRUE and scale.

= FALSE. That is, we don’t rescale the original 10 point scale. The principal components are
given by

P = X̄A

where X̄ is the n×9 feature matrix after centering by column (ie. by subtracting the column
means), P is the n× 9 matrix of principal components, and A is the 9× 9 matrix of loadings.
So, for example, the first principal component is a linear combination of centered features,
with coefficients given by the first column of A. Label the ith centered feature (column of X̄)
F̄i. Then F̄i = Fi−mi, where mi is an n× 1 constant column vector, with all elements equal
to the mean of Fi.

(c) Create pairwise plots using all principal components. Use separate colors for the benign and
malignant classes. Create a scree plot. Comment on what you see.

(d) Examine the loadings matrix A.

(i) How does the 1st principal component resemble sum S?
(ii) What feature has the largest (in magnitude) loading for the 2nd principal component?

(iii) What feature has the largest (in magnitude) loading for the 3rd principal component?

(e) A principal components analysis can be insightful even if the principal components are not
explicitly used in an analysis. For example, let B be an 9× 9 matrix which has all diagonal
entries equal to 1, and all other entries equal to 0, except for column 9, in which all entries
equal 1/9. Create new n× 9 feature matrix W :

W = XB

Based on your answers to part (d), which columns of W correspond approximately to the
first 3 principal components?

(f) Using function cv.glmnet() create a LASSO fit using W as feature matrix and class as a
binary response. This means setting option family=’binomial’ and alpha=1 (why?). Other
options can use default settings. Give the coefficients for the model corresponding to the
smoothing parameter λ set to lambda.1se (what does this mean?). How is this solution
related, approximately, to the principal components?

(g) Create the same type of LASSO fit as for part (f), using the original feature matrix X (this
need not be centered). Which features have nonzero coefficients? Calculate the predicted
values for the fits using W and X as the feature matrix (these need not be transformed by
the logistic function). Create a scatter plot of the predicted values (each point represents the

30.2. DATA ANALYSIS 491

pair of predicted values for each observation). Superimpose the identity using abline(0,1).
Also, for each fit, use the response/predicted value pair to calculate the AUC statistic for the
ROC curve. How similar are the two predictive models?

(h) If two predictive models are similar, we might prefer the simpler or more interpretable model.
Consider the model of part (f), based on feature matrix W . We can set S̄ = S/9, the average
of the features on the original 10 point scale.

(i) Interpret the coefficients of the model of part (f). What role does S̄ play?
(ii) Identify all observations for which at least one feature Fi has score 10. How many of

each class are among these?
(iii) Create a list of 9 vectors, where the ith vector is the subset of all values S̄ for observations

with Fi = 10. Construct a single side-by-side boxplot using these vectors. Superimpose
horizontal lines at the 25th, 50th, 75th percentiles of S̄ separately for each class (clearly
indicate the classes). How does this plot explain the feature selection of the model of
part (f)?

SOLUTION:

(a) Use code

> library(MASS)

> library (glmnet)

> bio2 = na.omit(biopsy)

> gr = 1*(bio2$class==’malignant’)

> xdata = as.matrix(bio2[,2:10])

> dim(biopsy)

[1] 699 11

> dim(bio2)

[1] 683 11

(b) Use command

pc1 = prcomp(xdata, center = TRUE, scale. = F)

(c) Label the ith principal component PCi. Use the following commands. From Figure 30.11,
only PC1 appears able to separate the two classes. From the scree plot of Figure 30.12, the
variation of the PC1 is considerably larger than for the remaining principal components. This
suggests that PC1 is by far the most important.

pairs(pc1$x,col=1+gr)

plot(pc1)

(d) The matrix A is the rotation matrix, given by the command below.

> round(pc1$rotation,4)

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

V1 -0.2967 -0.0735 0.8520 -0.0471 0.3998 -0.0975 -0.0361 -0.0880 0.0064

492 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

V2 -0.4040 0.2299 0.0263 -0.2946 -0.3380 -0.0924 0.1750 0.1305 0.7253

V3 -0.3928 0.1647 0.0745 -0.2065 -0.3702 -0.0873 0.3469 0.2423 -0.6684

V4 -0.3312 -0.0982 -0.4739 -0.3942 0.6425 -0.1898 0.1838 -0.1277 -0.0425

V5 -0.2497 0.2002 -0.0317 -0.1888 -0.1951 0.4014 -0.2835 -0.7539 -0.1139

V6 -0.4426 -0.7806 -0.0934 0.2944 -0.1687 0.2530 0.0537 0.0184 0.0613

V7 -0.2921 0.0085 -0.1224 0.0412 -0.0926 -0.4631 -0.7960 0.1837 -0.0874

V8 -0.3545 0.4692 -0.1337 0.7539 0.1969 -0.0042 0.1578 -0.0580 0.0285

V9 -0.1246 0.1881 -0.0266 -0.1431 0.2496 0.7062 -0.2689 0.5425 -0.0126

(i) The loadings for PC1 range from -0.4426 to -0.1246. This gives

PC1 = −0.2967× F̄1 + . . .+−0.1246× F̄9

= −0.2967× F1 + . . .+−0.1246× F9 + C

where C is a n × 1 column vector of constant elements. The coefficients for PC1 are
all of the same sign, and vary much less than for the remaining principal components.
Then, very roughly, we have

PC1 ≈ aS + b

for two constants a, b.
(ii) For PC2 the largest coefficient in magnitude is -0.7806 for F̄6.

(iii) For PC3 the largest coefficient in magnitude is 0.8520 for F̄1.

(e) Two predictors can be regarded as equivalent if one can be obtained as a linear combination
of the other. The 9th column of W is S̄ = S/9, and so roughly corresponds to PC1. The
6th column is F6, and so roughly corresponds to PC2. The 1st column is F1, and so roughly
corresponds to PC3.

(f) The following code can be used.

> B = diag(9)

> B[,9]=1/9

> wdata = xdata %*% B

>

> set.seed(789)

> fit = cv.glmnet(wdata,gr, family=’binomial’, alpha=1)

> coefw = coef(fit, s = fit$lambda.1se)

> predw = predict(fit, s = fit$lambda.1se, newx=wdata)

> coefw

10 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) -6.0048115

V1 0.1071590

V2 .

V3 .

V4 .

V5 .

V6 0.1210325

30.2. DATA ANALYSIS 493

V7 .

V8 .

V9 1.3164962

>

Because the response is binary, we use what is essentially a logistic regression model. That is

P (Y = 1) = (1 + exp(−η))−1

where η is a linear combination of predictors with coefficients βi. This model required option
family=’binomial’.
A class of shrinkage methods for linear models is based on minimizing:

SSE + λ

p∑
j=1

|βj |d

for some tuning parameter λ, typically selected by cross-validation. For logistic regression, or
other linear models, SSE can be replaced by deviance, or other goodness-of-fit measure. Ridge
regression uses d = 2, and LASSO uses d = 1. The option alpha is esssentially a mixture
parameter, with alpha = 1 defining LASSO and alpha = 0 defining ridge regression. Values
between 0 and 1 give a linear combination of the respective penalty terms (see help(glmnet)).
The value lambda.1se gives the largest value of λ such that prediction error is within 1
standard error of the minimum.
Examing the coefficients, we can see that columns 1,6,9 of feature matrix W were selected. As
discussed, these correspond approximately to PC3, PC2, PC1 respectively, through F1, F6, S.

(g) The following subroutine can be used to calculate the AUC statistics (or use, for example,
library ROCR).

roc.area<-function(y,gr) {

y0 = y[gr==0]

y1 = y[gr==1]

count<-0

for (i in 1:length(y0)) {count = count+sum(y1 > y0[i]) + 0.5*sum(y1 == y0[i])}

ans = count/(length(y0)*length(y1))

return(ans)

}

The following code completes the calculations

> # calculate fit for feature matrix X

>

> fit = cv.glmnet(xdata,gr, family=’binomial’, alpha=1)

> predx = predict(fit, s = fit$lambda.1se, newx=xdata)

>

> # compare predicted values

>

> plot(predw,predx,xlab=’feature matrix = W’,ylab = ’feature matrix = X’)

494 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

> abline(0,1)

>

> # calculate AUC statistic

>

> apply(cbind(predw,predx),2,function(x) {roc.area(x,gr)})

1 1

0.9959808 0.9959384

>

From Figure 30.13 is can be seen that the predicted values of each model are highly correlated.
In addition, AUC = 0.9959808, 0.9959384 for feature matrices W , X respectively. Overall,
the two predictive models are very similar.

(h) (i) Other than the intercept term, the predictor is dominated by S̄, which is column 9 of
W . But there are smaller contributions from features F1 and F6 (recall that the range
of each column of W is [1,10]).

(ii) The following code may be used.

> max.score = apply(xdata,1,max)

> table(gr[max.score==10])

0 1

5 204

>

Of all observations with Fi = 10 for at least one feature Fi, 204/209 have malignant
tumors.

(iii) Figure 30.14 is created by the following code:

ex1 = expression(bar(italic(S)))

mx = NULL

for (i in 1:9) {mx = append(mx, list(wdata[,9][xdata[,i]==10 & gr==1]))}

boxplot(mx,ylim=c(1,10),names = paste(’F’,1:9,sep=’’),ylab=ex1)

abline(h=quantile(wdata[gr==1,9],c(0.25,0.5,0.75)),col=’grey’)

abline(h=quantile(wdata[gr==0,9],c(0.25,0.5,0.75)),col=’grey’,lty=2)

First note that Fi = 10 for any feature is strong evidence for malignant tumors. From
Figure 30.14, it can be seen that the values of S̄ for observations with F1 = 10 or
F6 = 10 tend to be smaller than for the other features, and are therefore less likely to
be classified as malignant based on S̄ alone. The predictor therefore includes a small
upward adjustment of malignancy risk based on F1 and F6.

30.2. DATA ANALYSIS 495

PC1

−5 5

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

● ●

●●●
● ●

●●

●

●
●

●●●

●
●●●

●
●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●
●
●●●

●

●

●

● ●
●●

●●
●

●
●

●●

●

●

●
●

●

●

●●●
●

●

●

●

●

●
●●

●●●
●
●●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●
●

●
●●●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●●
● ●●

●

●

●

●
●

●●●●

●

●

●●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●
● ●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●● ●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

● ●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●●

●●●
● ●

●●

●

●
●

●● ●

●
●● ●

●
●● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●●

●

●

●

● ●
●●

●●
●

●
●

●●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●
●●

● ●●
●

●●

●

●
●

● ●

●

● ●

●

●●

●

●

●

●

●
●

●
●●●

● ●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
● ●

●●●

●

●

●

●
●

●●● ●

●

●

●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●●●

●
●●●

●

●
●●

●

●

●

●

−10 0

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●●●
●●

●●

●

●
●

●●●

●
●●●
●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●
●
●●●

●

●

●

●●
●●

●●
●

●
●

●●

●

●

●
●

●

●

●●●
●

●

●

●

●

●
●●

● ●●
●
●●

●

●
●

● ●

●

●●

●

●●

●

●

●

●

●
●

●
●●●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●●
●●●

●

●

●

●
●

●●●●

●

●

●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●
●●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●● ●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
● ●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●●

●● ●
● ●

●●

●

●
●

●● ●

●
●●●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●
●

● ●●

●

●

●

● ●
●●

●●
●

●
●

●●

●

●

●
●

●

●

● ●●
●

●

●

●

●

●
●●

● ●●
●

●●

●

●
●

● ●

●

●●

●

●●

●

●

●

●

●
●

●
●●●

● ●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●●

●● ●

●

●

●

●
●

●●● ●

●

●

●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●
● ●●

●

●
●●

●

●

●

●

−4 2 8

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●
● ●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●●

●●● ●●
●●

●

●
●

●●●

●
● ●●

●
●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●●

●

●

●

●●
●●

● ●
●

●
●

●●

●

●

●
●

●

●

●●●
●

●

●

●

●

●
●●

●●●
●

●●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●
●

●
●●●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●●

●●
● ●●

●

●

●

●
●
●● ●
●

●

●

●●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●
● ●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
● ●●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●
● ●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●●

● ●●
●●

●●

●

●
●

●●●

●
●●●

●
●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●●

●

●

●

●●
●●

● ●
●

●
●

●●

●

●

●
●

●

●

● ●●
●

●

●

●

●

●
●●

●● ●
●
●●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●
●

●
●●●

● ●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●●

● ●●

●

●

●

●
●

●● ●
●

●

●

●●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●
●● ●

●

●
● ●

●

●

●

●

−6 0 4

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●●
●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

● ●

●●●
●●

●●

●

●
●

● ●●

●
●●●

●
●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●●●
●
●●●

●

●

●

●●
●●

●●
●

●
●

●●

●

●

●
●

●

●

●●●
●

●

●

●

●

●
●●

●●●
●

●●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●
●

●
●●●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●●
●●●

●

●

●

●
●
●●●
●

●

●

●●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●
● ●●

●

●
●●

●

●

●

●

−1
5

0

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●● ●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
● ●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●● ●
●●

●●

●

●
●

●● ●

●
●●●

●
● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●●●
●
●●●

●

●

●

●●
●●

●●
●

●
●

●●

●

●

●
●

●

●

●●●
●

●

●

●

●

●
●●

● ●●
●
●●

●

●
●

● ●

●

●●

●

●●

●

●

●

●

●
●

●
●●●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●●
●●
●●●

●

●

●

●
●
●●●●

●

●

●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●●●

●
●●●

●

●
●●
●

●

●

●

−5
5

●

●

●

●

●
●

●

●
●

● ●●
●

●
●

●

●●

●

●

●

●

●●

●

●● ●
●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●●
●●

●

●

●

●

●

●●●●● ●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●● ●●● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

● ●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●
●

●●●
● ●

●●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●●
●●

●

●
●●

●
●

●
●

● ●●●
●

●

●

●

●

●●

●

●

● ●

●
●

●

● ●

●

●●●

●●

●
●

●

●

●
●● ●

●
● ●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●●

●
● ●●

●

●

●

●● ●

●

●

●

●●
●●● ●●

●
●●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●
●● ●

●●●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●●●● ●●●
●

●

●

●

● ●●●●●

●

●
●●●

●

●●

●

●

●●●●●
●

●

●
●●●

●
●● ●●

●

●
●

●
●
●● ●●

●

●●
●

●

●

●

●
●

●●●●
●●

●

●
●

●

●

●

●

●
●●

●

●●
●●●●

●

● ●
●

●● ●
●

●

●

●

●

●

●

●●
● ●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●
●

● ●●●●● ●
●

●

●

●

●

●●
●

●
●

●

●
●

●

● ●●●
●● ●●●
●
●

●

●

●

●●
●●●●

●

●

●●●
●●

●
●●

●

●

●

●

● ●
●

●● ●
●

●●

●

●

● ●●●●

●

●

●

●

●

●●

●
●

●

●

● PC2 ●

●

●

●

●
●

●

●
●

●● ● ●

●
●

●

●●

●

●

●

●

●●

●

● ●●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
● ●

●

●

●

●

●

●●● ● ●● ●● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ●●● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●● ●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●
●

● ● ●
●●

● ●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●●

●

●

●
●

●

●

●
●

●

● ●
● ●

●

●

●

●

●

● ●
●●

●

●
●●

●
●

●
●

●●●●
●

●

●

●

●

●●

●

●

●●

●
●

●

●●

●

●● ●

●●

●
●

●

●

●
● ●●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●●

● ●

●

● ●

●
● ●●

●

●

●

●● ●

●

●

●

● ●
●●

●●●
●

●●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●

● ● ●
● ●● ●● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●● ●●●●●
●

●

●

●●●
●●●

●

●
●● ●

●

● ●

●

●

●● ●● ●
●

●

●
● ●●

●
●●● ●

●

●
●

●
●

●● ● ●

●

●●
●

●

●

●

●
●

● ●●●
● ●

●

●
●

●

●

●

●

●
●●

●

●●
●●● ●

●

● ●
●

●● ●
●

●

●

●

●

●

●

●● ●●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●● ● ●● ● ●
●

●

●

●

●

● ●
●

●
●

●

●
●

●

● ●●●
●●● ● ●

●
●

●

●

●

● ●
●●● ●

●

●

●● ●
●●

●
● ●

●

●

●

●

●●
●

● ●●
●

● ●

●

●

●●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
● ●● ●

●
●

●

●●

●

●

●

●

●●

●

●●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●●
●●

●

●

●

●

●

●● ●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●● ●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●●●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●
●●●

●●
●●

●

●

●
●
●

●

●

●●
●

●

● ●

●

●

●

●●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●
●●

●

●
●●

●
●
●

●
●●●●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●●

●

●●●

●●

●
●

●

●

●
●● ●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●
● ●●

●

●

●

●● ●

●

●

●

●●
●●●● ●

●
●●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●
●● ●

●●●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●

●

●

●

●●
●
●●●

●

●
●●●

●

●●

●

●

●●●●●
●

●

●
●●●

●
●●●●

●

●
●

●
●

● ●●●

●

●●
●

●

●

●

●
●

●●●●
●●

●

●
●

●

●

●

●

●
●●

●

●●
●●●●

●

●●
●

● ●●
●

●

●

●

●

●

●

●●
●●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●●●●
●

●

●

●

●

●●
●

●
●

●

●
●

●

● ●●●
●●●●●

●
●

●

●

●

● ●
●●●●

●

●

●●●
●●

●
●●
●

●

●

●

● ●
●

●● ●
●
●●

●

●

●●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●● ●

●
●

●

●●

●

●

●

●

●●

●

● ●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●●● ●●●●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●●●
●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●
●

● ●●
● ●

● ●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●●

●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●
●●

●

●
●●

●
●

●
●

●●●●
●

●

●

●

●

●●

●

●

●●

●
●

●

●●

●

●● ●

●●

●
●

●

●

●
● ●●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

●●

●
●●●

●

●

●

● ●●

●

●

●

● ●
●●

●●●
●

● ●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●

● ●●
●●●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●● ●● ●●●
●

●

●

●●●
●●●

●

●
●● ●

●

● ●

●

●

● ●●● ●
●

●

●
● ●●

●
●●● ●

●

●
●
●

●
●●●●

●

●●
●

●

●

●

●
●

● ●●●
● ●

●

●
●

●

●

●

●

●
●●

●

● ●
●●● ●

●

● ●
●

● ● ●
●

●

●

●

●

●

●

●●●●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●●● ●
●

●

●

●

●

● ●
●

●
●

●

●
●

●

● ● ●●
●●●●●

●
●

●

●

●

● ●
●●● ●

●

●

●● ●
●●

●
● ●

●

●

●

●

●●
●

●●●
●

●●

●

●

●●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●●

●
●

●

●●

●

●

●

●

●●

●

●●●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

● ●● ●● ●●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●● ●● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

● ●●● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●
●
●●●

●●
●●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●●

●

●

●
●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●●
● ●

●

●
●●

●
●

●
●

● ●●●
●

●

●

●

●

●●

●

●

● ●

●
●

●

●●

●

●● ●

● ●

●
●

●

●

●
●● ●

●
●●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●●

●
●●●

●

●

●

●●●

●

●

●

●●
●●●●●

●
●●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●

●●●
●●●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●●●● ●●● ●
●

●

●

●●●● ●●

●

●
●●●

●

●●

●

●

●●●●●
●

●

●
● ●●
●
●● ●●

●

●
●

●
●
●● ●●

●

●●
●

●

●

●

●
●
●●●●

●●
●

●
●

●

●

●

●

●
●●

●

● ●
●●●●

●

● ●
●

●● ●
●

●

●

●

●

●

●

●●
● ●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●
●●●●●● ●

●
●

●

●

●

●●
●
●

●

●

●
●

●

● ●●●
●● ●●●

●
●

●

●

●

●●●● ●●

●

●

●●●
●●

●
●●●

●

●

●

●●
●

●●●
●

●●

●

●

● ●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●●

●
●

●

●●

●

●

●

●

●●

●

●●●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

● ●● ●● ●●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●● ● ●● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

● ●●● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●
●

●●●
● ●

●●

●

●

●
●
●

●

●

●●
●

●

●●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●●

●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

● ●
● ●

●

●
●●

●
●

●
●

● ●●●
●

●

●

●

●

●●

●

●

●●

●
●

●

● ●

●

●● ●

● ●

●
●
●

●

●
● ●●
●
●●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●●

●
● ● ●

●

●

●

● ●●

●

●

●

●●
●●● ●●

●
● ●

●

●

●
●

●

● ●
●

●

●

●
●

●

●
●

●
●

● ●●
●●● ●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●●●● ●●● ●
●

●

●

●●
●

● ●●

●

●
●● ●

●

●●

●

●

● ●●● ●
●

●

●
● ●●

●
● ● ●●

●

●
●

●
●

● ●●●

●

●●
●

●

●

●

●
●

●●●●
● ●
●

●
●

●

●

●

●

●
●●

●

● ●
●●● ●

●

●●
●

●●●
●

●

●

●

●

●

●

● ●●●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●●● ●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●● ●●
●● ●●●

●
●

●

●

●

●●
●● ●●

●

●

●●●
●●

●
●●

●

●

●

●

●●
●

● ●●
●
●●

●

●

● ●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●● ●

●
●

●

●●

●

●

●

●

●●

●

●●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

● ●
●●

●

●

●

●

●

●● ●● ●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

● ●● ●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●
●

●●●
●●
●●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●●

●

●

●
●

●

●

●
●

●

●●
● ●

●

●

●

●

●

● ●
●●

●

●
● ●

●
●

●
●

●●● ●
●

●

●

●

●

●●

●

●

●●

●
●

●

● ●

●

●●●

● ●

●
●

●

●

●
●●●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●●

● ●

●

●●

●
● ●●

●

●

●

●●●

●

●

●

●●
●●● ●●

●
●●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●

●● ●
●●●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●
●

●

●

●●●●● ●

●

●
●●●

●

●●

●

●

●●●●●
●

●

●
●●●

●
●●●●

●

●
●
●

●
● ●●●

●

●●
●

●

●

●

●
●

●●●●
●●

●

●
●

●

●

●

●

●
●●

●

●●
●●●●

●

●●
●

●●●
●

●

●

●

●

●

●

●●●●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●●●●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●●●●
●●●●●

●
●

●

●

●

●●
●●●●

●

●

●●●
●●

●
● ●
●

●

●

●

●●
●

●●●
●

●●

●

●

●●●●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●●
●

●
●

●

●●

●

●

●

●

●●

●

●●●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
● ●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●●●●● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●●●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●●●
●●
●●

●

●

●
●
●

●

●

●●
●

●

●●

●

●

●

●●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●

●

● ●
●●

●

●
●●

●
●

●
●

● ●●●
●

●

●

●

●

●●

●

●

●●

●
●

●

●●

●

●●●

●●

●
●
●

●

●
●●●

●
● ●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●●

●
● ●●

●

●

●

●● ●

●

●

●

●●
●●●●●
●
●●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●

●●●
●●●● ● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●

●
●

●

●

●●
●
●●●

●

●
●●●

●

●●

●

●

●●●●●
●

●

●
●●●

●
●● ●●

●

●
●

●
●

●●●●

●

●●
●

●

●

●

●
●
●●●●

●●
●

●
●

●

●

●

●

●
●●

●

● ●
●●●●

●

●●
●

●●●
●

●

●

●

●

●

●

●●● ●
●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

● ●●●●●●
●
●

●

●

●

●●
●

●
●

●

●
●

●

● ●●●
●●●●●
●

●

●

●

●

●●
●●●●

●

●

●●●
●●

●
●●●

●

●

●

●●
●

●● ●
●
●●

●

●

●●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●
●●●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●●●
●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●●●

●

●

●

●

●
●●●

● ●

●● PC3
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●
●●●

● ●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●● ●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●●●

●

●

●

●

●
●●●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●
●●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●
●● ●

●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●● ●●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●●●

●

●

●

●

●
● ●●

● ●

●●

−8
0

6

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●
●●●

●●

●●

−1
0

0 ●
●

●

●

●●

●

●
●●
●●

●
●

● ●

●●

●

●
●

●

●●

●

●● ●
●
●●

●

●●
●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

● ●

●

●
●

●
●

● ●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●●●●
●

●

● ●● ●● ●●●

●

●

●

●

●

●

●

● ●

● ●●●

●

●

●●

●

●

●● ●
●

●

●●●●

●

●●

●

●

●●
●

● ●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●
●

●●●

●

●
●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●●●

●

●●●

●

●●

●

●

●

●

●

●

● ●
●●

●

●
●

●

●

●

●

●●
●

●

●●

●
●●●● ●●●

●

●

●

●

● ●●

●
●

●

●●

●

●

● ●

●
●●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●
●

●

●
●
●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●●
●

●

●●●●●●
●

●

●

●

●

●

●
●●

●

●

● ●

●

●

● ●

● ●
●
●●● ●

●
● ●
●

●

●

● ●●●●
●

●

●

●●

●

●

●●●

●

●
●
●●

●

●

●

●

●
●●

●
●● ●●
● ●
●

●
●
●

●

●●

●

●●●● ●

●

●●

●●●● ●●

●

●

●
●

●

●

●

●

●●● ●● ●●●
●●

●

●

●

●
● ●

●

●

●

●

● ●

●

●●●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●
●

●●●●

●
●

●
●

●
●

●

●●

●

● ●

●

●
●

●
●

●

●●

●● ●●●
●
●

●

●●

●

●
●●●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●●●

●

●
●●●●

●

●

●●

●

●●● ●

●
●

●

●
●

●

●

●●

●

●
●●

●●

●
●

● ●

●●

●

●
●

●

●●

●

●●●●
●●

●

●●
●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●●

●

●
●
●

●
●●●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●●● ●
●

● ● ●●● ●●●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●●●
●

●

●●● ●

●

● ●

●

●

●●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●●●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●●
●

●

●●●

●

● ●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●●
●

●

●●

●
●●●●●

●●

●

●

●

●

●●●

●
●

●

●●

●

●

●●

●
●●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●
● ●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●
●

●

●
●
●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●●
●

●

●●●●●●●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●●

●●
●

●●●●
●
●●

●

●

●

●●●●●
●

●

●

●●

●

●

●●●

●

●
●
●●

●

●

●

●

●
●●

●
●●●●

● ●
●

●
●

●

●

●●

●

●● ●● ●

●

●●

●●●●●●

●

●

●
●

●

●

●

●

●● ●●●
●●●
●●

●

●

●

●
●●

●

●

●

●

● ●

●

●●●
●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●
●

●●●●

●
●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●●

●●●●●
●

●

●

●●

●

●
●●●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●● ●

●

●
●●●●

●

●

●●

●

●●● ●

●
●

●

●
●

●

●

●●

●

●
● ●

● ●

●
●

● ●

●●

●

●
●

●

●●

●

● ●●
●

●●

●

● ●●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●●

●

●
●

●
●

●● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●● ●●●
●

●

● ● ● ●●●● ●

●

●

●

●

●

●

●

●●

●● ● ●

●

●

● ●

●

●

● ●●
●

●

●● ●●

●

● ●

●

●

●●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●●●

●

●
●

●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●
●●

●

●

● ●●

●

● ●

●

●

●

●

●

●

● ●
● ●

●

●
●

●

●

●

●

●●
●

●

●●

●
● ●●●●●●

●

●

●

●

●●●

●
●

●

● ●

●

●

●●

●
●● ●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●● ●
●

●

●
●

●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●●
●

●

●● ●● ●● ●

●

●

●

●

●

●
● ●

●

●

●●

●

●

● ●

●●
●

●● ●●
●

●●
●

●

●

●●● ●●
●

●

●

●●

●

●

● ● ●

●

●
●

●●

●

●

●

●

●
●●

●
●●● ●
●●

●
●

●
●

●

● ●

●

●● ● ●●

●

●●

● ●●●● ●

●

●

●
●

●

●

●

●

●● ●●●
●●●

●●

●

●

●

●
● ●

●

●

●

●

●●

●

●● ●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●
●

● ● ●●

●
●

●
●

●
●

●

● ●

●

●●

●

●
●

●
●

●

●●

●●● ● ●
●

●

●

●●

●

●
●●● ●

●

●

●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●●

●

●
●●●●

●

●

●●

●

●●●●

●
●

● PC4 ●
●

●

●

●●

●

●
●●

●●

●
●

●●

●●

●

●
●

●

●●

●

● ●●
●

●●

●

●●●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●●

●

●
●

●
●

●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●●●
●

●

● ●● ●● ●● ●

●

●

●

●

●

●

●

● ●

●● ●●

●

●

● ●

●

●

● ●●
●

●

●● ● ●

●

● ●

●

●

●●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●●●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●● ●

●

● ●●

●

● ●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●●
●

●

●●

●
● ● ●●●●●

●

●

●

●

●●●

●
●

●

● ●

●

●

●●

●
●● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●● ●
●

●

●
●

●

●

●

● ●
●

●●
●

●

●

●

●
●

●

●

●●
●

●

●●●●●●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

● ●

●●
●
●● ●●

●
●●

●

●

●

●●● ●●
●

●

●

●●

●

●

● ● ●

●

●
●

●●

●

●

●

●

●
●●

●
●●● ●
●●

●
●

●
●

●

●●

●

●● ●● ●

●

● ●

● ●●●● ●

●

●

●
●

●

●

●

●

●●● ● ●●●●
●●

●

●

●

●
● ●

●

●

●

●

●●

●

●●●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●●●●

●
●

●
●

●
●
●

● ●

●

●●

●

●
●

●
●

●

●●

●●●●●
●

●

●

●●

●

●
●●● ●

●

●

●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●● ●

●

●
●●●●

●

●

●●

●

●●●●

●
●

●

●
●

●

●

●●

●

●
●●

● ●

●
●

●●

●●

●

●
●

●

●●

●

●●●
●

●●

●

● ●●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●●

●

●
●

●
●

● ●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●●● ●
●

●

●● ●● ●● ●●

●

●

●

●

●

●

●

● ●

●●●●

●

●

●●

●

●

●●●
●

●

●●● ●

●

●●

●

●

●●
●

● ●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●●●

●

●
●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●●
●

●

● ●●

●

●●

●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

● ●
●

●

●●

●
●●●● ●●●

●

●

●

●

● ●●

●
●

●

●●

●

●

●●

●
●● ●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●
●

●

●
●

●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●●
●

●

● ●●●●●●

●

●

●

●

●

●
●●

●

●

● ●

●

●

● ●

● ●
●

●●● ●
●

● ●
●

●

●

●●●● ●
●

●

●

●●

●

●

●●●

●

●
●
●●

●

●

●

●

●
●●

●
●● ●●

●●
●

●
●
●

●

●●

●

●●● ●●

●

● ●

●●●●●●

●

●

●
●

●

●

●

●

●●● ● ●●●●
●●

●

●

●

●
● ●

●

●

●

●

●●

●

●●●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●
●
●●●●

●
●

●
●

●
●

●

●●

●

● ●

●

●
●

●
●

●

●●

●● ●●●
●

●

●

● ●

●

●
●● ●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●
●●●●

●

●

●●

●

●●●●

●
●

●

●
●

●

●

● ●

●

●
● ●

● ●

●
●

●●

●●

●

●
●

●

●●

●

●●● ●
●●

●

● ●●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

● ●

●

●
●

●
●

● ●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●●● ●
●

●

●● ●● ●● ●●

●

●

●

●

●

●

●

● ●

●●●●

●

●

●●

●

●

●●●
●

●

●●● ●

●

● ●

●

●

●●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●
●

●●●

●

●
●

●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●
●

● ● ●

●

● ●●

●

● ●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

● ●
●

●

●●

●
●●●● ●●●

●

●

●

●

● ●●

●
●

●

●●

●

●

● ●

●
●● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●
●

●

●
●

●

●

●

●●
●

● ●
●

●

●

●

●
●

●

●

●●
●

●

●●●● ●●
●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●●

● ●
●

●●● ●
●

● ●
●

●

●

●●●● ●
●

●

●

●●

●

●

●●●

●

●
●

●●

●

●

●

●

●
●●

●
● ● ●●

● ●
●

●
●

●

●

●●

●

●●● ●●

●

●●

●●●●● ●

●

●

●
●

●

●

●

●

●●●● ●●●●
● ●

●

●

●

●
●●

●

●

●

●

● ●

●

● ●●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●
●

●●●●

●
●

●
●

●
●

●

●●

●

● ●

●

●
●

●
●

●

●●

●● ●●●
●

●

●

● ●

●

●
●● ●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●●

●

●
●●●●

●

●

● ●

●

●● ●●

●
●

●

●
●

●

●

●●

●

●
●●

●●

●
●

●●

●●

●

●
●

●

●●

●

●●●
●

●●

●

●●
●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●●

●

●
●

●
●

●●●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●● ●●
●

●

● ●● ●● ●●●

●

●

●

●

●

●

●

●●

● ●●●

●

●

●●

●

●

●●●
●

●

●●● ●

●

●●

●

●

●●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●●●

●

●
●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

● ●●

●

●●●

●

●●

●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●●
●

●

● ●

●
●●● ●●● ●

●

●

●

●

●●●

●
●

●

●●

●

●

● ●

●
●●●
●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●
●

●

●
●
●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

● ●
●

●

●●●●●●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●●
●
●●●●

●
●●
●

●

●

●●●●●
●

●

●

●●

●

●

●● ●

●

●
●
●●

●

●

●

●

●
●●

●
●●●●

●●
●
●

●
●

●

●●

●

●●● ●●

●

●●

●●●●●●

●

●

●
●

●

●

●

●

●● ●●●●●●
● ●

●

●

●

●
●●

●

●

●

●

●●

●

●●●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●●●●

●
●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●●

●●●●●
●

●

●

●●

●

●
●●●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●● ●

●

●
●●●●

●

●

●●

●

● ●● ●

●
●

●

●
●

●

●

●●

●

●
● ●
●●

●
●

●●

●●

●

●
●

●

●●

●

●●●●
●●

●

●● ●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●●

●

●
●
●
●

●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●●●
●

●

●●●●●
●●●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●●●
●

●

●●●●

●

●●

●

●

●●
●

● ●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●●

●

●

●● ●

●●●

●

●
●

●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●● ●

●

●●●

●

●●

●

●

●

●

●

●

● ●
●●

●

●
●

●

●

●

●

●●
●

●

●●

●
● ● ●● ●●●

●

●

●

●

●●●

●
●

●

●●

●

●

●●

●
●●●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●
●

●

●
●

●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●●
●

●

●●●●● ●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●●
●

●●●●
●
●●

●

●

●

●●●●●
●

●

●

●●

●

●

●●●

●

●
●
●●

●

●

●

●

●
●●

●
●● ●●
●●

●
●

●
●

●

●●

●

●●● ●●

●

●●

●●●●●●

●

●

●
●

●

●

●

●

●● ●● ●●●●●●

●

●

●

●
●●

●

●

●

●

●●

●

●●●
●

●

●●●

●

●

●

●
●

●

●

●

●

● ●

●
●

●●●●

●
●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●●

●●●●●
●

●

●

●●

●

●
●●●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●●

●

●
●●●●

●

●

●●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●●

●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
● ●

●

●
●● ●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●● ●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●●●●

●●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●●
●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
●●

●

●
●●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●● ●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●
●

●

●

●

●●●●

●●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●●
●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●
●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●

●

●

●

●●
● ●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

● ●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
●●

●

●
● ●●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●●●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

●
●

●

●

●

●●●●

● ●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●●
●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
●●

●

●
●● ●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●●●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●●●●

●●

●
●

●

●●
●●

●

●

●

PC5 ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●
●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
● ●

●

●
●●●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●
●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

● ●●

●

●
● ●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●
●

●

●

●

●●●●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●●

●

●

●●
●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●
●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●●
●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●

●

●

● ●
●●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
● ●

●

●
●●●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●
●

●
●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

● ●●

●

●
● ●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

●
●

●

●

●

●●●●

● ●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●

●

●

● ●
●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●
●

● ●
●

●

●

●

●
●● ●

●

●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

● ●
● ●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
●●

●

●
●●
●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●
●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●● ●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●●●●

●●

●
●

●

● ●
● ●

●

●

●

−6
0

6

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●
●● ●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●●
●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●
●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●

●

● ●
●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●
● ●

●

●
● ●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●
●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●● ●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●
●

●

●

●

●●●●

●●

●
●

●

●●
●●

●

●

●

−4
2

8

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●●
● ●

●

●●●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●
● ●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●
●

●
●
●●●

●●

●

●●

●

●

●

●
●

●

●

●
●

●●
●

●
●
●

●

●

●

●

● ●
●

●

●
●

●

●

●● ●

●
●

●

●

●● ●
●

●

●

●

●

●●●
● ●●●

● ●

●
●

●

●

●
● ●

●

●●
● ●

●

●

●●

●

●

●

●

●

●●●

●

●
●●

● ●

●

●
●
●● ●

●●●●●●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●●
●●

●

●●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●

●
● ●

●

●●

●●●

●●
●

●
● ●●●

●

●●

●

●
●

●

●

●

●
●

● ●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●●

●

●●
●

●

●

●

●

●

●

● ●●
●●●●

●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●

●

●
●●●●

●●
●
●●

●

●

●

●●●
●
●●

●

●

●
●

●
●●

●

●●

●●

●

●

●
●

● ●● ●●
●●

●
● ●

●●●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●●●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●●

●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●●

●

●●●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●
●●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●
●

●
●

●● ●

●●

●

●●

●

●

●

●
●
●

●

●
●

●●
●

●
●
●

●

●

●

●

●●
●

●

●
●
●

●

●● ●

●
●
●

●

●● ●
●

●

●

●

●

●● ●
●●●●

● ●

●
●

●

●

●
● ●

●

●●
●●

●

●

●●

●

●

●

●

●

●●●

●

●
●●

●●

●

●
●

●●●

●●●●●●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●●
●●

●

●●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●
●

●

●
●

●

●

●
●●

●
●

●
● ●

●

●●

●●●

●●
●

●
●●●●

●

●●

●

●
●

●

●

●

●
●

●●
●
●●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●●

●

● ●
●

●

●

●

●

●

●

●●●
●●●●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●
●●●●

●●
●

●●

●

●

●

●●●
●
●●

●

●

●
●

●
●●

●

●●

● ●

●

●

●
●

●●●●●
●●

●
● ●

●●●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ● ●
●●

●

● ● ●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●●

●

●

●●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●● ●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●
●●

● ●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●

●
●
●● ●

● ●

●

●●

●

●

●

●
●

●

●

●
●
● ●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

● ●●

●
●

●

●

● ●●
●

●

●

●

●

● ●●
● ●● ●

●●

●
●

●

●

●
● ●

●

●●
●●

●

●

●●

●

●

●

●

●

●●●

●

●
●●

● ●

●

●
●

● ● ●

● ●● ●● ●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

● ●

● ●
●●

●

●●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
● ●

●
●

●
● ●

●

●●

● ●●

● ●
●

●
●●● ●

●

● ●

●

●
●

●

●

●

●
●

●●
●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●● ●

●

● ●
●

●

●

●

●

●

●

●● ●
● ● ●●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●

●
●●●●

● ●
●

●●

●

●

●

● ●●
●
● ●

●

●

●
●

●
●●

●

● ●

●●

●

●

●
●

●● ●● ●
● ●

●
● ●

●●●●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●●●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●●

●

● ●●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●●
●

●

●●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●● ●

●

●

●

●

●

●
●

●
●●
●

●

●

●●
●

●
● ●

● ●

●
●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●
●

●
●
●●●

● ●

●

●●

●

●

●

●
●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●●
●

●

●
●
●

●

● ●●

●
●
●

●

●● ●
●

●

●

●

●

●●●
● ●●●

● ●

●
●

●

●

●
●●

●

●●
●●

●

●

●●

●

●

●

●

●

●●●

●

●
●●

● ●

●

●
●
●● ●

●●●●●●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●●
●●

●

●●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●

●
●●

●

●●

● ●●

●●
●

●
● ●● ●

●

●●

●

●
●

●

●

●

●
●

● ●
●
●●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●●

●

● ●
●

●

●

●

●

●

●

● ●●
●●●●

●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●

●

●
●● ●●

●●
●

●●

●

●

●

● ●●
●
●●

●

●

●
●

●
●●

●

●●

● ●

●

●

●
●

● ●● ●●
●●

●
● ●

●●●●

●
●

●

●

●

●
●
●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●
● ●

●

●●●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●●

●

●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●
●●

●●

●
●

●

●

● ●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

● ●
●

●
●
● ●●

● ●

●

●●

●

●

●

●
●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●● ●

●
●

●

●

●● ●
●

●

●

●

●

●●●
●●●●

● ●

●
●

●

●

●
●●

●

●●
●●

●

●

● ●

●

●

●

●

●

●● ●

●

●
●●

●●

●

●
●

● ●●

●●●●●●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●●

● ●
●●

●

● ●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●

●
●●

●

●●

● ●●

● ●
●

●
●●● ●

●

●●

●

●
●

●

●

●

●
●

●●
●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●● ●

●

●●
●

●

●

●

●

●

●

● ●●
●●●●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●
●●●●

●●
●

● ●

●

●

●

● ●●
●
● ●

●

●

●
●

●
●●

●

● ●

●●

●

●

●
●

●●●● ●
●●

●
● ●

●●●●

●
●

●

●

●

●
●

●
●

●

●
●

PC6
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
● ●

●

●●●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●
●

●
● ●

●
●

●

●●
●

●
●●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●

●
●

●●●

●●

●

●●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

● ● ●

●
●

●

●

●● ●
●

●

●

●

●

●● ●
● ● ● ●

● ●

●
●

●

●

●
●●

●

●●
● ●

●

●

● ●

●

●

●

●

●

● ●●

●

●
●●

●●

●

●
●

● ●●

●●● ●●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●●

●●
●●

●

●●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●

●
● ●

●

●●

●● ●

●●
●

●
●● ●●

●

●●

●

●
●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

● ●●

●

● ●
●
●

●

●

●

●

●

●● ●
●●●●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●
●●●●

●●
●

●●

●

●

●

●●●
●

●●

●

●

●
●

●
●●

●

●●

●●

●

●

●
●

●● ●● ●
●●

●
●●

●●●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

● ●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●● ●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●●
●●

●

● ●●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●
●

●
● ●

●
●

●

●●
●

●
● ●

● ●

●
●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●

●
●

●● ●

● ●

●

●●

●

●

●

●
●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●●
●
●

●
●
●

●

● ●●

●
●

●

●

●● ●
●

●

●

●

●

●●●
● ●●●

●●

●
●

●

●

●
●●

●

●●
● ●

●

●

●●

●

●

●

●

●

●●●

●

●
●●

● ●

●

●
●

●● ●

●●●●●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

● ●

●●
●●

●

●●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●

●
● ●

●

●●

●●●

●●
●
●
●● ●●

●

●●

●

●
●

●

●

●

●
●

● ●
●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●●

●

● ●
●

●

●

●

●

●

●

● ●●
●●●●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●
●● ●●

●●
●

●●

●

●

●

●●●
●

●●

●

●

●
●

●
●●

●

● ●

●●

●

●

●
●

● ●●●●
●●

●
●●

●●●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●●●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●●

●

●●●
●
●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●
●●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

● ●
●

●
●
●●●

● ●

●

●●

●

●

●

●
●
●

●

●
●

● ●
●

●
●

●

●

●

●

●

●●
●
●

●
●

●

●

● ● ●

●
●
●

●

●● ●
●

●

●

●

●

●● ●
● ●● ●

● ●

●
●

●

●

●
●●

●

●●
●●

●

●

●●

●

●

●

●

●

●● ●

●

●
●●

●●

●

●
●

●●●

●●●● ● ●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

● ●

● ●
●●

●

●●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●

●
●●

●

●●

● ●●

●●
●
●

●●● ●

●

●●

●

●
●

●

●

●

●
●

●●●
●●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●
●●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●●

●

●●
●
●

●

●

●

●

●

●●●
●●●●

●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●

●

●
●●●●

●●
●
●●

●

●

●

●●●
●
●●

●

●

●
●

●
●●

●

●●

● ●

●

●

●
●

●●● ● ●
●●

●
●●

●●●●

●
●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

●●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●● ●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●●

●●

●

●

●
●

●
●

●
●
●●● ●●●

●

●

●
●●

● ●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●●●

●
●

●

●

●

●

●●

●

●

●●

● ●

●

●
●

●●

●● ●

●

●

●

●

●

●

●

●

●
●●●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●●●●

●

●
●

●

●

●

●
●●

●

●

●● ●

●

●

●

●
●●

●●

●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

●●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●● ●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●
●

●
●

●

●

●

●
●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●●

●●

●

●

●
●

●
●

●
●

●● ● ●● ●

●

●

●
●●

●●
●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●●●

●
●

●

●

●

●

●●

●

●

● ●

● ●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●● ●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●●
●

●●●●

●

●
●

●

●

●

●
●●

●

●

● ●●

●

●

●

●
●●

●●

●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

● ●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

● ●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

● ●●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●● ●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●● ●

●●

● ●

●

●

●
●

●
●

●
●

●● ●●● ●

●

●

●
● ●

● ●
● ●●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

● ●●

●
●

●

●

●

●

● ●

●

●

● ●

●●

●

●
●

● ●

●●●

●

●

●

●

●

●

●

●

●
●● ●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

● ● ●●

●

●
●

●

●

●

●
● ●

●

●

● ●●

●

●

●

●
●●

●●

● ●

●

●●

●

●

●
●

●●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●●●

●

●

●● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●
●

●
●

●

●

●

●
●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

● ●

●●

●

●

●
●

●
●

●
●

● ●● ●●●

●

●

●
●●

● ●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●●●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●●●●

●

●
●

●

●

●

●
●●

●

●

● ●●

●

●

●

●
●●

●●

●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

● ●●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●● ●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●●

●●

●

●

●
●

●
●

●
●

●● ●●● ●

●

●

●
● ●

●●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

● ●●

●
●

●

●

●

●

●●

●

●

● ●

● ●

●

●
●

● ●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●●●●

●

●
●

●

●

●

●
● ●

●

●

● ●●

●

●

●

●
●●

●●

●●

●

● ●

●

●

●
●

●●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

● ●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●●

● ●

●

●

●
●

●
●

●
●

● ●● ●●●

●

●

●
●●

●●
●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●●●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●
●

●

●

●

● ●

●

●

●

●

●

●●
●

●●●●

●

●
●

●

●

●

●
●●

●

●

●● ●

●

●

●

●
●●

●●

●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

PC7 ●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

● ●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●● ●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●
●

●
●

●

●

●

●
●

● ●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●●

●●

●

●

●
●

●
●

●
●

● ●●●●●

●

●

●
●●

● ●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●
●

●●●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●● ●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●●●●

●

●
●

●

●

●

●
●●

●

●

●● ●

●

●

●

●
●●

●●

●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

−4
0

4

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

● ●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●● ●

●

●

● ●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●
●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●●

●●

●

●

●
●

●
●

●
●

● ●●●● ●

●

●

●
● ●

●●
●●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●●●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●● ●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●●●

●

●
●

●

●

●

●
●●

●

●

● ●●

●

●

●

●
●●

●●

●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●

−6
0

4

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●
●

●●
●

●

●

●

●
●

●

●

●
●
●
●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●●●

●
●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●
●

●●

●
● ●

●

●

●

●

●

●

●

●
●

●
●
●

●

● ●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●
● ●

●●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●
●

●●

●

●

● ●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●
●● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●●

●

●
●

●
●

●
● ●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●
●●

●

●
●

●

●
●

●

●

●●●●
●●

● ●

●

●

●
●

●
●

●

●
● ●

●

●
●

●

● ●

●●●● ●●
● ●●

●

●
●

●●●●

●
● ●

●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●●

●

●
●

●●● ●● ●

●

●

●
●●

● ●
●●

●

●
●

●

●

●
●●●

●
●●

● ●
●

●

●

●

●

●●

●
●

●
●●●●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●●●●

●

●
●

●

●
●

● ●●
●

● ●

●

●

●

●

●

●
●●

●● ●●●
●

●

●

●

●

●
●●

●●●

●

●

●●●

●●

●
●

●
●

●

● ● ● ●

●

●
● ●

●
●●

●

●

● ●●●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●
●●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●
●●

●●

●

●

●
●
●

●

●

●●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●
●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●●

●

●
●
●

●
●

● ●
●

●

●●
●

●

●

●

●●

●

●

●

●

●●
●

●
●

●
●● ●

●
●

●

●
●

●

●

●●●
●

●●

● ●

●

●

●
●

●
●

●

●
● ●

●

●
●

●

●●

●●●●●●
●●●

●

●
●
●●●●

●
● ●

●●

●

●

●
●

●

●

●
●●
●●

●

●

●

●

●●

●

●
●
●●● ●●●

●

●

●
●●

●●
● ●

●

●
●

●

●

●
●●●
●
●●

●●
●

●

●

●

●

●●

●
●

●
●●●●

●
●
●

●

●●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●●●●

●

●
●

●

●
●

● ●●
●

●●

●

●

●

●

●

●
●●

●●●●●
●

●

●

●

●

●
●●

●●●

●

●

●●●

●●

●
●
●

●
●

●● ●●

●

●
●●

●
●●

●

●

●●●●● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●● ●●

●
●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

● ● ●
●●

● ●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

● ● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●
●●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●
● ●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●
●

●

●● ●

●

●
●

●
●

●
●●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●
●●

●

●
●

●

●
●

●

●

● ●● ●
● ●

● ●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●●

●●● ●●●
●● ●

●

●
●

●● ●●

●
●●

●●

●

●

●
●

●

●

●
● ●

● ●

●

●

●

●

●●

●

●
●

● ●●● ●●

●

●

●
● ●

● ●
● ●

●

●
●

●

●

●
●●●

●
● ●

● ●
●

●

●

●

●

●●

●
●
●

●●● ●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
● ● ●●

●

●
●

●

●
●

●● ●
●

●●

●

●

●

●

●

●
●●

●●● ● ●
●

●

●

●

●

●
●●

●● ●

●

●

●● ●

●●

●
●

●
●
●

●● ●●

●

●
●●

●
● ●

●

●

●●●●● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●●
●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●
●
●●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●●
●●

●●

●

●

●
●
●

●

●

●●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●
●●

●

●

● ●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●
●● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●●●

●

●
●

●
●

●
● ●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●
●

●
●

●
●●●

●
●

●

●
●

●

●

●●●
●
●●

● ●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●●

●●●●●●
●●●

●

●
●
●●●●

●
● ●

●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●●

●

●
●
●●●●● ●

●

●

●
●●

●●
●●

●

●
●

●

●

●
●●●
●
● ●

●●
●

●

●

●

●

●●

●
●
●
●●●●

●
●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●●●●

●

●
●

●

●
●

●●●
●

●●

●

●

●

●

●

●
●●

●●●●●
●

●

●

●

●

●
●●

●●●

●

●

●●●

●●

●
●

●
●

●

●● ● ●

●

●
● ●

●
●●

●

●

●●●●● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●●●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●
●●

●
● ●

●

●

●

●

●

●

●

●
●
●

●
●

●

● ●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

● ●●
● ●

● ●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

● ●
● ●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●●●

●

●
●

●
●

●
●●

●

●

●●
●

●

●

●

● ●

●

●

●

●

● ●
●

●
●

●
●● ●

●
●

●

●
●

●

●

●●●●●●

● ●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●●

●●● ●● ●
●●●

●

●
●

●● ●●

●
●●

●●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●●

●

●
●
● ●●●●●

●

●

●
●●

●●
● ●

●

●
●

●

●

●
●●●

●
● ●
●●
●

●

●

●

●

●●

●
●

●
●●● ●

●
●

●

●

● ● ●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●●●●

●

●
●

●

●
●

● ● ●
●

●●

●

●

●

●

●

●
●●

●●●●●
●

●

●

●

●

●
●●

●● ●

●

●

●● ●

●●

●
●

●
●

●

●● ●●

●

●
●●

●
●●

●

●

●●●●● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
● ●

●
●

●●
●

●

●

●

●
●
●

●

●
●

●
●
●

●

● ●●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●●●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●
●

●●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●
●●

●●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●●

●

●

● ●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●
●● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●●

●

●
●

●
●

●
● ●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●
●●

●

●
●

●

●
●

●

●

●●●
●
●●

● ●

●

●

●
●

●
●

●

●
● ●

●

●
●

●

● ●

●●●● ●●
● ●●

●

●
●

●●● ●

●
●●

●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●●

●

●
●

●●●●●●

●

●

●
●●

● ●
●●

●

●
●

●

●

●
●●●
●
●●

● ●
●

●

●

●

●

●●

●
●

●
●●●

●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●
●
●●●●

●

●
●

●

●
●

●●●
●
● ●

●

●

●

●

●

●
●●

●● ●●●
●

●

●

●

●

●
●●

● ●●

●

●

●●●

●●

●
●
●

●
●

● ● ●●

●

●
●●

●
●●

●

●

● ●●●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●●●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●
●

●●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●●
● ●

●●

●

●

●
●
●

●

●

●●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●●

●

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

● ●
● ●●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

● ● ●

●

●
●

●
●

●
●●

●

●

●●
●

●

●

●

● ●

●

●

●

●

● ●
●

●
●

●
●●●

●
●

●

●
●

●

●

●●●
●

●●

●●

●

●

●
●

●
●

●

●
● ●

●

●
●

●

● ●

●●●● ●●
● ●●

●

●
●
●●● ●

●
●●
●●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●●

●

●
●

●●● ●●●

●

●

●
●●

● ●
●●

●

●
●

●

●

●
●●●

●
●●

●●
●

●

●

●

●

●●

●
●

●
●●●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●●●●

●

●
●

●

●
●

●●●
●

● ●

●

●

●

●

●

●
●●

●● ●●●
●

●

●

●

●

●
●●

● ●●

●

●

●●●

●●

●
●

●
●

●

●●●●

●

●
●●

●
●●

●

●

● ●●●●● ●

●

●

●

●

●

●

●
●

●
●

PC8 ●

●

●

●

●
●

●●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●●
●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●
●

●●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●
●●
●●

●

●

●
●
●

●

●

●●
●

●

●
●
●

●

●

●●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●
●●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

● ●
●●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●● ●

●

●
●

●
●
●
●●
●

●

●●
●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●
●●

●

●
●

●

●
●

●

●

●●●
●

● ●

●●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●●

●●●●●●
●● ●

●

●
●
●●●●

●
● ●

●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●●

●

●
●

●●●● ●●

●

●

●
●●

●●
●●

●

●
●

●

●

●
●●●

●
●●

● ●
●

●

●

●

●

●●

●
●

●
●●●●

●
●

●

●

●●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●●●●

●

●
●
●

●
●

●●●
●

●●

●

●

●

●

●

●
●●

●●●●●
●

●

●

●

●

●
●●

●●●

●

●

●●●

●●

●
●
●

●
●

● ●●●

●

●
● ●

●
●●

●

●

●●●●●●●

●

●

●

●

●

●

●
●

●
●

−15 0

●● ●

●

●●

●

●

●

●

●●● ●

●

●

●●

●
●

●

● ●●
●

●

● ●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●●●●● ●●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
● ●●

●

●●●
●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●●
●

●

●

●

●
●●

●●

●

●

●

●
●

●● ●●●●

●

●

●

●

●

●

●

●

● ●●●● ●
●●

●

●

●● ●●

●

●●●●

●

●● ●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●● ●●
●

●

● ●●
●

● ●

●

●●●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●●●●

●

●●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●● ●
●

●

●●

●

● ●
●

●
●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

● ●
●

●
●

●●

●
●●

●

●●
●

●
●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●

●●●
●

●

●

●

● ●●

●
●

● ●● ●

●

●
●

●

●●
●

●

●

●

●● ●

●

●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●● ● ● ●

●

●●● ●

●

●●●

●

●

●●

●

●

●

●
●
● ●●

●
● ● ●

●

●●
●●●●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

● ●

●

●●● ●●● ●

●

●

●
● ●●●●●

●

●

●●

●●

●●

●●

●●●●

●

●
●

● ●●●

●

●

●

●●● ●

●

●

●

●
● ●●

●

●●●

●

●

●

●● ●●●● ●●●

●

●

●
●

●

●

●

●●

●

●

● ●●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●
●

●
●

●

●

●

●●●●
●

●

●●

●

●

●
●●

●

● ●

●

●

●

●

●

●●●●● ●●●●●

●

●●

●

●●●●●

●

● ●●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
● ●●●●●●●●

●
●●● ●

●

●

●
●● ●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●

●●●
●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●●●
●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●●●

●

●●●
●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●●
●
●

●

●

●
●●
●●

●

●

●

●
●

●● ●●●●

●

●

●

●

●

●

●

●

●●●●●●
●●

●

●

●●● ●

●

●●● ●

●

● ●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●● ●●
●

●

●●●
●

● ●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●●●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

● ●●
●

●

●●

●

● ●
●

●
●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

● ●

●

● ●
●

●
●

● ●

●
●●

●

● ●
●

●
●

●●

●

●

●●
●

●

●

●

●

●

●
●

●● ●
●

●●

●

●

●

●

●

●●●
●

●

●

●

●●●

●
●

●●●●

●

●
●

●

●●
●

●

●

●

● ●●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●● ● ● ●

●

●●●●

●

●●●

●

●

●●

●

●

●

●
●

● ●●
●

●● ●

●

●●
●●●●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●●

●

●●●●●●●

●

●

●
●●●●●●

●

●

●●

●●

●●

●●

●●●●

●

●
●

●●●●

●

●

●

●●● ●

●

●

●

●
●●●

●

●● ●

●

●

●

●●●●●●●●●

●

●

●
●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●
●

●

●

●

●●●●
●
●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●●●●●●●● ●●

●

●●

●

●●●●●

●

● ●●●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●●●● ●● ●●

●
●●● ●

●

●

●

−8 0 6

●● ●

●

●●

●

●

●

●

● ● ●●

●

●

●●

●
●

●

●●●
●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●
●●● ● ●● ●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●●

●

●● ●
●

●

●

●

●

●
●

●

●

●●
●

● ●
●

●

●●
●

●

●

●

●
● ●
●●

●

●

●

●
●

●●●● ●●

●

●

●

●

●

●

●

●

●● ● ●●●
● ●

●

●

● ●●●

●

●● ●●

●

● ●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●● ● ●
●

●

●● ●
●

● ●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●●●●

●

●●

●

●

●
●

●●

●

● ●
●

●

●

●

●

●

●

● ●●
●

●

●●

●

●●
●

●
●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●●
●
●
●

● ●

●
●●

●

● ●
●

●
●

●●

●

●

● ●
●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●

●●●
●

●

●

●

●●●

●
●

●● ●●

●

●
●

●

●●
●

●

●

●

● ●●

●

● ●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●●●● ●

●

●● ●●

●

● ●●

●

●

●●

●

●

●

●
●

●●●
●

●● ●

●

● ●
●● ●●

●

●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●●

●

●●

●

●● ●●●●●

●

●

●
●●● ●●●

●

●

●●

●●

● ●

●●

●● ●
●

●

●
●

●● ●●

●

●

●

● ●●●

●

●

●

●
● ● ●

●

●● ●

●

●

●

●●● ●●●● ● ●

●

●

●
●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●
●

●

●

●

● ● ●●
●

●

● ●

●

●

●
● ●

●

●●

●

●

●

●

●

●●●●●● ● ●●●

●

●●

●

●●●● ●

●

●●● ●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●
●●●●● ● ●●●

●
●●●●

●

●

●
●● ●

●

●●

●

●

●

●

●● ●●

●

●

●●

●
●

●

●●●
●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●
●● ●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●●

●

●●●
●

●

●

●

●

●
●

●

●

●●
●

●●
●

●

●●
●

●

●

●

●
●●
●●

●

●

●

●
●
●●●●● ●

●

●

●

●

●

●

●

●

●●●● ●●
●●

●

●

●●●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ● ●●●
●

●

●●●
●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●●●

●

●●

●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●

●●●
●

●

●●

●

●●
●

●
●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●
●

● ●

●
●●

●

●●
●

●
●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●

●●●
●

●

●

●

●●●

●
●

● ●●●

●

●
●

●

●●
●

●

●

●

●● ●

●

●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●● ● ●●

●

●●●●

●

●●●

●

●

●●

●

●

●

●
●

● ●●
●

●●●

●

●●
●●●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●●●

●

●

●
●●●●●●

●

●

●●

●●

●●

●●

●●●
●

●

●
●

● ●●●

●

●

●

●●●●

●

●

●

●
●●●

●

●●●

●

●

●

●● ●●●●●● ●

●

●

●
●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●
●

●

●

●

●●●●
●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●●● ●●●●●●●

●

●●

●

●●●●●

●

● ●●●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●●●● ●●●●

●
●●●●

●

●

●

−6 0 6

●● ●

●

●●

●

●

●

●

●● ●●

●

●

●●

●
●

●

●●●
●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●
●●● ●●●●● ●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●●

●

●● ●
●

●

●

●

●

●
●

●

●

●●
●

● ●
●

●

●●
●

●

●

●

●
●●

●●

●

●

●

●
●

●● ●● ●●

●

●

●

●

●

●

●

●

●● ●● ● ●
● ●

●

●

● ●● ●

●

●● ● ●

●

● ●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●● ● ●
●

●

●● ●
●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●●●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

● ●●
●

●

●●

●

●●
●

●
●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

● ●
●

●
●

●●

●
●●

●

● ●
●

●
●

●●

●

●

● ●
●

●

●

●

●

●

●
●

●● ●
●

●●

●

●

●

●

●

●●●
●

●

●

●

●●●

●
●

●● ●●

●

●
●

●

●●
●

●

●

●

●●●

●

● ●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

● ●●●●

●

●● ●●

●

●● ●

●

●

● ●

●

●

●

●
●

●●●
●

● ● ●

●

● ●
●●●●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●●

●

●● ●● ●●●

●

●

●
●●● ●●●

●

●

●●

●●

● ●

● ●

● ●●
●

●

●
●

●● ●●

●

●

●

● ●●●

●

●

●

●
●●●

●

●● ●

●

●

●

● ●● ●●●● ● ●

●

●

●
●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●
●

●

●

●

●●●●
●

●

● ●

●

●

●
● ●

●

●●

●

●

●

●

●

● ●●●●●●●● ●

●

●●

●

●●●● ●

●

●●● ●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●●●● ●● ●●

●
●●●●

●

●

●
● ●●

●

●●

●

●

●

●

● ●● ●

●

●

●●

●
●

●

● ●●
●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●
● ●● ●● ●●● ●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●● ●

●

●●●
●

●

●

●

●

●
●

●

●

●●
●

●●
●

●

●●
●

●

●

●

●
●●

● ●

●

●

●

●
●

● ●● ●●●

●

●

●

●

●

●

●

●

●●●●●●
●●

●

●

●●● ●

●

●●● ●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

● ●●●●
●

●

● ●●
●

● ●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

● ●●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

● ●●
●

●

●●

●

● ●
●

●
●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●
●

●●

●
●●

●

●●
●

●
●

●●

●

●

●●
●

●

●

●

●

●

●
●
● ●

●
●

●●

●

●

●

●

●

●●●
●

●

●

●

● ●●

●
●

● ●●●

●

●
●

●

●●
●

●

●

●

●● ●

●

●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●● ● ●●

●

●●●●

●

● ●●

●

●

●●

●

●

●

●
●

● ●●
●

● ● ●

●

●●
● ●●●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

● ●

●

●●● ●●● ●

●

●

●
●●●● ●●

●

●

●●

●●

●●

● ●

●●●●

●

●
●

●● ●●

●

●

●

●●●●

●

●

●

●
● ●●

●

●●●

●

●

●

● ●●●●●●●●

●

●

●
●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●
●

●
●

●

●

●

●●●●
●

●

●●

●

●

●
●●

●

● ●

●

●

●

●

●

●●●●● ●●● ●●

●

● ●

●

●●● ●●

●

● ●●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
● ●●●●●● ●●

●
●●●●

●

●

●

−4 0 4

● ●●

●

● ●

●

●

●

●

● ●●●

●

●

●●

●
●

●

● ●●
●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●
● ●● ●● ●●● ●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
● ● ●

●

●●●
●

●

●

●

●

●
●

●

●

●●
●

●●
●

●

●●
●

●

●

●

●
●●

● ●

●

●

●

●
●

● ●● ●● ●

●

●

●

●

●

●

●

●

●●●●● ●
●●

●

●

●●● ●

●

●●● ●

●

● ●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●● ●●
●

●

● ●●
●

● ●

●

●●●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

● ●●●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●●●
●

●

●●

●

● ●
●
●
●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

● ●

●

●●
●

●
●

●●

●
●●

●

● ●
●

●
●

●●

●

●

●●
●

●

●

●

●

●

●
●

● ●
●
●

●●

●

●

●

●

●

●●●
●

●

●

●

● ●●

●
●

●●● ●

●

●
●

●

●●
●

●

●

●

●●●

●

● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●● ●●●

●

●●● ●

●

●● ●

●

●

●●

●

●

●

●
●
●●●

●
● ● ●

●

● ●
●●●●

●

●

● ●

●

●

●

● ●

●●

●

●

●

●

●

● ●

●

● ●

●

●●● ●●● ●

●

●

●
●●●● ●●

●

●

●●

●●

●●

● ●

● ●●
●

●

●
●

●● ●●

●

●

●

●●● ●

●

●

●

●
●●●

●

●●●

●

●

●

●●●●●●● ●●

●

●

●
●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●
●

●
●

●

●

●

●●●●
●

●

●●

●

●

●
●●

●

● ●

●

●

●

●

●

● ●●●● ●●● ●●

●

● ●

●

●●● ●●

●

● ●●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
● ●●●●● ●● ●

●
●● ●●

●

●

●
●● ●

●

●●

●

●

●

●

●● ●●

●

●

●●

●
●

●

● ●●
●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●● ●● ●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●●

●

●● ●
●
●

●

●

●

●
●

●

●

●●
●

●●
●

●

●●
●

●

●

●

●
●●

●●

●

●

●

●
●

●● ●●●●

●

●

●

●

●

●

●

●

● ●●●●●
●●

●

●

●●● ●

●

●●● ●

●

●● ●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●●●
●

●

● ● ●
●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●●●

●

●●

●

●

●
●

●●

●

● ●
●

●

●

●

●

●

●

● ●●
●

●

●●

●

●●
●

●
● ●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●
●

●●

●
●●

●

●●
●

●
●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●●●

●
●

●●● ●

●

●
●

●

●●
●

●

●

●

● ●●

●

●●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●● ●●●

●

●●● ●

●

●●●

●

●

●●

●

●

●

●
●

●●●
●

●●●

●

●●
●●●●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●●●

●

●

●
●●●●● ●

●

●

●●

● ●

●●

●●

●●●●

●

●
●

● ●●●

●

●

●

●●●●

●

●

●

●
●●●

●

●●●

●

●

●

●● ●●●●●●●

●

●

●
●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●
●

●
●

●

●

●

●●●●
●

●

● ●

●

●

●
●●

●

●●

●

●

●

●

●

●●● ●●●●●●●

●

●●

●

●●●●●

●

●●●●

●●

●
● ●
●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●●●●●● ●●

●
● ●● ●

●

●

●

−4 0 4
−4

0
4

PC9

Figure 30.11: Pairwise plots of principal components for Problem 30.18 (c). Red points are
malignant tumors, black points are benign tumors.

496 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

pc1

V
ar

ia
nc

es

0
10

20
30

40

Figure 30.12: Scree plot of principal components for Problem 30.18 (c).

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●
●

●
●

●

●
●
●

●

●

●

●

−4 −2 0 2 4 6 8

−
4

−
2

0
2

4
6

feature matrix = W

fe
a

tu
re

 m
a

tr
ix

 =
 x

Figure 30.13: Scatter plot of predicted values for Problem 30.18 (g).

30.3. THEORETICAL COMPLEMENTS 497

●

F1 F2 F3 F4 F5 F6 F7 F8 F9

2
4

6
8

10

S

Figure 30.14: Boxplots, for Problem 30.18 (h)(iii), are constructed from values of S̄ for which the
indicated feature equals 10. Solid (dashed) lines give 25th, 50th, 75th percentiles of S̄ for malignant
(benign) tumors.

30.3 Theoretical Complements

Problem 30.19. Suppose φ is a true density function on R.

(a) For a ∈ R, b > 0, show that φa,b(x) = b−1φ((x− a)/b) is also a density function on R.
(b) Let x1, . . . , xn be any numbers, and let h > 0. Verify that fh defined as

fh(x) =
1

nh

n∑
i=1

φ

(
x− xi
h

)

is a density function. Then fh is an approximation of the density from which x1, . . . , xn were
sampled.

(c) Let (xi, yi) be paired observations from model

yi = g(xi) + εi, i = 1, . . . , n, (30.11)

498 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

where the εi are any zero mean error terms. The Nadaraya - Watson kernel regression estimate
ŷh(x) ≈ g(x) is given by

ŷh(x) =

∑n
i=1 yiKh(x− xi)∑n
i=1Kh(x− xi)

, (30.12)

wherever the expression is defined. Usually, Kh(z) ∝ φ(z/h) where φ is a zero mean density,
and h > 0 is the bandwidth.

(i) Suppose φ(z) = I{|z| ≤ 1/2}, that is, the uniform density on interval [−1/2, 1/2]. Set
Kh(z) = φ(z/h) in estimator (30.12). Let Nh(x) be the set of indices from {1, . . . , n}
defined by

Nh(x) = {i : |x− xi| ≤ h/2},

and denote cardinality nh(x) = |Nh(x)|. Express the ŷh(x) explicitly in terms of (xi, yi),
i = 1, . . . , n, making use of Nh(x) and nh(x).

(ii) Suppose the error terms εi in (30.11) are an iid sample from N(0, σ2). Give an explicit
expression for the variance Vh(x) and bias Bh(x) of ŷh(x).

(iii) We next consider a specific model. In (30.11) let

g(x) = β0 + β1x

on some interval x ∈ [−M,M], M > 0, for two constants β0, β1 6= 0. A Poisson process
of rate λ on any interval I ⊂ R is a random set of points X ⊂ I which possesses the
following properties (in addition to others):

(P1) The number of points N ′ from X in interval [a, a+h] ⊂ I has a Poisson distribution
with mean λh.

(P2) Given that there are N ′ points from X in interval [a, a + h], these points form an
iid sample from a uniform distribution on [a, a+ h].

Then assume the predictor values X = (x1, . . . , xN) are generated by a Poisson process
on [−M,M] with rate λ (this means that N is a Poisson random variable with mean
2Mλ). Then, once X is generated, responses yi are given by

yi = β0 + β1xi + εi, i = 1, . . . , N,

where the error terms εi are an iid sample from N(0, σ2).

In general, the conditional expected value of X given event A, denoted E[X | A], is the
expected value of X under the distribution P (X ∈ E | A). Accordingly, the quantity
E[Bh(x)2 | nh(x) = n] is the expected value of Bh(x)2 calculated after assuming that
nh(x) = n, so that the property (ii) of a Poisson process given above may be applied.
Then calculate

E[MSEh(x) | nh(x) = n] = E[Vh(x) | nh(x) = n] + E[Bh(x)2 | nh(x) = n].

You can assume that M is large enough so that [x− h/2, x+ h/2] ⊂ [−M,M].
(iv) Write an R program to calculate E[MSEh(x) | nh(x) ≥ 1] (note that MSEh(x)

is not defined unless nh(x) ≥ 1). Set β1 = 1, λ = 10. Fix σ = 0.25, and calcu-
late E[MSEh(x) | nh(x) ≥ 1] for h on a grid defined by seq(0.001,10,0.001).

30.3. THEORETICAL COMPLEMENTS 499

Plot E[MSEh(x) | nh(x) ≥ 1] against h, and identify h which minimizes
E[MSEh(x) | nh(x) ≥ 1]. Repeat for σ = 1.0.

HINT: Recall the law of total probability. This implies that the expected value of any
random variable X may be calculated by:

E[X] = E[X | A1]P (A1) + . . .+ E[X | Am]P (Am),

where A1, . . . , Am are mutually exclusive events which partition the sample space, so
that P (A1) + . . .+ P (Am) = 1. Then

E[MSEh(x) | nh(h) ≥ 1] =

∞∑
i=1

E[MSEh(x) | nh(x) = n]P (nh(x) = n | nh(x) ≥ 1).

(30.13)
If p(n), n = 0, 1, 2, . . . is the PMF of the appropriate Poisson distribution, we have

P (nh(x) = n | nh(x) ≥ 1) = p(n)/(1− p(0)), n = 1, 2,

Then E[MSEh(x) | nh(h) ≥ 1] can be evaluated numerically using (30.13), after com-
bining the answer to part (c) with the R dpois function. Make sure that enough terms
are included in any approximate summation of (30.13) to avoid truncation error.

SOLUTION:

(a) Clearly, φa,b(x) ≥ 0. Then, apply transformation z = (x− a)/b to the integral∫ ∞
−∞

φa,b(x)dx =

∫ ∞
−∞

b−1φ(z)bdz =

∫ ∞
−∞

φ(z)dz = 1.

Therefore φa,b(x) ≥ 0 is a density function.
(b) Applying part (a) directly, it follows that fh(x) ≥ 0. Then∫ ∞

−∞
fh(x)dx =

1

n

n∑
i=1

∫ ∞
−∞

h−1φ

(
x− xi
h

)
dx =

1

n

n∑
i=1

1 = 1.

Therefore fh(x) is a density function.
(c) (i) Note that ŷh(x) is simply a sample mean of responses with indices in Nh(x):

ŷh(x) =
1

nh(x)

∑
i∈Nh(x)

yi

provided nh(x) ≥ 1.
(ii) We have E[yi] = g(xi). Also, ŷh(x) is an estimator of g(x). The bias is therefore

Bh(x) =

 1

nh(x)

∑
i∈Nh(x)

g(xi)

− g(x) =
1

nh(x)

∑
i∈Nh(x)

[g(xi)− g(x)]

500 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

provided nh(x) ≥ 1. Since ŷh(x) is a sample mean of nh(x) independent random variables
with variance σ2 we have

Vh(x) =
1

nh(x)
σ2

provided nh(x) ≥ 1.
(iii) First consider Bh(x). Note that

g(xi)− g(x) = β1(xi − x).

If nh(x) = n then the random variables (xi − x), i ∈ Nh(x) form an iid sample of n
uniform random variables on [−h/2, h/2]. It follows that

E[Bh(x)2 | nh(x) = n] =
1

n

(β1h)2

12
, n ≥ 1.

We then have directly,

E[Vh(x) | nh(x) = n] =
1

n
σ2, n ≥ 1.

Then

E[MSEh(x) | nh(x) = n] =
1

n

(β1h)2

12
+

1

n
σ2.

(iv) Note that nh(x) has a Poisson distribution of mean λh. If its PMF is p(n), then

E[MSEh(x) | nh(h) ≥ 1] =
∞∑
n=1

[
1

n

(β1h)2

12
+

1

n
σ2

]
p(n)/(1− p(0)).

The following code performs the required calculates. The optimal values are h =
1.008, 3.572, σ = 0.25, 1.0. See Figure 30.15.

Parameters (note that we don’t need beta0)

lam = 10

beta1 = 1

bias

bb = function(h) {

((beta1*h)^2/12)*sum((1/1:1000)*

dpois(1:1000,lambda=h*lam)/(1-dpois(0,lambda=h*lam)))

}

variance

vv = function(h) {

(sigma^2)*sum((1/1:1000)*

dpois(1:1000,lambda=h*lam)/(1-dpois(0,lambda=h*lam)))

30.3. THEORETICAL COMPLEMENTS 501

}

MSE

mm = function(h) {bb(h)+vv(h)}

grid for parameter h

x = seq(0.001,10,0.001)

do calculations

par(mfrow=c(1,2),pty=’s’)

for (sigma in c(0.25,1)) {

y = sapply(x,mm)

plot(x,y,type=’l’,xlim=’h’,ylim=’MSE’)

hopt = x[which.min(y)]

ex1 = bquote(paste(sigma == .(sigma), ’, Optimal ’,h ==.(hopt),sep=’’))

title(ex1)

}

0 2 4 6 8 10

0.
02

0.
04

0.
06

0.
08

h

M
S

E

σ = 0.25, Optimal h = 1.008

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

h

M
S

E

σ = 1, Optimal h = 3.572

Figure 30.15: Plots for Problem 30.19.

502 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

Problem 30.20. The purpose of the AIC score is to minimize prediction error, rather than to
identify the correct model. The two goals are obviously related, but they are not identical. This
can be seen using simple linear regression.

Suppose we are given model

y = β0 + β1x+ ε, ε ∼ N(0, σ2).

Suppose, given paired observations (yi, xi), i = 1, . . . , n, we can calculate least-squares coefficient
estimates β̂0, β̂1. We want to predict, for some fixed predictor value x a new observation Yx ∼
N(β0 + β1x, σ

2) from the model which is independent of the observations used in the estimates.
We consider two predictors:

ȳ = n−1
n∑
i=1

yi ≈ Yx,

or
ŷx = β̂0 + β̂1x ≈ Yx.

In one sense, ŷx is the correct choice, unless β1 = 0 (which we don’t rule out). One approach is to
test against null hypothesis H0 : β1 = 0, then choose ŷx if we reject H0. The other approach is to
try to minimize prediction error directly.

Here, the square-error risk is:

MSE(y′) = E
[
(Yx − y′)2

]
,

where y′ is whatever predictor (that is, ȳ or ŷx) we are considering.

(a) Express MSE(y′) in terms of σ2, and the bias and variance of y′. Assume Yx and y′ are
independent. Note that in this case bias(y′) = E[y′]− E[Yx].

(b) Derive MSE(y′) for y′ = ȳ and y′ = ŷx.
(c) Give conditions on β0, β1, σ

2, SSX =
∑n

i=1(xi − x̄)2 under which MSE(ȳ) < MSE(ŷx). Is it
possible that ȳ could have smaller prediction error even if β1 6= 0?

SOLUTION:
Let θ = E[Yx] = β0 + β1x and µ′ = E[y′].

(a) Then
MSE = E

[
(Yx − y′)2

]
= E

[
(U1 − U2 − U3)2

]
where U1 = (Yx − θ), U2 = (µ′ − θ), U3 = (y′ − µ′). This can be rewritten

E
[
(U1 − U2 − U3)2

]
= E

[
U2

1

]
+ E

[
(U2 + U3)2

]
− 2E [U1(U2 + U3)] .

However, U1 is independent of both U2, U3 (note that U2 is a constant), and E[U1] = 0, so
the final term is

−2E [U1(U2 + U3)] = −2E [U1]E [(U2 + U3)] = 0.

Similarly,

E
[
(U2 + U3)2

]
= E

[
U2

2

]
+ E

[
U2

3

]
+ 2E [U2U3]

= E
[
U2

2

]
+ E

[
U2

3

]
,

30.3. THEORETICAL COMPLEMENTS 503

since 2E [U2U3] = 0. This means

E
[
(U1 − U2 − U3)2

]
= E

[
U2

1

]
+ E

[
U2

2

]
+ E

[
U2

3

]
.

The first and third terms are the variances of Yx and y′ respectively, while U2 is the bias of
y′ so that

MSE = σ2 + bias2(y′) + var(y′).

(b) For y′ = ȳ,

E[ȳ] = n−1
n∑
i=1

E[yi] = n−1
n∑
i=1

β0 + β1xi = β0 + β1x̄

where x̄ is the sample mean of the predictor observations x1, . . . , xn. We then have

bias(ȳ) = E[ȳ]− E[Yx] = (β0 + β1x̄)− (β0 + β1x) = β1(x̄− x),

var(ȳ) = σ2/n.

This gives
MSE[ȳ] = σ2 + σ2/n+ β2

1(x̄− x)2.

The MSE for ŷx is equivalent to the variance of D associated with the prediction interval:

MSE[ŷx] = σ2 + σ2/n+ σ2 (x̄− x)2

SSX
,

where SSX =
∑n

i=1(xi − x̄)2.
(c) The two expressions for MSE[y′] can be directly compared:

MSE[ŷx]−MSE[ȳ] = (x̄− x)2

[
σ2

SSX
− β2

1

]
.

If x = x̄ then MSE[ŷx] = MSE[ȳ]. Otherwise, we have MSE[ȳ] < MSE[ŷx] if and only if

β2
1 <

σ2

SSX
.

In particular, ȳ may have smaller prediction error even if β1 6= 0. Note that this condition
does not depend on β0.

Problem 30.21. Consider the matrix representation of the multiple linear regression model

y = Xβββ + εεε

where y is an n× 1 response vector, X is a n× q matrix, βββ is a q× 1 vector of coefficients, and εεε is
an n× 1 vector of error terms. The least squares solution is expressed using the coefficient vector
βββ which minimizes the error sum of squares

SSE[βββ] = (y−Xβββ)T (y−Xβββ).

504 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

(a) By setting each partial derivative ∂SSE[βββ]/∂βj to zero, j = 1, . . . , q, verify that the least
squares solution is

β̂ββ = (XTX)−1XTy.

(b) Next, recall that the ridge regression coefficients are the obtained by minimizing

Λ = SSE[β] + λ

q∑
j=1

β2
j

for a fixed constant λ ≥ 0. By setting each partial derivative ∂SSE[βββ]/∂βj to zero, j =
1, . . . , q, show that the ridge regression solution is

β̂ββridge = (XTX + λIq)
−1XTy,

where Iq is the q × q identity matrix.

SOLUTION:

(a) Suppose we write SSE[βββ] in the following way:

SSE[βββ] =

n∑
i=1

(yi − β1xi1 − . . .− βqxiq)2,

where xij is the element of X in row j and column j. Then take the partial derivative

∂SSE[βββ]

∂βj
=

n∑
i=1

−2xij(yi − β1xi1 − . . .− βqxiq).

If each partial derivative is set to 0, the solution is obtained by substituting β̂ββ for βββ. This
can be expressed

n∑
i=1

xijyi =
n∑
i=1

xij(β̂1xi1 + . . .+ β̂qxiq), j = 1, . . . , q.

This is a system of q linear equations, which can be expressed in matrix notation as

XTy = XTXβ̂ββ.

Premultiplying each side by (XTX)−1 gives

(XTX)−1XTy = β̂ββ.

It is also possible to use matrix calculus directly. This would give

∂SSE[βββ]

∂βββ
= −2XT (y−Xβββ).

Setting this vector equal to 0 gives the same equation XTy = XTXβ̂ββ.

30.3. THEORETICAL COMPLEMENTS 505

(b) The approach for ridge regression is very similar. The partial derivative is now

∂SSE[βββ]

∂βj
=

{
n∑
i=1

−2xij(yi − β1xi1 − . . .− βqxiq)

}
+ 2λβj .

In matrix notation, setting the partial derivatives equal to zero, then substituting β̂ββ for βββ
gives

XTy = XTXβ̂ββ + λβ̂ββ = (XTX + λIq)β̂ββ.

Premultiplying each side by (XTX + λIq)
−1 gives

(XTX + λIq)
−1XTy = β̂ββ.

Matrix calculus would similarly give

∂SSE[βββ]

∂βββ
= −2XT (y−Xβββ) + 2λβββ,

leading to the same result.

Problem 30.22. Suppose for a certain application, data takes the form (X1, X2), where Xi are
independent Bernoulli random variables (ie. assume value 0 or 1) of mean p. The usual unbiased
estimator of p is

p̂1 =
X1 +X2

2
,

which has variance σ2
p = p(1− p)/2. Suppose we also consider as an alternative estimator of p:

p̂2 = p̂1/2 + 1/4.

(a Give an expression for MSE = variance+ bias2 as a function of p for each estimator.
(b Which estimator has smallest MSE when p = 1/2?
(c Which estimator has smallest MSE when p = 1/8?

SOLUTION:

(a For p̂1 we have:

var(p̂1) =
1

2
· p(1− p)

bias(p̂1) = E[p̂1]− p = p− p = 0

MSE(p̂1) = var(p̂1) + bias(p̂1)2 =
1

2
· p(1− p).

506 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

For p̂2 we have:

var(p̂2) = var(p̂1/2 + 1/4) =
1

22
· var(p̂1) =

1

8
· p(1− p)

bias(p̂2) = E[p̂2]− p = p/2 + 1/4− p = −p/2 + 1/4

MSE(p̂1) = var(p̂2) + bias(p̂2)2 =
1

8
· p(1− p) + (p/2− 1/4)2 =

1

8
· (p2 − p+ 1/2).

(b For p = 1/2,

MSE(p̂1) =
1

2
· 1/2(1− 1/2) = 1/8,

MSE(p̂2) =
1

8
· ((1/2)2 − 1/2 + 1/2) = 1/32.

so MSE(p̂2) < MSE(p̂1).
(c For p = 1/8,

MSE(p̂1) =
1

2
· 1/8(1− 1/8) = 7/128 = 7/27,

MSE(p̂2) =
1

8
· ((1/8)2 − 1/8 + 1/2) = 25/512 = 25/29.

so 0.0488 = MSE(p̂2) < MSE(p̂1) = 0.0547.

Problem 30.23. In this question, we will explore various aspects of the ‘hat matrix’

H = X(XTX)−1XT (30.14)

associated with multiple linear regression with q predictors (including the intercept term). We can
think of H as a linear transformation of an n-dimensional response vector y to the n-dimensional
fitted vector ŷyy = Hy. Furthermore, since ŷyy is obtained by minimizing the SSE, the action taken
by H on y is to project it onto the q-dimensional subspace Sq ⊂ Rn spanned by the q predictors
(equivalently, Sq is the set of all linear combinations of the predictors, see Appendix A.2). This
means ŷyy is the point in Sq closest to y.

(a) Given Equation (30.14) prove that
trace(H) = q,

assuming matrices are invertible where indicated. [HINT: First prove the following identity.
If A, B are n×m matrices, then trace(ABT) = trace(BTA)].

(b) A square matrix A is idempotent if and only if A = AA. Show that H is idempotent, using
two arguments:

(i) Analytically, using matrix algebra following Equation (30.14). Assume matrices are
invertible where indicated.

(ii) Logically, using the fact that, for any y ∈ Rn, Hy is the point in Sq closest to y.

30.3. THEORETICAL COMPLEMENTS 507

(c) The ‘hat matrix’ structure appears in many modeling techniques, both parametric and non-
parametric. Denote the least squares projection matrix defined in (30.14) HLS . The following
three modeling techniques yield various forms of fitted vectors ŷyy = H ′y as linear transforma-
tions of response vector y. In each case, describe precisely H ′, and give its trace.

(i) We have ŷyy = (ȳ, . . . , ȳ) ∈ Rn, where ȳ is the sample mean of the elements of y.
(ii) Here, the elements of y are assumed sorted in some sequence, either by a time index or

some other predictor. We take moving average

ŷyy1 =
y1 + y2

2

ŷyyi =
yi−1 + yi + yi+1

3
, i = 2, 3, . . . , n− 1,

ŷyyn =
yn−1 + yn

2

(iii) We can define a saturated model as one which fits the original reponse vector exactly,
that is, ŷyy = y.

(d) The quantity trace(H) is sometimes referred to as the effective degrees of freedom. In linear
regression it equals the model degrees of freedom (which is equal to the number of regression
coefficients). But it has a similar interpretation for other forms of models, and can be taken
as an index of model complexity. Order the four ‘hat matrices’ considered in part (c) by
effective degrees of freedom, and describe briefly how this ordering relates to the complexity
of the models considered. Note that we must assume n ≥ 2, otherwise HLS is not defined.
Furthermore, for the ordering to hold, we may need to assume n ≥ nlower, where nlower might
be larger than 2.

SOLUTION:

(a) Note that A and B have the same dimension. Denote the elements aij , bij . Then ABT is an
n× n matrix with ith diagonal element

[
ABT

]
ii

=
m∑
j=1

aijbij , i = 1, . . . , n,

so that

trace(ABT) =

n∑
i=1

m∑
j=1

aijbij .

Applying essentially the same calculation method to trace(BTA) yields exactly the same
value. This proves the indentity. It follows that

trace(X(XTX)−1XT) = trace(XTX(XTX)−1) = trace(Iq) = q,

where Iq is the q × q identity matrix.

508 CHAPTER 30. PRACTICE PROBLEMS - MODEL SELECTION AND SPLINES

(b) (i) We have

HH = X(XTX)−1
{
XTX(XTX)−1

}
XT = X(XTX)−1IqX

T = X(XTX)−1XT = H,

where Iq is the q × q identity matrix.
(ii) If for any y ∈ Rn, Hy is the point in Sq closest to y, then if y ∈ Sq we must have

Hy = y, since y would then be the point in Sq closest to itself.
Then, for any y ∈ Rn, Hy is in Sq, so that H (Hy) = Hy. This is true for any y ∈ Rn,
so we must have H = HH.

(c) (i) We have ȳi = ȳ =
∑n

i=1 n
−1yi, so H ′ij = 1/n for each matrix element. We therefore

have
trace(H ′) = 1.

(ii) The coefficents defining the moving average model are placed directly into H ′,

H ′ =

1/2 1/2 0 0 0 . . . 0 0 0 0 0
1/3 1/3 1/3 0 0 . . . 0 0 0 0 0
0 1/3 1/3 1/3 0 . . . 0 0 0 0 0
...

...
...

0 0 0 0 0 . . . 0 1/3 1/3 1/3 0
0 0 0 0 0 . . . 0 0 1/3 1/3 1/3
0 0 0 0 0 . . . 0 0 0 1/2 1/2

.

For this matrix, assuming n ≥ 2,

trace(H ′) = 1/2 + 1/2 + (n− 2)1/3 = (n+ 1)/3.

(iii) In this case, we have H ′ = In, so

trace(H ′) = n.

(d) Label the ‘hat matrices’ of parts (i)-(iii) H(i), H(ii), H(iii). Then

trace(H(i)) < trace(HLS) < trace(H(ii)) < trace(H(iii)),

provided n ≥ nlower = 6 (the lower bound is needed for trace(HLS) < trace(H(ii))). That
trace(H(i)) < trace(HLS) is clear since H(i) implements the linear model Y = β0 + ε, which
is a submodel of Y = β0 + β1X + ε. Then H(ii) is a smoother, which tends to force the fitted
values ŷyy into a smooth functional form, while allowing more curvature than a strict linear fit.
In this case, ŷyy would be closer to the data than would be HLSy. So, for any large enough n we
would expect trace(HLS) < trace(H(ii)). Finally, H(iii) simply reproduces the data as it is,
and is in this sense the most complex model possible. We would therefore expect trace(H(iii))
to be largest.

Chapter 31

Practice Problems - Bayesian
Networks

31.1 Exercises

Problem 31.1. Five random variables (X1, X2, X3, X4, X5) have the following relationship:

X1 = ε1

X2 = X1 + ε2

X3 = ε3

X4 = X2 +X3 + ε4

X5 = X1 + ε5.

The terms ε1, ε2, ε3, ε4, ε5 are independently distributed errors.

(a) Suppose we want to model X̃ = (X1, X2, X3, X4, X5) as a Bayesian network. Sketch all DAGs
which imply conditional independencies consistent with X̃.

(b) Suppose we wish to develop a predictive model for response X3 using the remaining elements
of X̃ as predictors (we assume they are all observable). Which elements should we use?
Answer the same question for response X2.

SOLUTION:

(a) The equations imply 4 edges: X1 → X2, X1 → X5, X2 → X4, X3 → X4. This graph is the
leftmost DAG shown Figure 31.1 (left). Any equivalent graph must be obtained by reversing
the direction of some combination of edges without adding or removing a v-structure. There
is 1 v-structure: X2 → X4 ← X3. None of those edges in this subgraph can be changed.
However, the directions of X1 → X2 and X1 → X5 can be changed as long as no new v-
structure is created. There are two ways to do this. The complete equivalence class is shown
in Figure 31.1.

509

510 CHAPTER 31. PRACTICE PROBLEMS - BAYESIAN NETWORKS

(b) The Markov blanket of a node is that node’s children, parents and children’s other parents.
A node is independent of the remaining nodes conditional on it’s Markov blanket. Node X3

has child X4, and node X4 has parent X2, so we would only need to use X2 and X4 in a
predictive model with response X3. The Markov blanket of a node must be the same in any
equivalent DAG, so we may use any of the DAGs in Figure 31.1 to determine the Markov
Blanket of X2. In the first DAG, X1 is a parent of X2, X4 is a child, and X3 is a parent of X4,
so the Markov blanket is {X1, X3, X4}. A predictive model of response X2 should therefore
use X1, X3, X4 as predictor variables.

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

Figure 31.1: DAGs for Problem 31.1 (a).

Problem 31.2. Consider the DAG in Figure 20.10.

(a) Give the Markov blanket of each node.
(b) Determine whether each of the following statements is true or false:

(i) {b, c} d-separates {a} and {f}.
(ii) {b} d-separates {a} and {f}.
(iii) {c} d-separates {a} and {f}.
(iv) {e} d-separates {g} and {b, d, h}.
(v) {c} d-separates {g} and {b, d, h}.
(vi) {c} d-separates {e} and {f}.

(vii) {e, f} d-separates {b} and {h}.
(viii) ∅ d-separates {b} and {h}.

(ix) ∅ d-separates {a} and {f}.

SOLUTION:

(a) The Markov blanket of a node is that node’s children, parents and children’s other parents.

31.1. EXERCISES 511

Let Bx denote the Markov blanket of node x. We then have

Ba = {b},
Bb = {a, c, d, h},
Bc = {b, d, e, f, g, h},
Bd = {b, c, h},
Be = {c, g},
Bf = {c},
Bg = {c, e},
Bh = {b, c, d}.

For example, g has child e, and e has parent c. Therefore MB(g) = {c, e}
(b) Recall from Definition 20.5 that C d-separates A and B if there are no arcs L joining any

node in A to any node in B which are active given C. Note that, for convenience, when we
say “L contains exactly two nodes”, we are omitting the terminal nodes. Rule 1 and Rule 2
are given in Definition 20.5.

(i) TRUE. There is only one arc L from a to f . L contains nodes b, c. Neither is a collider
and both are in {b, c}, so Rule 2 is violated. Therefore L is not active given {b, c}.

(ii) TRUE. There is only one arc L from a to f . L contains node b, which is not a collider
and is in {b}. Rule 2 is violated, therefore L is not active given {b}.

(iii) TRUE. There is only one arc L from a to f . L contains node c, which is not a collider
and is in {c}. Rule 2 is violated, therefore L is not active given {c}.

(iv) FALSE. Let L be any arc from g to b, d or h. L contains exactly two nodes c (noncollider)
and e (collider). Rule 1 is satisfied, since e is in {e}. Rule 2 is satisfied, since c is not in
{e}. Therefore L is active given {e}.

(v) TRUE. Let L be any arc from g to b, d or h. L contains exactly two nodes c (noncollider)
and e (collider). Rule 2 is violated, since c is in {c, e}. Therefore L is not active given
{c, e}.

(vi) TRUE. There is only one arc L from e to f . L contains node c, which is not a collider
and is in {c}. Rule 2 is violated, therefore L is not active given {c}.

(vii) FALSE. There is only one arc L from b to h. L contains exactly one node c which is a
collider, and has descendants e and f . Rule 1 is satisfied, since c has a descendant in
{e, f}. Rule 2 is also satisfied, since there are no noncolliders on L.

(viii) TRUE. There is only one arc L from b to h. L contains exactly one node c which is a
collider, and has descendants e and f . Rule 1 is violated, since neither c or its descendants
is in ∅. Therefore L is not active given ∅. This means b and h are unconditionally
independent.

(ix) FALSE. There is only one arc L from a to f . L contains exactly two nodes b, c, which
are noncolliders. Rule 1 is satisfied, since L contains no colliders. Rule 2 is also satisfied,
since neither noncollider on L is in ∅. Therefore L is active given ∅.

512 CHAPTER 31. PRACTICE PROBLEMS - BAYESIAN NETWORKS

Problem 31.3. In Example 20.1 the following 6 variables are defined for a Bayesian network model
based on the DAG given in Figure 20.1.

X1 = V isitsHospital

X2 = Exposure toBacteria

X3 = Immunity toBacteria

X4 = Acquires Infection

X5 = Resistance toAntibiotics

X6 = MissesWork

(a) Sketch all DAGs which imply conditional independencies consistent with this model.
(b) Suppose we wish to develop a predictive model for response X6 using the remaining elements

of X̃ as predictors (we assume they are all observable). Which elements should we use?
Answer the same question for response X4.

SOLUTION:

(a) The equations imply 5 edges: 1→ 2, 2→ 4, 3→ 4, 4→ 6 and 5→ 6 . This graph is shown
Figure 31.2 (left). Any equivalent graph must be obtained by reversing the direction of some
combination of edges without adding or removing a v-structure. There are 2 v-structrues:
2→ 4, 3→ 4 and 4→ 6, 5→ 6. None of those edges can be changed. However, the direction
of 1→ 2 can be changed, yielding the 2 equivalent DAGs in Figure 31.2.

1

2

3

4

5

6

1

2

3

4

5

6

Figure 31.2: DAGs for Problem 31.3 (a).

(b) The Markov blanket of a node is that node’s children, parents and children’s other parents. A
node is independent of the remaining nodes conditional on it’s Markov blanket. The Markov
blanket of X6 is {X4, X5}, so we would only need to use X4 and X5 in a predictive model

31.1. EXERCISES 513

with response X6. The Markov blanket of X4 is {X2, X3, X5, X6}, so we would only need to
use those variables in a predictive model with response X4.

Problem 31.4. A Bayesian network model is fit for 8 genes labeled a−h, resulting in the following
DAG. We say a gene y is downstream from gene x if there is a directed path from x to y.

a

b c

d

e

f

g

h

Figure 31.3: Sample DAG for Problem 31.4.

(a) List all v-structures of the DAG.
(b) State precise conditions under which two DAGs are equivalent (that is, are members of the

same equivalent class).
(c) Suppose the DAG is accepted as a true model of regulatory control. Then, in reference to

the equivalence classes of the DAG, a statement about regulatory order may be one of three
types:

A. Implied by the Bayesian network model (true of all equivalent DAGs).

B. Compatible with the Bayesian network model (true of some but not all equivalent DAGs).

C. Not compatible with the Bayesian network model (not true of any equivalent DAG).

Note that a DAG is equivalent to itself. Of which type (A, B or C) is each of the following
statements? Briefly justify your answer.

(i) g is downstream from d.
(ii) e is downstream from a.
(iii) f has no parents.
(iv) b has no parents.
(v) c has exactly two parents.

514 CHAPTER 31. PRACTICE PROBLEMS - BAYESIAN NETWORKS

(vi) g is downstream from all other genes.

SOLUTION:

(a) There is 1 v-structure, d→ e← f .
(b) v-structures and topologies are identical.
(c) (i) A. v-structure forces d→ e and e→ g.

(ii) B. The statement is compatible with the given DAG. However, the direction of a → b
could be changed without changing the v-structures, in which case the statement would
not be true.

(iii) A. Direction of f → e cannot be changed, since it is part of a v-structure.
(iv) B. The statement is not compatible with the given DAG, but the direction of a → b

could be changed, in which case the statement would be true.
(v) C. If c had two parents it would be part of a v-structure.
(vi) B. The statement is not compatible with the given DAG, but the direction of a→ c and

c→ h could be changed, in which case the statement would be true.

Problem 31.5. Suppose the density of a random vector X̃ = (X1, X2, X3, X4, X5) can be factorized
in the following way:

f(x1, . . . , x5) = f(x5 | x4)f(x4 | x2, x3)f(x2 | x1)f(x1)f(x3)

(a) Suppose we want to model X̃ as a Bayesian network. Sketch all DAGs which imply conditional
independencies consistent with X̃.

(b) Suppose we wish to develop a predictive model for response X5 using the remaining elements
of X̃ as predictors. Which elements should we use? Answer the same question for response
X4.

SOLUTION:

(a) The factorization implies 4 edges: 4 → 5, 2 → 4, 3 → 4 and 1 → 2. This graph is shown
Figure 31.4 (left). Any equivalent graph must be obtained by reversing the direction of some
combination of edges without adding or removing a v-structure. Note that edges 2→ 4 and
3 → 4 form a v-structure, and so cannot be changed. If edge 4 → 5 is changed, then a new
v-structure will be added. However, the direction of 1 → 2 can be changed, yielding the 2
equivalent DAGs in Figure 31.4.

(b) The Markov blanket of a node is that node’s children, parents and children’s other parents. A
node is independent of the remaining nodes conditional on it’s Markov blanket. The Markov
blanket of X5 is X4, so we would only need to use X4 in a predictive model with response
X5. The Markov blanket of X4 is {X2, X3, X5}, so we would only need to use X2, X3, X5 in
a predictive model with response X4.

31.1. EXERCISES 515

1

2 3

4

5

1

2 3

4

5

Figure 31.4: DAGs for Problem 31.5 (a).

Problem 31.6. Consider the Bayesian network model of Figure 20.11.

(a) Give the Markov blankets for nodes Log Wage and Health.
(b) Determine whether each of the following statements is true or false (a conditional indepen-

dence statement is true if it must hold for all Bayesian network models which conform to a
DAG).

(i) (Marital Status ⊥⊥ Health) | {Age}.
(ii) (Health Insurance ⊥⊥ Health) | {Education}.
(iii) (Health Insurance ⊥⊥ Health) | {Education, Log Wage}.
(iv) (Health Insurance ⊥⊥ Health) | {Education, Age}.
(v) (Health Insurance ⊥⊥ Marital Status) | {Age}.
(vi) (Health Insurance ⊥⊥ Marital Status) | {Age, Health}.

(vii) (Health Insurance ⊥⊥ Marital Status) | {Health}.

SOLUTION:

(a) The Markov blanket of a node is that node’s children, parents and children’s other parents.
The node Log Wage has parents Health Insurance, Education and Age, and no children.
Therefore, the Markov blanket is

BLog Wage = {Health Insurance, Education, Age}.

The node Health has parent Education and child Age. The node Age has parent
Marital Status. Therefore, the Markov blanket is

BHealth = {Education, Age, Marital Status}.

(b) Recall from Definition 20.5 that C d-separates A and B if there are no arcs L joining any node
in A to any node in B which are active given C. In this case, the conditional independence

516 CHAPTER 31. PRACTICE PROBLEMS - BAYESIAN NETWORKS

statement (A ⊥⊥ B) | C holds. Note that, for convenience, when we say “L contains exactly
two nodes”, we are omitting the terminal nodes.

(i) FALSE. There exists an arc L from Marital Status to Health containing only node
Age, which is a collider. Rule 1 is satisfied, since Age is in {Age}. Rule 2 is satisfied
since L contains no noncolliders. Therefore, L is active given {Age}.

(ii) TRUE. There are four arcs L from Health Insurance to Health. On three of them
Education is a noncollider. Since Education is in {Education} Rule 2 is violated,
therefore none of those three arcs is active given {Education}. On the remaining arc
Log Wages is a collider, which is not in {Education} and has no descendants, so Rule 1
is violated. Therefore, this arc is not active given {Education}.

(iii) FALSE. There exists an arc L from Health Insurance to Health which con-
tains exactly nodes Log Wages (collider) and Age (noncollider). Log Wages is in
{Education, Log Wage} and Age is not in {Education, Log Wage}, so that Rule 1 and
Rule 2 are satisfied. This means L is active given {Education, Log Wage}.

(iv) TRUE. There are four arcs L from Health Insurance to Health. On three of them,
Education, is a noncollider. Since Education is in {Education, Age} Rule 2 is violated,
therefore none of those three arcs is active given {Education, Age}. On the remaining
arc Age is a noncollider, which is in {Education, Age}, so Rule 2 is violated. Therefore,
this arc is not active given {Education, Age}.

(v) FALSE. There are four arcs from Health Insurance to Marital Status. On one of
those arcs L Age is the sole collider, so Rule 1 is satisfied, since Age is in {Age}. Rule
2 is also satisfied, since no noncollider on L is in {Age}. Therefore, L is active given
{Age}.

(vi) TRUE. There are four arcs from Health Insurance to Marital Status. On three of
them Log Wage is a collider with no descendats, and is not in {Age, Health}, so Rule 1
is violated. On the remaining arc Health is a noncollider which is in {Age, Health}, so
Rule 2 is violated. None of the four arcs is active given {Age, Health}.

(vii) TRUE. The argument is exactly the same as for (vi).

31.2 Data Analysis

Problem 31.7. Load the data frame Hitters from the library ISLR. Create a new data frame
from variables

Hits,HmRun,Runs,RBI,Walks.

Then divide each column by AtBat, so that the quantities are in units of ‘per at bat’. Then add
to the data frame log-transforms of Salary and PutOuts (use base 10). Remove any observations
for which PutOuts == 0. Use the na.omit function to delete observations with missing values.
Finally, create all pairwise scatterplots for the data frame, then remove any obvious outliers.

(a) Fit a Bayesian network to the data using the hc() function from the library bnlearn. Use
default options. Plot the model’s directed acyclic graph (DAG).

31.2. DATA ANALYSIS 517

(b) Examine a correlation matrix of the data. Is it possible to say that each parent is positively
associated with each child?

(c) Use the function cpdag to represent the equivalence class of the DAG. Plot this representation.
Can the direction of any of the edges be changed without changing the model score?

(d) What is the Markov blanket for node logSalary? You can use function mb to verify your
answer. How is the Markov blanket precisely interpreted?

(e) Suppose we wish to develop a model which predicts a player’s salary. Fit a regression model
with logSalary as response and the remaining variables as predictor. Use all-subsets regres-
sion to select the variables using the AIC score (you can use the dredge and get.models

functions from the MuMIn library). Does the model conform to the Bayesian network model?

SOLUTION:
We may use the following code:

> library(bnlearn)

> library(ISLR)

> library(MuMIn)

>

> ### create data frame

>

> ### hitting metrics

>

> var.list = c(2:6)

> x = Hitters[,var.list]

> n = as.numeric(Hitters[,1])

>

> nc = dim(x)[2]

> for (i in 1:5) {x[,i] = as.numeric(x[,i]/n)}

>

> ### add log Salary

>

> x1 = data.frame(x,log10(Hitters$Salary), log10(Hitters$PutOuts))

> x1 = na.omit(x1)

> names(x1)[6:7] = c(’logSalary’,’logPutOuts’)

>

>

> ### examine data

>

> pairs(x1)

> x1 = subset(x1, RBI > 0 & logPutOuts > -Inf)

>

>

> ### fit Bayesian network

>

> par(mfrow=c(1,2))

518 CHAPTER 31. PRACTICE PROBLEMS - BAYESIAN NETWORKS

> bn = hc(x1)

> plot(bn,main=’DAG’)

> cor(x1)

Hits HmRun Runs RBI Walks logSalary logPutOuts

Hits 1.00000000 0.06972857 0.43753009 0.23404450 -0.03377821 0.3376368 0.02643426

HmRun 0.06972857 1.00000000 0.35301351 0.77988977 0.14719857 0.1854447 0.12790676

Runs 0.43753009 0.35301351 1.00000000 0.25844140 0.33937901 0.2405413 0.02421579

RBI 0.23404450 0.77988977 0.25844140 1.00000000 0.16430481 0.2508894 0.09405556

Walks -0.03377821 0.14719857 0.33937901 0.16430481 1.00000000 0.1755441 0.09376591

logSalary 0.33763675 0.18544467 0.24054129 0.25088936 0.17554410 1.0000000 0.25156172

logPutOuts 0.02643426 0.12790676 0.02421579 0.09405556 0.09376591 0.2515617 1.00000000

> plot(cpdag(bn),main=’EC’)

>

> mb(bn,’logSalary’)

[1] "Hits" "RBI" "Walks" "logPutOuts"

>

> fit = lm(logSalary ~ ., data = x1, na.action=na.fail)

>

> junk = dredge(fit, rank = "AIC")

Fixed term is "(Intercept)"

> fit.aic = get.models(junk, 1)[[1]]

> fit.aic

Call:

lm(formula = logSalary ~ Hits + logPutOuts + RBI + Walks + 1,

data = x1, na.action = na.fail)

Coefficients:

(Intercept) Hits logPutOuts RBI Walks

0.6075 4.0604 0.2430 1.4211 1.4122

>

Outliers were removed by the x1 = subset(x1, RBI > 0 & logPutOuts > -Inf) command.
See Figure 31.5.

(a) See Figure 31.6.
(b) The correlation matrix conforms to the DAG in this sense. For example, Hits and Runs have

sample correlation 0.43753009.
(c) The equivalence class representation of the DAG is exactly the same as the DAG itself, so no

directions can be changed without changing the model score. See Figure 31.6.
(d) A Markov blanket of a node includes the parents of the node, the children of the node, and

any other parents of a child of the node. In the case of our DAG, the Markov blanket for the
logSalary node is Hits, RBI, Walks and logPutOuts. A node is independent of all other
nodes conditional on the Markov blanket.

(e) The variables selected in the model are exactly those included in the Markov blanket of

31.2. DATA ANALYSIS 519

node logSalary. According the the Bayesian network model, the Markov blanket of a node
contains all available predictive information for that node. In this sense, the AIC model
selection conforms to the Bayesian network.

520 CHAPTER 31. PRACTICE PROBLEMS - BAYESIAN NETWORKS

Hits

0.
00

0.
04

0.
08

0.
05

0.
10

0.
15

0.
20

2.
0

2.
5

3.
0

0.20 0.30

0.00 0.04 0.08

HmRun

Runs

0.10 0.20

0.05 0.15

RBI

Walks

0.05 0.15

2.0 2.5 3.0

logSalary

0.
20

0.
25

0.
30

0.
35

0.
10

0.
15

0.
20

0.
05

0.
15

1.5 2.0 2.5 3.0

1.
5

2.
0

2.
5

3.
0

logPutOuts

Figure 31.5: Plot for Problem 31.7.

31.2. DATA ANALYSIS 521

DAG

Hits

HmRun

Runs RBI

Walks

logSalary

logPutOuts

EC

Hits

HmRun

Runs RBI

Walks

logSalary

logPutOuts

Figure 31.6: DAG and equivalence class for Problem 31.7 (a), (c).

Appendices

522

Appendix A

Linear Algebra

A.1 Numbers and Sets

A set is a collection of distinct objects of any kind. Each member of a set is referred to as an
element, and is represented once. A set E may be indexed. That is, given an index set T , each
element may be assigned a unique index t ∈ T , and all indices in T are assigned to exactly one
element of E, denoted xt. We may then write E = {xt; t ∈ T }.

The set of (finite) real numbers is denoted R, and the set of extended real numbers is denoted
R̄ = R ∪ {−∞,∞}. The restriction to nonegative real numbers is written R+ = [0,∞) and
R̄+ = R+ ∪ {∞}. We use standard notation for open, closed, left closed and right closed intervals
(a, b), [a, b], [a, b), (a, b]. A reference to a interval I on R̄ may be any of these types.

The set of (finite) integers will be denoted I, while the extended integers will be I∞ = I ∪
{−∞,∞}. The set of natural numbers N is taken to be the set of positive integers, which N0 is the
set of nonnegative integers. A rational number is any real number expressible as a ratio of integers.

Then C denotes the complex numbers z = a+ bi ∈ C, where i =
√
−1, a, b ∈ R is the imaginary

number. Note that i is added and multiplied as though it were a real number, in particular i2 = −1.
Multiplication is defined by z1z2 = (a1 +b1i)(a2 +b2i) = a1a2−b1b2 +(a1b2 +a2b1)i. The conjugate
of z = a + bi ∈ C is written z̄ = a − bi, so that zz̄ = a2 + b2 ∈ R. Together, z and z̄, without
reference to their order, form a conjugate pair.

The absolute value of a ∈ R is denoted |a| =
√
a2, while |z| = (zz̄)1/2 = (a2 + b2)1/2 ∈ R is also

known as the magnitude or modulus of z ∈ C.
If S is a set of any type of number, Sd, d ∈ N , denotes the set of d-dimensional vectors

s̃ = (s1, . . . , sd), which are ordered collections of numbers si ∈ S. In particular, the set of d-
dimensional real vectors is written Rd. When 0, 1 ∈ S, we may write the zero or one vector
~0 = (0, . . . , 0), ~1 = (1, . . . , 1), so that c~1 = (c, . . . , c).

A collection of d numbers from S is unordered if no reference is made to the order (they are
unlabelled). Otherwise the collection is ordered, that is, it is a vector. An unordered collection
from S differs from a set in that a number s ∈ S may be represented more than once. Braces {. . .}
enclose a set while parentheses (. . .) enclose a vector (braces will also be used to denote indexed
sequences, when the context is clear).

The cardinality of a set E is the number of elements it contains, and is denoted |E|. If |E| <∞
then E is a finite set. We have |∅| = 0. If |E| =∞, this statement does not suffice to characterize
the cardinality of E. Two sets A,B are in a 1-1 correspondence if a collection of pairs (a, b), a ∈ A,

523

524 APPENDIX A. LINEAR ALGEBRA

b ∈ B can be constructed such that each element of A and of B is in exactly one pair. In this case,
A and B are of equal cardinality. The pairing is known as a bijection.

If the elements of A can be placed in a 1-1 correspondence with N we say A is countable
(is denumerable). We also adopt the convention of referring to any subset of a countable set as
countable. This means all finite sets are countable. If for countable A we have |A| = ∞ then A
is infinitely countable. Note that by some conventions, the term countable is reserved for infinitely
countable sets. For our purposes, it is more natural to consider the finite sets as countable.

All infinitely countable sets are of equal cardinality with N , and so are mutually of equal
cardinality. informally, a set is countable if it can be written as a list, finite or infinte. The set
N d is countable since, for example, N 2 = {(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), . . .}. The set of
rational numbers is countable, since the pairing of numerator and denominator, in any canonical
representation, is a subset of N 2.

A set A is uncountable (is nondenumerable) if |A| =∞ but A is not countable. The set of real
numbers, or any nonempty interval of real numbers, is uncountable.

If A1, . . . , Ad are d sets, then A1×A2× . . .×Ad = ×di=1Ai is a product set, consisting of the set
of all ordered selections of one element from each set ai ∈ Ai. A vector is an element of a product
set, but a product set is more general, since the sets Ai need not be equal, or even contain the same
type of element. The definition may be extended to arbitrary forms of index sets.

A.2 Fields and Vector Spaces

The notion of real numbers can be generalized to that of a field K, which is a set of scalars that is
closed under the rules of addition and multiplication comparable to those available for real numbers
R. Both R and complex numbers C are fields.

A vector space V ⊂ Kn is any set of vectors x ∈ Kn which is closed under linear and scalar
composition, that is, if x, y ∈ V then ax+ by ∈ V for all scalars a, b. This means the zero vector ~0
must be in V, and that x ∈ V implies −x ∈ V.

Elements x1, . . . , xm of Kn are linearly independent if
∑m

i=1 aixi = 0 implies ai = 0 for all
i. Equivalently, no xi is a linear combination of the remaining vectors. The span of a set of
vectors x̃ = (x1, . . . , xn), denoted span(x̃), is the set of all linear combinations of vectors in x̃,
which must be a vector space. Suppose the vectors in x̃ are not linearly independent. This means
that, say, xm is a linear combination of the remaining vectors, and so any linear combination in
span(x̃) including xm may be replaced with one including only the remaining vectors, so that
span(x̃) = span(x1, . . . , xm−1). The dimension of a vector space V is the minimum number of
vectors whose span equals V. Clearly, this equals the number in any set of linearly independent
vectors which span V. Any such set of vectors forms a basis for V. Any vector space has a basis.

A.3 Equivalence Relationships

Suppose X is a set of objects, and ∼ defines a binary relation between two objects x, y ∈ X .

Definition A.1. A binary relation ∼ on a set X is an equivalence relation if it satisfies the following
three properties for any x, y, z ∈ X :

Reflexivity x ∼ x.

A.4. MATRICES 525

Symmetry If x ∼ y then y ∼ x.
Transitivity If x ∼ y and y ∼ z then x ∼ z.

Given an equivalence relation, an equivalence class is any set of the form Ex = {y ∈ X | y ∼ x}.
If y ∈ Ex then Ey = Ex. Each element x ∈ X is in exactly one equivalence class, so ∼ induces a
partition of X into equivalence classes.

In Euclidean space, ‘is parallel to’ is an equivalence relation, while ‘is perpendicular to’ is not.

For finite sets, cardinality is a property of a specific set, while for infinite sets, cardinality must
be understood as an equivalence relation.

A.4 Matrices

Let Mm,n(K) be the set of m × n matrices A, for which Ai,j ∈ K (or, when required for clarity,
[A]i,j ∈ K) is the element of the ith row and jth column. When the field need not be given, we will
write Mm,n = Mm,n(K). We will generally be interested in Mm,n(C), noting that the real matrices
Mm,n(R) ⊂ Mm,n(C) can be considered a special case of complex matrices, so that any resulting
theory holds for both types. This is important to note, since even when interest is confined to real
valued matrices, complex numbers enter the analysis in a natural way, so it is ultimately necessary
to consider complex vectors and matrices. Definitions associated with real matrices (transpose,
symmetric, and so on) have analgous definitions for complex matrices, which reduce to the more
familiar definitions when the matrix is real.

The square matrices are denoted as Mm = Mm,m. Elements of Mm,1 are column vectors and
elements of M1,m are row vectors. A matrix in Mm,n is equivalently an ordered set of m row vectors
or n column vectors. The transpose AT ∈Mn,m of a matrix A ∈Mm,n has elements A′j,i = Ai,j . For
A ∈Mn,k, B ∈Mk,m we always understand matrix multiplication to mean that C = AB possesses

elements Ci,j =
∑k

k′=1Ai,k′Bk′,j , so that matrix multiplication is generally not commutative (a
binary operation ◦ is commutative if a ◦ b = b ◦ a for all pairs (a, b) for which the operation is
defined). Then (AT)T = A and (AB)T = BTAT where the product is permitted.

In the context of matrix algrebra, a vector x ∈ Kn is usually assumed to be a column vector
in Mn,1. Therefore, if A ∈ Mm,n then the expression Ax is understood to be evaluated by matrix
multiplication. Similarly, if x ∈ Km we may use the expression xTA, understanding that x ∈Mm,1.

When A ∈Mm,n(C), the conjugate matrix is written Ā, and is the component-wise conjugate of
A. The identity ĀB̄ = AB holds. The conjugate transpose (or Hermitian adjoint) of A is A∗ = ĀT .
As with the transpose operation, (A∗)∗ = A and (AB)∗ = B∗A∗ where the product is permitted.
This generally holds for arbitrary products, that is (ABC)∗ = (BC)∗A∗ = C∗B∗A∗, and so on. For
A ∈ Mm,n(R), we have A = Ā and A∗ = AT , so the conjugate transpose may be used in place of
the transpose operation when matrices are real valued. We always may write (A+B)∗ = A∗ +B∗

and (A+B)T = AT +BT where dimensions permit.

A matrix A ∈ Mn(C) is diagonal if the only nonzero elements are on the diagonal, and can
therefore be referred to by the diagonal elements diag(a1, . . . , an) = diag(A1,1, . . . , An,n). A di-
agonal matrix is positive diagonal or nonnegative diagonal if all diagonal elements are positive or
nonegative.

The identity matrix I ∈Mm is the matrix uniquely possessing the property that A = IA = AI
for all A ∈Mm. For Mm(C), I is diagonal, with diagonal entries equal to 1. For any matrix A ∈Mm

526 APPENDIX A. LINEAR ALGEBRA

there exists at most one matrix A−1 ∈ Mm for which AA−1 = I, referred to as the inverse of A.
An inverse need not exist (for example, if the elements of A are constant).

The inner product (or scalar product) of two vectors x, y ∈ Cn is defined as 〈x, y〉 = y∗x. For
any x ∈ Cn we have 〈x, x〉 =

∑
i x̄ixi =

∑
i |xi|2, so that 〈x, x〉 is a nonnegative real number,

and 〈x, x〉 = 0 if and only if x = ~0. The magnitude, or norm, of a vector may be taken as
‖x‖ = (〈x, x〉)1/2.

Two vectors x, y ∈ Cn are orthogonal if 〈x, y〉 = 0. A set of vectors x1, . . . , xm is orthogonal
if 〈xi, xj〉 = 0 when i 6= j. A set of m orthogonal vectors are linearly independent, and so form
the basis for an m dimensional vector space. If in addition ‖xi‖ = 1 for all i, the vectors are
orthonormal.

A matrix Q ∈ Mn(C) is unitary if Q∗Q = QQ∗ = I. Equivalently, Q is unitary if and only (i)
it’s column vectors are orthonormal; (ii) it’s row vectors are orthonormal; (iii) it possesses inverse
Q−1 = Q∗. The more familiar term orthogonal matrix is usually reserved for a real valued unitary
matrix (otherwise the definition need not be changed).

A unitary matrix preserves magnitude, since 〈Qx,Qx〉 = (Qx)∗(Qx) = x∗Q∗Qx = x∗Ix =
x∗x = ‖x‖2.

A matrix Q ∈ Mn(C) is a permutation matrix if each row and column contains exactly one 1
entry, with all other elements equal to 0. Then y = Qx is a permutation of the elements of x ∈ Cn.
A permutation matrix is always orthogonal.

Suppose A ∈ Mm,n and let α ⊂ {1, . . . ,m}, β ⊂ {1, . . . , n} be any two nonempty subsets of
indices. Then A[α, β] ∈ M|α|,|β| is the submatrix of A obtained by deleting all elements except for
Ai,j , i ∈ α, j ∈ β. If A ∈Mn, and α = β, then A[α, α] is a principal submatrix.

The determinant associates a scalar with A ∈Mm(C) through the recursive formula

det(A) =
∑
i=1

(−1)i+jAi,j det(Ai,j) =
∑
j=1

(−1)i+jAi,j det(Ai,j)

where Ai,j ∈ Mm−1(C) is the matrix obtained by deleting the ith row and jth column of A. Note
that in the respective expressions any j or i may be chosen, yielding the same number, although the
choice may have implications for computational efficiency. As is well known, for A ∈M1(C) we have
det(A) = A1,1 and for A ∈M2 we have det(A) = A1,1A2,2−A1,2A2,1. In general, det(AT) = det(A),

det(A∗) = det(A), det(AB) = det(A) det(B), det(I) = 1 which implies det(A−1) = det(A)−1 when
the inverse exists.

A large class of algorithms is associated with the problem of determining a solution x ∈ Km to
the linear systems of equations Ax = b for some fixed A ∈Mm and b ∈ Km.

Theorem A.1. The following statements are equivalent for A ∈ Mm(C), and a matrix satisfying
any one is referred to as nonsingular, any other matrix in Mm(C) singular :

(i) The columns vectors of A are linearly independent.

(ii) The row vectors of A are linearly independent.

(iii) det(A) 6= 0.

A.5. EIGENVALUES AND SPECTRAL DECOMPOSITION 527

(iv) Ax = b possesses a unique solution for any b ∈ Km.

(v) x = ~0 is the only solution of Ax = ~0.

Matrices A,B ∈ Mn are similar, if there exists a nonsingular matrix S for which B = S−1AS.
Simlarity is an equivalence relation (Section A.3). A matrix is diagonalizable if it is similar to a
diagonal matrix. Diagonalization offers a number of advantages. We always have Bk = S−1AkS, so
that if A is diagonal, this expression is particularly easy to evaluate. More generally, diagonalization
can make apparent the behavior of a matrix interpreted as a transformation. Suppose in the
diagonalization B = S−1AS we know that S is orthogonal, and that A is real. Then the action of
B on a vector is decomposed into S (a change in coordinates), A (elementwise scalar multiplication)
and S−1 (the inverse change in coordinates).

A.5 Eigenvalues and Spectral Decomposition

For A ∈Mn(C), x ∈ Cn, and λ ∈ C we may define the eigenvalue equation

Ax = λx, (A.1)

and if the pair (λ, x) is a solution to this equation for which x 6= ~0, then λ is an eigenvalue of A and
x is an associated eigenvector of λ. Any such solution (λ, x) may be called an eigenpair. Clearly,
if x is an eigenvector, so is any nonzero scalar multiple. Let Rλ be the set of all eigenvectors x
associated with λ, If x, y ∈ Rλ then ax+by ∈ Rλ, so that Rλ is a vector space. The dimension of Rλ
is known as the geometric multiplicity of λ. We may refer to Rλ as an eigenspace (or eigenmanifold).
In general, the spectral properties of a matrix are those pertaining to the set of eigenvalues and
eigenvectors.

If A ∈ Mn(R), and λ is an eigenvalue, then so is λ̄, with associated eigenvectors Rλ̄ = R̄λ.
Thus, in this case eigenvalues and eigenvectors occur in conjugate pairs. Simlarly, if λ is real there
exists a real associated eigenvector.

The eigenvalue equation may be written (A − λI)x = 0. However, by Theorem A.1 this has
a nonzero solution if and only if A − λI is singular, which occurs if and only if pA(λ) = det(A −
λI) = 0. By construction of a determinant, pA(λ) is an order n polynomial in λ, known as the
characteristic polynomial of A. The set of all eigenvalues of A is equivalent to the set of solutions to
the characteristic equation pA(λ) = 0 (including complex roots). The multiplicity of an eigenvalue
λ as a root of pA(λ) is referred to as it’s algebraic multiplicity. A simple eigenvalue has algebraic
multiplicity 1. The geometric multiplicity of an eigenvalue can be less, but never more, than the
algebraic multiplicity. A matrix with equal algebraic and geometric multiplicities for each eigenvalue
is a nondefective matrix, and is otherwise a defective matrix.

We therefore denote the set of all eigenvalues as σ(A). An important fact is that σ(Ak) consists
exactly of the eigenvalues σ(A) raised to the kth power, since if (λ, x) solves Ax = λx, then
A2x = Aλx = λAx = λ2x, and so on. A quantity of particular importance is the spectral radius
ρ(A) = max{|λ| | λ ∈ σ(A)}. There is sometimes interest in ordering the eigenvalues by magnitude.
If there exists an eigenvalue λ1 = ρ(A), this is sometimes referred to as the principal eigenvalue,
and any associated eigenvector is a principle eigenvector.

Suppose we may construct n eigenvalues λ1, . . . , λn, with associated eigenvectors ν1, . . . , νn.
Then let Λ ∈ Mn be the diagonal matrix with ith diagonal element λi, and let V ∈ Mn be the

528 APPENDIX A. LINEAR ALGEBRA

matrix with ith column vector νi. By virtue of (A.1) we can write

AV = V Λ. (A.2)

If V is invertable (equivalently, there exist n linearly independent eigenvectors, by Theorem A.1),
then

A = V ΛV −1, (A.3)

so that A is diagonalizable. Alternatively, if A is diagonalizable, then (A.2) can be obtained from
(A.3) and, since V is invertable, there must be n independent eigenvectors. The following theorem
expresses the essential relationship between diagonalization and spectral properties.

Theorem A.2. For square matrix A ∈Mn(C):

(i) Any set of k ≤ n eigenvectors ν1, . . . , νk associated with distinct eigenvalues λ1, . . . , λk are
linearly independent,

(ii) A is diagonalizable if and only if there exist n linearly independent eigenvectors,

(iii) If A has n distinct eigenvalues, it is diagonalizable (this follows from (i) and (ii)),

(iv) A is diagonalizable if and only if it is nondefective.

A.5.1 Right and left eigenvectors

The eigenvectors defined by (A.1) may be referred to as right eigenvectors, while left eigenvectors
are nonzero solutions to

x∗A = λx∗, (A.4)

(note that some conventions do not explicitly refer to complex conjugates x∗ in (A.4)). This
similarly leads to the equation x∗(A − λI) = 0, which by an argument identical to that used for
right eigenvectors, has nonzero solutions if and only if pA(λ) = 0, giving the same set of eigenvalues
as those defined by (A.1). There is therefore no need to distinguish between ‘right’ and ‘left’
eigenvalues. Then, fixing eigenvalue λ we may refer to the left eigenspace Lλ as the set of solution
x to (A.4) (in which case, Rλ now becomes the right eigenspace of λ).

The essential relationship between the eigenspaces is summarized in the following theorem:

Theorem A.3. Suppose A ∈Mn(C).
(i) For any λ ∈ σ(A) Lλ and Rλ have the same dimension.
(ii) For any distinct eigenvalues λ1, . . . , λm from σ(A), any selection of vectors xi ∈ Rλi for

i = 1, . . . ,m are linearly independent. The same holds for selections from distinct Lλ.
(iii) Right and left eigenvectors associated with distinct eigenvalues are orthogonal.

Proof. Proofs may be found in, for example, Chapter 1 of Matrix Analysis, Horn and Johnson,
1985.

Next, if V is invertible, multiply both sides of (A.3) by V −1 yielding

V −1A = ΛV −1.

A.6. SYMMETRIC, HERMITIAN AND POSITIVE DEFINITE MATRICES 529

Just as the column vectors of V are right eigenvectors, we can set U∗ = V −1, in which case the
ith column vector υi of U is a solution x to the left eigenvector equation (A.4) corresponding to
eigenvalue λi (the ith element on the diagonal of Λ). This gives the diagonalization

A = V ΛU∗.

Since U∗V = I, indefinite multiplication of A yields the spectral decomposition:

Am = V ΛmU∗ =
n∑
i=1

λmi νiυ
∗
i . (A.5)

The apparent recipe for a spectral decomposition is to first determine the roots of the charac-
teristic polynomial, and then to solve each resulting eigenvalue equation (A.1) after substituting
an eigenvalue. This seemingly straightforward procedure proves to be of little practical use in
all but the simplest cases, and spectral decompositions are often difficult to construct using any
method. However, a complete spectral decomposition need not be the objective. First, it may not
even exist for many otherwise interesting models. Second, there are many important problems
related to A that can be solved using spectral theory, but without the need for a complete spectral
decomposition. For example:

(i) Determining bounds ‖Ax‖ ≤ a ‖x‖ or ‖Ax‖ ≥ b ‖x‖,

(ii) Determining the convergence rate of the limit limk→∞A
k = A∞,

(iii) Verifying the existence of a scalar λ and vector ν for which Aν = λν, and guaranteeing
that (for example) λ and ν are both real and positive.

Basic spectral theory relies on the identification of special matrix forms which impose specific
properties on a the spectrum. We next discuss two cases.

A.6 Symmetric, Hermitian and Positive Definite Matrices

A matrix A ∈ Mn(C) is Hermitian if A = A∗. A Hermitian real valued matrix is symmetric, that
is, A = AT . The spectral properties of Hermitian matrices are quite definitive (see, for example,
Chapter 4, Matrix Analysis, Horn and Johnson, 1985).

Theorem A.4. A matrix A ∈ Mn(C) is Hermitian if and only if there exists a unitary matrix U
and real diagonal matrix Λ for which A = UΛU∗.

A matrix A ∈ Mn(R) is symmetric if and only if there exists a real orthogonal Q and real
diagonal matrix Λ for which A = QΛQT .

Clearly, the matrices Λ and U may be identified with the eigenvalues and eigenvectors of A,
with n eignevalue equation solutions given by the respect columns of AU = UΛU∗U = UΛ. An
important implication of this is that all eigenvalues of a Hermitian matrix are real, and eigenvectors
may be selected to be orthonormal.

If we interpet x ∈ Cn as a column vector x ∈ Mn,1 we have quadratic form x∗Ax, which is
interpretable either as a 1× 1 complex matrix, or as a scalar in C, as is convenient.

530 APPENDIX A. LINEAR ALGEBRA

If A is Hermitian, then (x∗Ax)∗ = x∗A∗x = x∗Ax. This means if z = x∗Ax ∈ C, then z = z̄,
equivalently x∗Ax ∈ R. A Hermitian matrix A is positive definite if and only if x∗Ax > 0 for all
x 6= ~0. If instead x∗Ax ≥ 0 then A is positive semidefinite. A nonsymmetric matrix satisfying
xTAx > 0 can be replaced by A′ = (A+AT)/2, which is symmetric, and also satisfies xTA′x > 0.

Theorem A.5. If A ∈Mn(C) is Hermitian then x∗Ax is real. If, in addition, A is positive definite
then all of its eigenvalues are positive. If it is positive semidefinite then all of its eigenvalues are
nonnegative.

If A is positive semidefinite, and we let λmin and λmax be the smallest and largest eigenvalies
in σ(A) (all of which are nonnegative real numbers) then it can be shown that

λmin = min
‖x‖=1

x∗Ax and λmax = max
‖x‖=1

x∗Ax.

If A is positive definite then λmin > 0. In addition, since the eigenvalues of A2 are the squares of
the eigenvalues of A, and since for a Hermitian matrix A∗ = A, we may also conclude

λmin = min
‖x‖=1

‖Ax‖ and λmax = max
‖x‖=1

‖Ax‖ ,

for any positive semidefinite matrix A.

Any diagonalizable matrix A possesses a kth root, A1/k, meaning A =
(
A1/k

)k
. Given diago-

nalization A = Q−1ΛQ, this is easily seen to be A1/k = Q−1Λ1/kQ, where [Λ1/k]i,j = (Λi,j)
1/k. If

A is a real symmetric positive definite matrix then A1/2 is real, symmetric and nonsingular.

Appendix B

Multivariate Distributions

We will need to characterize the distribution of random vectors X̃ = (X1, . . . , Xn), described in
terms of densities, PMFs and CDFs. A random vector can have components of different types (say,
X1 is discrete and X2 is continuous). However, the usual approach is to assume that all components
are of the same type. Once the theory is understood under this restriction, extension to the more
general case will be quite natural.

A discrete random vector X̃ = (X1, . . . , Xn) possesses a PMF which assigns a probability
pX̃(x1, . . . , xn) ∈ [0, 1] to each element x̃ = (x1, . . . , xn) of a support set S such that

∑
x̃∈S

pX̃(x̃) = 1. (B.1)

Then the probability of E ⊂ Rn is

P (E) =
∑

x̃∈E∩S
pX̃(x̃). (B.2)

A continuous random vector X̃ = (X1, . . . , Xn) possess a density function fX̃(x1, . . . , xn) ≤ 0 which
satisfies the condition ∫

x̃∈Rn
fX̃(x̃)dx̃ = 1. (B.3)

Then the probability of E ⊂ Rn is

P (E) =

∫
x̃∈E

fX̃(x̃)dx̃. (B.4)

The support of X̃ consists of all points x̃ for which fX̃(x̃) > 0.

Suppose the components of X̃ are independent, and Xi has density fi. Then the joint density
of X̃ is

fX̃(x1, . . . , xn) =
n∏
i=1

fi(xi). (B.5)

531

532 APPENDIX B. MULTIVARIATE DISTRIBUTIONS

B.1 Matrix Algebra and Multivariate Distributions

Suppose we have random vector X̃ = (X1, . . . , Xm). The mean vector can be written µX̃ = E[X̃] =
(E[X1], . . . , E[Xm]) in the appropriate context. In matrix algebra µX̃ is usually interpreted as a
column vector.

The m×m variance matrix (also referred to as the covariance matrix) of X̃ is defined elemen-
twise as [

ΣX̃

]
i,j

= cov [Xi, Xj] ,

where we denote covariance cov [X,Y] = E[(X − E[X])(Y − E[Y])] and consequently var [X] =
cov [X,X]. Two RVs may be refered to as linearly independent if their covariance is zero, although
this does not by itself imply independence under the formal definition.

When the context permits we may write var
[
X̃
]

= ΣX̃ . Since cov [X,Y] = cov [Y,X], ΣX̃

is always symmetric. For any linear combination Y = a1X1 + . . . + amXm based on constant
coefficients ai it may be shown that

var [Y] = ãTΣX̃ ã, (B.6)

where ã = (a1, . . . , am) is taken to be a column vector. Since a variance is always nonnegative this
must mean ΣX̃ is positive semidefinite, and is positive definite unless a subset of the elements of

X̃ are linearly dependent with probability 1.

Next, suppose b is a k × 1 constant column vector, A is a k ×m constant matrix, and X̃ is a
m× 1 random vector. Then

Ỹ = b+AX̃

is a linear tranformation yielding a k × 1 random vector, consisting of k linear combinations of X̃.
The mean and variance matrices of X̃ and Ỹ are always related by

E[Ỹ] = b+AE[X̃] and var
[
Ỹ
]

= A
(
var

[
X̃
])
AT .

Suppose var
[
X̃
]

is positive definite. Then there exists an invertible symmetric square root

matrix var
[
X̃
]1/2

(Section A.6). If Ỹ = var
[
X̃
]−1/2

X̃ then

var
[
Ỹ
]

= var
[
X̃
]−1/2

var
[
X̃
]
var

[
X̃
]−1/2

= var
[
X̃
]−1/2

var
[
X̃
]1/2

var
[
X̃
]1/2

var
[
X̃
]−1/2

= I.

Thus, any random vector with a positive definite variance matrix var
[
X̃
]

possesses a linear trans-

formation yielding linearly independent coordinates of unit variance.

B.2. MULTIVARIATE NORMAL DISTRIBUTION 533

B.2 Multivariate Normal Distribution

Suppose µ̃ is a m × 1 column vector and Σ is a positive defnite m ×m matrix. The multivariate
normal density function is defined as

f(x | µ̃,Σ) = (2π)−m/2 det(Σ)−1/2 exp(−Q/2), x ∈ Rm, where

Q = (x− µ̃)TΣ−1(x− µ̃). (B.7)

Then X̃ = (X1, . . . , Xm) is a multivariate normal random vector if it possesses this density, in

which case it may be shown that E[X̃] = µ̃, var
[
X̃
]

= Σ. In addition, the marginal distributions

are Xi ∼ N(µ̃i,Σi,i). The m = 2 case is often referred to as the bivariate normal distribution.
It is important to note that a random vector with marginal normal densities is not necessarily

multivariate normal. For example, if X ∼ N(0, 1) and Y = SX where S is an independent random
sign, then Y ∼ N(0, 1), cov [X,Y] = 0, but (X,Y) does not possess a multivariate normal density.

The definition of a multivariate normal random vector can be generalized to include any random
vector of the form X̃ = µ̃+ AZ̃, where µ̃ is an k × 1 column vector, A is an k ×m matrix, and Z̃

is a m× 1 column vector of independent unit normal random variables. In this case var
[
X̃
]

need

not be positive definite, so (B.7) cannot be used directly.

Appendix C

An R Tutorial

R is an interpretive programming environment designed primarily for statistical computations,
but which extends into more general applications of optimization and numerical analysis. An
extensive library of statistical algorithms is accessible from within R and through curated software
repositories such as cran.r-project.org, bioconductor.org and omegahat.org. To a large
degree, the operation of R is independent of the operating system, but sometimes OS specific issues
arise.

R is based on a command line interpreter. Its commands can also be used to contruct high
level programs permitting standard looping and conditional execution statements. It has especially
powerful graphics abilities.

C.1 Mathematical Operations on Scalars and Vectors

A good first command is

> help(Arithmetic)

This produces documentation on the use of arithmetic binary operators. The format of the docu-
mentation will depend on the operating system.

Description

These binary operators perform arithmetic on numeric or complex

vectors (or objects which can be coerced to them).

Usage

x + y

x - y

x * y

x / y

x ^ y

x %% y

x %/% y

534

C.1. MATHEMATICAL OPERATIONS ON SCALARS AND VECTORS 535

Arguments

x, y

numeric or complex vectors or objects which can be coerced to such,

or other objects for which methods have been written.

<remaining documentation omitted>

To make use of these operators we can assign numbers to variables x and y:

> x = 13

> y = 4

> x + y

[1] 17

> x - y

[1] 9

> x * y

[1] 52

> x / y

[1] 3.25

> x ^ y

[1] 28561

> x %% y

[1] 1

> x %/% y

[1] 3

Comments are defined by the # symbol

> # this is a comment

> x = 3

> # x = 2

> x

[1] 3

>

Assignment can also be done with the syntax

> x <- 13

> y <- 4

> x

[1] 13

> y

[1] 4

>

Note that R is case sensitive:

536 APPENDIX C. AN R TUTORIAL

> a = 4

> A = 3

> a - A

[1] 1

> help(arithmetic)

No documentation for arithmetic in specified packages and libraries:

you could try ??arithmetic

>

C.1.1 Vectors in R

In the above examples, an index reference [1] is given whenever a variable is displayed (simply by
typing the name of the variable). This is because R considers a single number as a special case of
a vector (or array). One of the advantages of R for statistical computation is the manner in which
vectors can be manipulated almost as easily as variables. Vectors are easily constructed using the
c() function (you can always enter help(c)):

> x = c(3.4, -1, 99, 1/2)

> x

[1] 3.4 -1.0 99.0 0.5

An element of a vector is referenced using square brackets:

> x = c(3.4, -1, 99, 1/2)

> x[2]

[1] -1

> i = 3

> x[i]

[1] 99

Note that the c() function accepts mathematical expressions as argument (such as 1/2 or
sin(0.075), which are evaluated when the vector object is created.

Scalar operations on vectors follow intuitive rules:

> x = c(1, 3, 10, 99.3)

> x

[1] 1.0 3.0 10.0 99.3

> x+1

[1] 2.0 4.0 11.0 100.3

> x*10

[1] 10 30 100 993

Addition and multiplication of two vectors of equal length is done by element:

> x = c(1, 3, 10, 99.3)

> y = c(1, 1, 2, 2)

> x*y

C.1. MATHEMATICAL OPERATIONS ON SCALARS AND VECTORS 537

[1] 1.0 3.0 20.0 198.6

> x + y

[1] 2.0 4.0 12.0 101.3

> x + 2*y

[1] 3.0 5.0 14.0 103.3

> x + 2*y*x*x

[1] 3.00 21.00 410.00 39541.26

It is important to note that R will attempt to add, subtract, multiply or divide vectors of
unequal length. The decision made by R on your behalf is to recycle the shorter length vector
enough times to permit the operation. If the length of the longer vector is not a multiple of the
length of the shorter vector, R will give a warning:

> c(1,2,3) + c(10,20)

[1] 11 22 13

Warning message:

In c(1, 2, 3) + c(10, 20) :

longer object length is not a multiple of shorter object length

In the above example, the shorter vector c(10,20) was extended to c(10,20,10) for the purposes of
evaluation. In the following example, the shorter vector c(10,20) is extended to c(10,20,10,20).
In this case R will give no warning:

> c(1,2,3,4) + c(10,20)

[1] 11 22 13 24

The following examples should give an idea how this works. Note that only the last expression
produces a warning.

> c(1,2,1,2,1,2,1,2) + c(10,20)

[1] 11 22 11 22 11 22 11 22

> c(100,200) + c(1,2,1,2,1,2,1,2)

[1] 101 202 101 202 101 202 101 202

> c(100,200)*c(1,2,1,2,1,2,1,2)

[1] 100 400 100 400 100 400 100 400

> c(50,75)/c(1,2,1,2,1,2,1,2)

[1] 50.0 37.5 50.0 37.5 50.0 37.5 50.0 37.5

> c(100,200) - c(1,2,1,2,1,2,1,2)

[1] 99 198 99 198 99 198 99 198

> c(100,200) + c(1,2,1,2,1,2,1,2,1)

[1] 101 202 101 202 101 202 101 202 101

Warning message:

In c(100, 200) + c(1, 2, 1, 2, 1, 2, 1, 2, 1) :

longer object length is not a multiple of shorter object length

Special vectors can be created in a number of ways:

538 APPENDIX C. AN R TUTORIAL

> 1:5

[1] 1 2 3 4 5

> 5:1

[1] 5 4 3 2 1

> 1:5 + 5:1

[1] 6 6 6 6 6

> rep(3,10)

[1] 3 3 3 3 3 3 3 3 3 3

> rep(3:1,4)

[1] 3 2 1 3 2 1 3 2 1 3 2 1

> seq(0, 1, 0.25)

[1] 0.00 0.25 0.50 0.75 1.00

> seq(0, 1, 0.27)

[1] 0.00 0.27 0.54 0.81

The length of a vector is given by the function length():

> x = rep(3:1,4)

> length(x)

[1] 12

Vectors of length 0 are defined in R and are assigned the symbol NULL

> x = NULL

> length(x)

[1] 0

> x = null

Error: object ’null’ not found

R also has a missing value indicator NA which may be used in place of a number (formally, an
element of a vector):

> c(1,NA,3)

[1] 1 NA 3

> c(1,NA,3)+2

[1] 3 NA 5

Conventions for dealing with missing values will depend on the particular function. For example,
we can input a vector into the function sum():

> x = c(2,4,6)

> sum(x)

[1] 12

If the vector has a missing value we get the following result:

> x = c(2,NA,6)

> sum(x)

[1] NA

C.1. MATHEMATICAL OPERATIONS ON SCALARS AND VECTORS 539

unless we specify that missing values are to be removed by setting the remove missing value option
na.rm to TRUE:

> x = c(2,NA,6)

> sum(x, na.rm=TRUE)

[1] 8

> sum(x, na.rm=T)

[1] 8

> sum(x, na.rm=TR)

Error: object ’TR’ not found

If we consult the sum() documentation by using help(sum) we find that na.rm = FALSE is the
default option.

R has some flexibility regarding undefined numbers, for example:

> 1/0

[1] Inf

> 1/c(0,0,0)

[1] Inf Inf Inf

> x = 1/c(0,0,0)

> x

[1] Inf Inf Inf

Note that R offers considerable flexibility when appending elements to vectors. A reference to an
element beyond the length of the vector yields NA. However, an assignment to an element beyond
the length of the vector forces an extension of the length of the vector.

> x = c(5,4,3,2,1)

> x

[1] 5 4 3 2 1

> x[10]

[1] NA

> x[10] = 999

> x

[1] 5 4 3 2 1 NA NA NA NA 999

C.1.2 Global options

Many system options can be changed. The function options() can be used to display the value
of an option by inputing a character string holding the option name. For example, the character
used as the R command line is an option with the name ‘prompt’:

> options("prompt")

$prompt

[1] "> "

We can also change options within the option() function argument. For example, we can include
an inspirational message in the prompt:

540 APPENDIX C. AN R TUTORIAL

> options(prompt = "Do It Right the First Time> ")

Do It Right the First Time> options(’prompt’)

$prompt

[1] "Do It Right the First Time> "

If we eventually change our mind, we can always return to the original prompt:

Do It Right the First Time> options(prompt = "> ")

> options(’prompt’)

$prompt

[1] "> "

> "That’s better ..."

[1] "That’s better ..."

This should be done sparingly, but, occasionally, a contributed function may change an option, so
it’s good to be aware of this possibility.

To see all options enter the option() command without argument:

> options()

$add.smooth

[1] TRUE

$bitmapType

[1] "quartz"

$browser

[1] "/usr/bin/open"

$browserNLdisabled

[1] FALSE

$CBoundsCheck

[1] FALSE

$check.bounds

[1] FALSE

$citation.bibtex.max

[1] 1

$continue

[1] "+ "

<remaining output omitted>

C.1. MATHEMATICAL OPERATIONS ON SCALARS AND VECTORS 541

C.1.3 Modes (or types)

An element of a vector is stored as one of several types (in R the term mode is also used). Numerica
data can be stored as an integer or a double type (that is, integer or real). Usually, operations in
R are not highly dependent on the difference between integer and real.

> x = 4:6

> x[2]

[1] 5

> x[2.2]

[1] 5

> x[2.5]

[1] 5

> x[2.9]

[1] 5

> x[2.99999]

[1] 5

> x[3]

[1] 6

The distinction, however, is important when R passes data to other programs written in, for
example, C++.

It is important to realize that the number stored is not necessarilly the number displayed:

> x = 1.2344556543

> x

[1] 1.234456

> y = x - 1.234456

> y == 0

[1] FALSE

> y

[1] -3.457e-07

There is a default rounding of 7 significant digits for R displays.

> options(’digits’)

$digits

[1] 7

> 2.3433345994

[1] 2.343335

> options(digits=3)

> 2.3433345994

[1] 2.34

> options(digits=7)

> 2.3433345994

[1] 2.343335

> options(’digits’)

542 APPENDIX C. AN R TUTORIAL

$digits

[1] 7

Types can be coerced into other types. Real numbers are rounded down when this happens.

> 3 == 2.99999999

[1] FALSE

> as.integer(2.99999999)

[1] 2

> as.integer(3.00000001)

[1] 3

Real numbers can be rounded off (round()), signif()), or converted to integers with the floor()

or ceiling() functions, or with the round() function with option digits=0:

> x = 34.59996

> round(x,3)

[1] 34.6

> round(x,5)

[1] 34.59996

> round(x,0)

[1] 35

> ceiling(x)

[1] 35

> floor(x)

[1] 34

> round(0.003344,3)

[1] 0.003

> signif(0.003344,3)

[1] 0.00334

Complex numbers are also supported (see help(complex)).
Character strings can be stored in variables or vectors:

> days = c("Monday","Tuesday","Wednesday","Thursday",

"Friday", "Saturday", "Sunday")

> days

[1] "Monday" "Tuesday" "Wednesday" "Thursday"

"Friday" "Saturday" "Sunday"

Vectors can also be of logical type, taking values TRUE and FALSE (or T and F). These can be
entered directly, or be produced as the value of a conditional expression:

> 4 > 1

[1] TRUE

> 4 < 1

[1] FALSE

> 4 == 6

C.1. MATHEMATICAL OPERATIONS ON SCALARS AND VECTORS 543

[1] FALSE

> 4 > 4

[1] FALSE

> 4 >= 4

[1] TRUE

> 4 <= 4

[1] TRUE

> 4 != 6

[1] TRUE

Note that == is the logical relationship ‘is equal to’, while = is the assign operator. Confusing the
two can lead to bugs which might be hard to detect. Also, != means ‘is not equal to’. As expected
<,>,<=,>= mean ‘less than’, ‘greater than’, ‘less than or equal to’, ‘greater than or equal to’.

> x = c(2<2, 2>2, 2<=2, 2>=2, 2==2,2!=2)

> x

[1] FALSE FALSE TRUE TRUE TRUE FALSE

The logical (or Boolean) operators are ! (negation); & or && (logical AND); | or || (logical OR),
xor() (exclusive OR). The difference between & and && is that & yields elementwise evaluation of
vectors, while && is intended for single Boolean values. It should be noted that && can be applied to
vectors, but will examine elements left to right, using only the first. Confusing the two forms can
lead to unexpected results. The same comment applies to | and ||. The function xor() accepts
two logical values as arguments, returning TRUE if and only is exactly one of the arguments equals
TRUE. This function can do elementwise evaluation of vectors:

> x = T

> y = F

> x & y

[1] FALSE

> x && y

[1] FALSE

> x | y

[1] TRUE

> x || y

[1] TRUE

> x == y

[1] FALSE

> x != y

[1] TRUE

> xor(x,y)

[1] TRUE

>

> # try vectors

> x = c(T,F)

> y = c(F,F)

> x & y

544 APPENDIX C. AN R TUTORIAL

[1] FALSE FALSE

> x && y

[1] FALSE

> x | y

[1] TRUE FALSE

> x || y

[1] TRUE

> xor(x,y)

[1] TRUE FALSE

Note that logical vectors can be constructed by applying conditional statements to other vectors:

> x = seq(0, 50, 7)

> x

[1] 0 7 14 21 28 35 42 49

> z = (x<25)

> z

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

> z = (x %% 3 == 0)

> z

[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

In the preceding example, we identify all elements of a vector x which are less than 25, and
which are divisible by 3.

Modes have specific functions associated with them to create objects and test for object type:

#

Make integer object

#

x = integer()

x

length(x)

#

Give it length 1

#

x = integer(1)

x

length(x)

#

Create an integer vector of length 5

#

x = integer(5)

x

length(x)

#

Verify that it is an integer object

#

C.1. MATHEMATICAL OPERATIONS ON SCALARS AND VECTORS 545

is.integer(x)

#

It’s not a double precision object

#

is.double(x)

#

Make a double precision, logical, complex and character object

#

double(5)

logical(5)

complex(5)

character(5)

#

Or, we could just make a numeric vector

#

numeric(5)

#

What is the mode?

#

x = double(5)

mode(x)

x = logical(5)

mode(x)

x = complex(5)

mode(x)

x = character(5)

mode(x)

x = numeric(5)

mode(x)

C.1.4 Index referencing

R has a flexible system of index references:

x = 2*(1:10)

> x

[1] 2 4 6 8 10 12 14 16 18 20

> x[c(3,6,9)]

[1] 6 12 18

> y = x[c(3,6,9)]

> length(y)

[1] 3

> y

[1] 6 12 18

This makes is straightforward to create subvectors.

546 APPENDIX C. AN R TUTORIAL

C.1.5 More vector operations

The function sort() returns a sorted vector, while sort.list() returns a vector of indices which
generates a sorted list. The function rev() returns a vector in reverse order, while rank() returns
the ranks of the elements of a vector. By default, ties are represented by average ranks, although
other options are available (see help(rank)).

> sort(c(2,4,5,3,2))

[1] 2 2 3 4 5

> x = c(2,4,5,3,2)

> sort(x)

[1] 2 2 3 4 5

> ind = sort.list(x)

> x[ind]

[1] 2 2 3 4 5

> rev(x)

[1] 2 3 5 4 2

> rank(x)

[1] 1.5 4.0 5.0 3.0 1.5

One useful function is unique() which returns the unique values of a vector:

> unique(c(1,2,2,3))

[1] 1 2 3

> unique(c(6,7,6,5,5,3,2,2,3))

[1] 6 7 5 3 2

> unique(c("Bob","bob","Mike", "Bob", "Bob "))

[1] "Bob" "bob" "Mike" "Bob "

Set operations can be performed on vectors. The %in% operator can be used to test for the
presence of an element in a vector. It returns a logical value:

> 3 %in% c(1,2,3,4)

[1] TRUE

> 3 %in% c(1,2,4)

[1] FALSE

> "WNT3" %in% c("CCR5","SFRP","WNT3")

[1] TRUE

> "WNT3" %in% c("Ccr5","Sfrp","Wnt3")

[1] FALSE

The first argument may be a vector. In this case the test is applied to each element of the first
vector, the second vector remaining fixed for each test. The result is therefore a logical vector equal
in length to the first vector:

> c(2,3) %in% c(1,2,3,4)

[1] TRUE TRUE

> c(2,3,3,5,4,5,3) %in% c(1,2,3,4)

[1] TRUE TRUE TRUE FALSE TRUE FALSE TRUE

C.1. MATHEMATICAL OPERATIONS ON SCALARS AND VECTORS 547

Formal set algebra is defined in R, in particular, union() (A ∪ B), intersect() (A ∩ B),
setdiff() (A∩Bc). Note that setdiff() is the asymmetric set difference, not the symmetric set
difference (A ∩Bc) ∪ (B ∩Ac).

> x = c(1,2,2,3,3,4)

> y = c(3,4,4,4,5,6,7,8,9)

> union(x,y)

[1] 1 2 3 4 5 6 7 8 9

> intersect(x,y)

[1] 3 4

> setdiff(x,y)

[1] 1 2

> setdiff(y,x)

[1] 5 6 7 8 9

The function setequal() (A = B) tests for equality of vectors regarded as sets. It evaluates to
a logical value, which is TRUE if and only if every element in one vector may be found in the other
vector. Note that unique() returns a vector of the unique values in a vector, and so is ordered,
that is, it is not a set.

> setequal(c(1,2),c(1,2))

[1] TRUE

> setequal(c(1,2),c(2,1))

[1] TRUE

> setequal(c(1,2),c(2,1,2,1,2,2))

[1] TRUE

Finally, is.element(x,y) is identical to x %in% y. See discussion below on binary operators.

Set operations may be performed on general types:

> gene.list.1 = c(’ALDH4’, ’A1AP2B1’, ’BBC3’, ’BCL2’, ’CDC42BPA’,

’CDC42’, ’CDCA7’, ’CENPA’,’CDC42’, ’CDCA7’, ’CENPA’,

’CMC2’, ’DHX58’,’DEXH’, ’DIAPH3’, ’DTL’)

> gene.list.2 = c(’A1AP2B1’, ’BBC3’,’CDC42’, ’CDCA7’, ’CENPA’,

’CMC2’, ’COL4A2’, ’DCK’, ’DHX58’, ’DEXH’, ’DIAPH3’,

’DTL’)

> #

> # Which genes are in both lists?

> #

> intersect(gene.list.1, gene.list.2)

[1] "A1AP2B1" "BBC3" "CDC42" "CDCA7" "CENPA" "CMC2"

"DHX58" "DEXH" "DIAPH3" "DTL"

C.1.6 Pattern matching

R has quite extensive pattern matching capabilities. For example, using grep() we can specify a
charater pattern, then determine indices of a character vector containing that pattern:

548 APPENDIX C. AN R TUTORIAL

> gene.list.1 = c(’ALDH4’, ’A1AP2B1’, ’BBC3’, ’BCL2’, ’CDC42BPA’,

+ ’CDC42’, ’CDCA7’, ’CENPA’,’CDC42’, ’CDCA7’, ’CENPA’,

+ ’CMC2’, ’DHX58’,’DEXH’, ’DIAPH3’, ’DTL’)

> ind = grep(’CDC’, gene.list.1)

> ind

[1] 5 6 7 9 10

> gene.list.1[ind]

[1] "CDC42BPA" "CDC42" "CDCA7" "CDC42" "CDCA7"

The function grepl() performs the same function but returns a logical vector:

ind = grepl(’CDC’, gene.list.1)

> ind

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE

TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

> gene.list.1[ind]

[1] "CDC42BPA" "CDC42" "CDCA7" "CDC42" "CDCA7"

See also function regexpr() and gregexpr(). Pattern replacement is done with functions sub()

and gsub(). Most of these function support Perl-style regular expressions, by setting option
perl=TRUE.

The functions substr() and strsplit() can be used to extract or replace patterns within a
single character string.

C.1.7 Managing objects

There are a number of functions useful for managing R objects. The function ls() can be used to
list currently available objects. It can be used without argument to list all objects:

> ls()

[1] "f" "junk" "junka" "junkb" "x" "x1" "x2" "y"

Conditional lists can be made (see help(ls)).
Objects can be removed using the rm() command.

> ls()

[1] "f" "junk" "junka" "junkb" "x" "x1" "x2" "y"

> rm(y)

> ls()

[1] "f" "junk" "junka" "junkb" "x" "x1" "x2"

Be aware that ls() will return a list of all objects, which, combined with rm() can be used to
remove all objects:

> rm(list = ls())

> ls()

character(0)

If the previous example is examined carefully, it will be noticed that no warning prompt was given
before R removed all objects.

C.2. DATA STRUCTURES IN R 549

C.2 Data Structures in R

Besides vectors, data can be stored in matrices, as well as objects referred to as arrays, lists and
data frames.

C.2.1 Matrices

A matrix is essentially a vector with multiple indices. A two dimensional matrix can be created
with the function:

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,

dimnames = NULL)

The number of rows and columns are given explicitly by the nrow and ncol parameters. If a single
value is specified for the data, all matrix elements will equal that value (with NA as default). It is
also possible to input as data a vector of length nrow × ncol to be copied sequentially into the
matix either by row or by column, as specified by the byrow option. Several examples follow:

> matrix(data=c(1,2,3,4,5,6), nrow=2, ncol=3, byrow=T)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> matrix(data=c(1,2,3,4,5,6), nrow=2, ncol=3, byrow=F)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> matrix(data=c(1,2,3,4,5,6), nrow=2, ncol=3)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> matrix(data=99, nrow=2, ncol=3)

[,1] [,2] [,3]

[1,] 99 99 99

[2,] 99 99 99

> matrix(nrow=2, ncol=3)

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

The function dim() is used to either set or retrieve the dimensions of a matrix (row then column).
For example:

> x = matrix(data=99, nrow=2, ncol=3)

> dim(x)

[1] 2 3

Dimensions can also be set for a vector of data:

550 APPENDIX C. AN R TUTORIAL

> x = 1:12

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12

> dim(x) = c(4,3)

> x

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

At this point, we can introduce the matrix transpose function t():

> x = 1:12

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12

> dim(x) = c(3,4)

> x

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> y = t(x)

> y

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

This allows us to impose 4× 3 dimensions onto a vector using by row sequence.
A diagonal matrix can be constructed from a vector with the diag() function:

> diag(rep(1,10))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 0 1 0 0 0 0 0 0 0 0

[3,] 0 0 1 0 0 0 0 0 0 0

[4,] 0 0 0 1 0 0 0 0 0 0

[5,] 0 0 0 0 1 0 0 0 0 0

[6,] 0 0 0 0 0 1 0 0 0 0

[7,] 0 0 0 0 0 0 1 0 0 0

[8,] 0 0 0 0 0 0 0 1 0 0

[9,] 0 0 0 0 0 0 0 0 1 0

[10,] 0 0 0 0 0 0 0 0 0 1

When the input to diag() is a matrix, the diagonal elements are returned:

C.2. DATA STRUCTURES IN R 551

> matrix(c(1,2,3,4),2,2)

[,1] [,2]

[1,] 1 3

[2,] 2 4

> diag(matrix(c(1,2,3,4),2,2))

[1] 1 4

Matrix multiplication is carried out by the operator %*%:

> A = matrix(1:12,3,4)

> B = diag(c(1,2,2))

> A

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> B

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 2 0

[3,] 0 0 2

> C = B%*%A

> C

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 4 10 16 22

[3,] 6 12 18 24

A matrix may be constructed by appending rows or columns using the rbind() or cbind()

function:

> A = rbind(c(1,0,0,0), c(1,1,0,0), c(1,1,1,0), c(1,1,1,1))

> A

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 1 1 0 0

[3,] 1 1 1 0

[4,] 1 1 1 1

> B = cbind(c(1,0,0,0), c(1,1,0,0), c(1,1,1,0), c(1,1,1,1))

> B

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 0 1 1 1

[3,] 0 0 1 1

[4,] 0 0 0 1

The linear system of equations
b = Ax

552 APPENDIX C. AN R TUTORIAL

for unknown vector x can be solved by the function solve():

> A = rbind(c(1,0,0,0), c(1,1,0,0), c(1,1,1,0), c(1,1,1,1))

> A

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 1 1 0 0

[3,] 1 1 1 0

[4,] 1 1 1 1

> b = 1:4

> b

[1] 1 2 3 4

> x = solve(A,b)

> x

[1] 1 1 1 1

> A%*%x

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

> dim(x)

NULL

Note that in the operator A%*%x of the previous example, a matrix dimension 4 × 1 was assumed
for x, even though it is not a matrix. In this case, the dimension value of x is interpreted as an
empty vector.

If we want just the inverse of a matrix we include only that matrix in solve() function:

> A = rbind(c(1,0,0,0), c(1,1,0,0), c(1,1,1,0), c(1,1,1,1))

> A

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 1 1 0 0

[3,] 1 1 1 0

[4,] 1 1 1 1

> solve(A)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] -1 1 0 0

[3,] 0 -1 1 0

[4,] 0 0 -1 1

> solve(A)%*%A

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

C.2. DATA STRUCTURES IN R 553

[3,] 0 0 1 0

[4,] 0 0 0 1

C.2.2 More on index subsets

The indexing of matrices is flexible. Recall that subvectors can be created from vectors using
vectors of indices within the square brackets:

> x = seq(1,100,7)

> x

[1] 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

> length(x)

[1] 15

> x[c(3,6:9)]

[1] 15 36 43 50 57

> x[]

[1] 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

> x[NULL]

numeric(0)

In the preceding example, a subvector consisting of the 3rd, 6th, 7th, 8th and 9th element of a
vector of length 15 is displayed. Leaving the square brackets empty yields the entire vector, while
using NULL as the index vector yields a zero length vector.

The same principle applies to matrices and matrix like objects, except that each dimension is
subsetted. If the index set is empty all elements of that dimension are included. This allows row
and column vectors to be extracted from a matrix.

> A = cbind(c(1,26,1,1), c(7,76,7,7), c(4,43,4,4), c(3,39,3,3))

> A

[,1] [,2] [,3] [,4]

[1,] 1 7 4 3

[2,] 26 76 43 39

[3,] 1 7 4 3

[4,] 1 7 4 3

> A[,2:3]

[,1] [,2]

[1,] 7 4

[2,] 76 43

[3,] 7 4

[4,] 7 4

> A[1:3,]

[,1] [,2] [,3] [,4]

[1,] 1 7 4 3

[2,] 26 76 43 39

[3,] 1 7 4 3

> A[1,]

554 APPENDIX C. AN R TUTORIAL

[1] 1 7 4 3

> A[,4]

[1] 3 39 3 3

> A[2:3,3:4]

[,1] [,2]

[1,] 43 39

[2,] 4 3

> A[2:3,3]

[1] 43 4

Note that a column or row vector (or subvector) is not a matrix. That is A[2:3,3] yields a vector
of length 2, and not a 2× 1 matrix.

Negative indices can be used to remove elements from a vector or matrix:

> x = c(3:10)

> x

[1] 3 4 5 6 7 8 9 10

> x[-1]

[1] 4 5 6 7 8 9 10

> x[-(4:7)]

[1] 3 4 5 10

Also, logical vectors may be used to subset indices.

> x = 1:4

> z = c(T,T,F,T)

> x[z]

[1] 1 2 4

> x[c(FALSE,TRUE)]

[1] 2 4

> x[c(FALSE,TRUE,TRUE)]

[1] 2 3

> x = 1:50

> x[x%%7==0]

[1] 7 14 21 28 35 42 49

In the last command, all positive integers not greater than 50 which are divisible by 7 have been
enumerated.

Normally, logical vectors used in the way are of the same length as the vector. If this is not the
case, R will recycle the logical vector up to the same length.

The function which() can be used to identify the indices of TRUE elements of a logical vector:

> which(c(T,T,F,T))

[1] 1 2 4

This function is very useful when vector Boolean expressions are used. Repeated the previous
example:

C.2. DATA STRUCTURES IN R 555

> x = seq(0, 50, 7)

> x

[1] 0 7 14 21 28 35 42 49

> ind = which(x%%3 == 0)

> ind

[1] 1 4 7

> x[ind]

[1] 0 21 42

C.2.3 Lists

A list is a labeled or ordered collection of any type of object. It has a number of uses, including
the organization of function input and output, or the storage or irregular forms of data.

> input.obj = list(init.values = c(0.2, 0.1, 10), tolerance = 0.001,

maxIter = 100, memo.label = "July 3, 2013")

> input.obj

$init.values

[1] 0.2 0.1 10.0

$tolerance

[1] 0.001

$maxIter

[1] 100

$memo.label

[1] "July 3, 2013"

> input.obj[[1]]

[1] 0.2 0.1 10.0

> input.obj[[2]]

[1] 0.001

> input.obj[[3]]

[1] 100

> input.obj[[4]]

[1] "July 3, 2013"

>

Elements of a list can be addressed either by their label or by index (using double square brackets).
Lists of a specified length may be created in the following way

> xlist = vector(’list’,4)

> xlist

[[1]]

NULL

556 APPENDIX C. AN R TUTORIAL

[[2]]

NULL

[[3]]

NULL

[[4]]

NULL

> xlist[[3]] = "3rd entry in list"

> names(xlist) = paste(’memo’,1:4)

> xlist

$‘memo 1‘

NULL

$‘memo 2‘

NULL

$‘memo 3‘

[1] "3rd entry in list"

$‘memo 4‘

NULL

As is the case for vectors, R offers considerable flexibility in constructing lists. The function
list() with no argument creates a list of length 0. The length can be extended to k by making
an assignment to the kth element.

> x = list()

> x

list()

> length(x)

[1] 0

> xlist = list()

> xlist

list()

> length(xlist)

[1] 0

> xlist[[4]] = ’4th element’

> xlist

[[1]]

NULL

[[2]]

NULL

C.2. DATA STRUCTURES IN R 557

[[3]]

NULL

[[4]]

[1] "4th element"

>

The function split() creates a list by separating elements of a vector x by groups defined in y:

> x = c(1,2,3,4,5,6,7,8)

> y = rep(1:2,4)

> x

[1] 1 2 3 4 5 6 7 8

> y

[1] 1 2 1 2 1 2 1 2

> xy = split(x,y)

> xy

$‘1‘

[1] 1 3 5 7

$‘2‘

[1] 2 4 6 8

C.2.4 Data frames

The data frame is an important type of object in R. In statistical applications data often consists
of samples of records, or collections of various forms of data in a fixed structure. This has a tabular
form, but it need not be a matrix. In R is it taken to be a list of vectors of common length, in
which the vectors may be of various types. These vectors can be assembled using the data.frame()
command:

> patient.id = c(101,102,103)

> gender = c(’M’, ’M’, ’F’)

> bmi = c(103, NA, 131)

> bmi.data = data.frame(patient.id, gender, bmi)

> bmi.data

patient.id gender bmi

1 101 M 103

2 102 M NA

3 103 F 131

> bmi.data

patient.id gender bmi

1 101 M 103

2 102 M NA

558 APPENDIX C. AN R TUTORIAL

3 103 F 131

> bmi.data[[1]]

[1] 101 102 103

> bmi.data}gender

[1] M M F

Levels: F M

>

Note that as a list the columns of a data frame can be accessed by label or by index.

C.2.5 Factors

Note that in the previous example of Section C.2.4, although the vector gender was created as
vector of character strings, within the data frame it is interpreted as a vector of factors, which is
nonnumerical data assuming one of a finite number of well defined levels. This is the standard
way of representing categorical data in R , so it is important to understand the various conventions.

A character vector can (sometimes) be interpreted as a factor but, for example, an integer vector
must be coerced.

> x = c(2,3,2,2,1,3,2)

> x = as.factor(x)

> x

[1] 2 3 2 2 1 3 2

Levels: 1 2 3

> attributes(x)

$levels

[1] "1" "2" "3"

$class

[1] "factor"

A vector of factors includes, as an object, the levels giving the possible values (categories). This
means a level need not be represented in the vector:

> y = x[1:4]

> y

[1] 2 3 2 2

Levels: 1 2 3

Often, when a factor is an appropriate input, a character vector, or even a numerical vector can be
used instead. However, to avoid ambiguity, it is best to create factors when appropriate.

C.2.6 Arrays

An array object is a multidimensional array of elements of common type. A matrix is a two-
dimensional array. However, a vector is not a one-dimensional array, because it has no dimension
structure. It can be created with the array() function, in a manner similar to, but more general
than, the matrix() function:

C.3. LABELS FOR DATA STRUCTURES 559

> array(data = 1:12, dim = c(2,6))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 7 9 11

[2,] 2 4 6 8 10 12

> array(data = 1:12, dim = c(12))

[1] 1 2 3 4 5 6 7 8 9 10 11 12

> array(data = 1:12, dim = c(2,2,3))

, , 1

[,1] [,2]

[1,] 1 3

[2,] 2 4

, , 2

[,1] [,2]

[1,] 5 7

[2,] 6 8

, , 3

[,1] [,2]

[1,] 9 11

[2,] 10 12

> array(data = 1:12, dim = c(2,2,3))[1,2,1]

[1] 3

> array(data = 1:12, dim = c(2,2,3))[,,2]

[,1] [,2]

[1,] 5 7

[2,] 6 8

Arrays with 3 or more dimensions can be created, and managed using the same type of indexing
used by matrices, but with 3 or more indices.

C.3 Labels for Data Structures

One very important feature of R is the assignment of labels to objects (vectors, matrices, lists, data
frames). We will look at functions names(), rownames(), colnames(), row.names(), dimnames().
Note that names() is a generic function, meaning that it’s exact function depends on the type of
object to which it is applied.

This is a good point at which to introduce the paste() function, which concatenates character
strings

> paste("Elvis","Presley")

[1] "Elvis Presley"

560 APPENDIX C. AN R TUTORIAL

> paste("Elvis","Presley",sep="-")

[1] "Elvis-Presley"

> paste("Elvis","Presley",sep="")

[1] "ElvisPresley"

The sep option definies the separator. The default is a single blank.

Numbers are coerced to character strings, and vectors remain vectors:

> paste(1:6)

[1] "1" "2" "3" "4" "5" "6"

> paste(1:6)[2]

[1] "2"

> paste(1:6)[2:5]

[1] "2" "3" "4" "5"

Vector concatenation can be useful:

> paste(’gene’, 1:12, sep=’’)

[1] "gene1" "gene2" "gene3" "gene4" "gene5" "gene6" "gene7"

"gene8" "gene9" "gene10" "gene11" "gene12"

> paste(’gene’, 1:12, sep=’-’)

[1] "gene-1" "gene-2" "gene-3" "gene-4" "gene-5" "gene-6"

"gene-7" "gene-8" "gene-9" "gene-10" "gene-11"

[12] "gene-12"

C.3.1 Vector labels

The names() function can be used to set and access labels assigned to the elements of a vector.
For example, a function might return an estimate, a standard error and a p-value for an associated
hypothesis test. These three values can be placed in a single vector, and labels assigned to identify
the values:

> x = c(20.3, 1.02, 0.023)

> names(x) = c("Est", "SE", "P-value")

> x

Est SE P-value

20.300 1.020 0.023

> names(x)

[1] "Est" "SE" "P-value"

> names(x)[2]

[1] "SE"

> names(x)[2] = "S.E."

> x

Est S.E. P-value

20.300 1.020 0.023

C.3. LABELS FOR DATA STRUCTURES 561

C.3.2 Matrix and array labels

Matrix labels can be created, accessed changed in the much the same way using the rownames()

and colnames() function:

> m = matrix(1:24,4,6)

> m

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 5 9 13 17 21

[2,] 2 6 10 14 18 22

[3,] 3 7 11 15 19 23

[4,] 4 8 12 16 20 24

> rownames(m) = paste(’gene’,1:4,sep=’’)

> colnames(m) = paste(’subject’,1:6,sep=’’)

> m

subject1 subject2 subject3 subject4 subject5 subject6

gene1 1 5 9 13 17 21

gene2 2 6 10 14 18 22

gene3 3 7 11 15 19 23

gene4 4 8 12 16 20 24

> rownames(m) = paste(’protein’,1:4,sep=’’)

> m

subject1 subject2 subject3 subject4 subject5 subject6

protein1 1 5 9 13 17 21

protein2 2 6 10 14 18 22

protein3 3 7 11 15 19 23

protein4 4 8 12 16 20 24

The combined row and column labels also exist as a single object, namely, a list of two vectors
(consisting of the row and column labels), which can be managed with the dimnames() function:

> dimnames(m)

[[1]]

[1] "protein1" "protein2" "protein3" "protein4"

[[2]]

[1] "subject1" "subject2" "subject3" "subject4" "subject5" "subject6"

> dimnames(m)[[2]]

[1] "subject1" "subject2" "subject3" "subject4" "subject5" "subject6"

> dimnames(m)[[2]] = paste(’patient’,1:6,sep=’’)

> m

patient1 patient2 patient3 patient4 patient5 patient6

protein1 1 5 9 13 17 21

protein2 2 6 10 14 18 22

protein3 3 7 11 15 19 23

protein4 4 8 12 16 20 24

562 APPENDIX C. AN R TUTORIAL

For arrays of general dimension the dimnames() function can be used in much the same way it
is used for matrices

> m = array(1:8, c(2,2,2))

> m

, , 1

[,1] [,2]

[1,] 1 3

[2,] 2 4

, , 2

[,1] [,2]

[1,] 5 7

[2,] 6 8

> dimnames(m) = list(c(’black’,’white’),c(’up’,’down’),c(’left’,right’))

+)

+

> dimnames(m) = list(c(’black’,’white’),c(’up’,’down’),c(’left’,’right’))

> m

, , left

up down

black 1 3

white 2 4

, , right

up down

black 5 7

white 6 8

> m[1,2,]

left right

3 7

> m[1,,]

left right

up 1 5

down 3 7

C.3.3 Labels for lists and data frames

Labels for lists can be managed with the name() function:

C.3. LABELS FOR DATA STRUCTURES 563

> input.obj = list(init.values = c(0.2, 0.1, 10), tolerance = 0.001,

maxIter = 100, memo.label = "July 3, 2013")

> names(input.obj)

[1] "init.values" "tolerance" "maxIter" "memo.label"

> names(input.obj)[2]

[1] "tolerance"

> names(input.obj)[2] = "maxTolerance"

> input.obj

$init.values

[1] 0.2 0.1 10.0

$maxTolerance

[1] 0.001

$maxIter

[1] 100

$memo.label

[1] "July 3, 2013"

Note that the name originally used for the second element of the preceding list has been changed
from ”tolerance” to ”maxTolerance”.

A data frame is a ‘matrix-like object’, and so the functions rownames(), colnames() and
dimnames() can be used:

> patient.id = c(101,102,103)

> gender = c(’M’, ’M’, ’F’)

> bmi = c(103, NA, 131)

> bmi.data = data.frame(patient.id, gender, bmi)

>

> rownames(bmi.data)

[1] "1" "2" "3"

> colnames(bmi.data)

[1] "patient.id" "gender" "bmi"

> dimnames(bmi.data)

[[1]]

[1] "1" "2" "3"

[[2]]

[1] "patient.id" "gender" "bmi"

> rownames(bmi.data) = paste(’subject’, 1:3)

> bmi.data

patient.id gender bmi

subject 1 101 M 103

subject 2 102 M NA

564 APPENDIX C. AN R TUTORIAL

subject 3 103 F 131

>

A data frame is also a list, so names() may be used. It has the same effect as colnames(). The
function row.names() is intended for data frames, but has for most purposes the same functionality
as rownames().

> names(bmi.data)

[1] "patient.id" "gender" "bmi"

> row.names(bmi.data)

[1] "subject 1" "subject 2" "subject 3"

C.4 Programming and Functions

R contains high-level programming capabilities. Commands entered on the command line can be
included as lines in a program. The program can be invoked from an interactive editor (this is OS
dependent) or run from a file using the source() function.

C.4.1 Program control

Program control relies on the reserved words for, if, else, while, repeat, break, next.

The syntax of for loops is somewhat different for R, consisting of a sequential assignment of
elements of a vector to a variable. Formally it is given by

for (var in vector) expr

for iterative evaluation of a single command, or

for (var in vector) {code block}

for iterative evaluation of a block of code. Reserved words break or next can be used to terminate
the loop, or to proceed immediately to the next iteration, respectively. A single expression example
follows:

> x = c(’A’,’B’,’C’)

> y = rep(NA,3)

> for (i in 1:3) y[i] = paste(x[i],i,sep=’’)

> y

[1] "A1" "B2" "C3"

The iterated vector can be any type:

> x = c(’A’,’B’,’C’)

> y = NULL

> for (i in x) y = c(y,paste(’[’,i,’]’,sep=’’))

> y

[1] "[A]" "[B]" "[C]"

C.4. PROGRAMMING AND FUNCTIONS 565

The following example iterates a block of code enclosed in braces { }:

> x = 0

> for (i in 1:10) {

+ y = i^2+1

+ x = x + y

+ }

> x

[1] 395

> sum((1:10)^2 + 1)

[1] 395

The loop is intended to evaluate
∑10

i=1(i2 + 1), and succeeds in doing so.

The if reserved word allows condition executions of expressions or code blocks. The parenthesis
contains a conditional expression. If true, the expression or block is evaluated.

> x = 3

> a1 = 0

> a2 = 0

> if (x == 3) {

+ a1 = 1

+ a2 = 1

+ }

> a1

[1] 1

> a2

[1] 1

The else reserved word specifies an expression or code block to evaluate if the condition is false

> x = 3

> a1 = 0

> a2 = 0

> if (x > 3) {

+ a1 = 1

+ a2 = 1

+ } else

+ {

+ a1 = 99

+ a2 = 99

+ }

> a1

[1] 99

> a2

[1] 99

566 APPENDIX C. AN R TUTORIAL

C.4.2 User defined functions

User defined functions are easy to make in R. The expression function(...) {...} is assigned
to an object, which becomes a function object. The parentheses includes all arguments, and the
brackets include the block of code. The return() function is used to define the output:

> mean.and.variance = function(x) {

+

+ n = length(x)

+ meanx = sum(x)/n

+ varx = (sum(x^2) - (sum(x)^2)/n)/(n-1)

+ ans = c(meanx, varx)

+ names(ans) = c("mean", "variance")

+ return(ans)

+ }

>

> x = c(3,4,2,3,4,5,1,5)

> mean.and.variance(x)

mean variance

3.375000 1.982143

> y = mean.and.variance(x)

> y

mean variance

3.375000 1.982143

>

> mean(x)

[1] 3.375

> var(x)

[1] 1.982143

Needless to say, R already has functions which calculate means and variances.

One of the previous examples can be redesigned as a function:

> strange.sum = function(n) {

+ x = 0

+ for (i in 1:n) {

+ y = i^2+1

+ x = x + y

+ }

+ return(x)

+ }

> strange.sum(10)

[1] 395

Functions consisting of only a single expression do not require return() commands or braces
(although braces can be used)

C.4. PROGRAMMING AND FUNCTIONS 567

> mySum = function(x,y) {x + 2*y}

> mySum(2,4)

[1] 10

> mySum = function(x,y) x + 2*y

> mySum(2,4)

[1] 10

There is, of course, much more to this topic. Consult the R manual, or use help(’function’)

(function is considered a reserved word).

C.4.3 Functions and environments

An environment is a frame, or collection of named R objects, and a pointer to an enclosing envi-
ronment. It defines which R objects can be recognized for referencing. If an object is referenced,
the current environment is searched. If it is not found, the enclosing environment is searched, and
so on. The global environment .GlobalEnv (the user’s workspace) is the first item on the search
path, and is the current environment when R is started.

When a function is invoked, a new envirnoment is created, and the calling environment becomes
the enclosing environment. The function environment() displays the current environment.

> f = function(x) {environment()}

> environment()

<environment: R_GlobalEnv>

> f(0)

<environment: 0x109871e30>

An object created within a function is not the same object as an object in the enclosing environment.

> y = 5

> f = function(x) {

+ y = 99

+ return(y)

+ }

> f(0)

[1] 99

However, if an object is referenced but not found within an environment created by a function, it
will search the enclosing environment.

> y = 5

> f = function(x) {

+ return(y)

+ }

> f(0)

[1] 5

> y = 6

> f(0)

[1] 6

568 APPENDIX C. AN R TUTORIAL

Being aware of the scope of an object (in which environment an object is recognized) can be
important when using a repository such as bioconductor.org. See http://cran.r-project.

org/doc/contrib/Fox-Companion/appendix-scope.pdf for more detail.

C.4.4 User defined binary operators

A function can be expressed as a binary operator using the assignment

> "%myBinaryOperator%" = function(x, y) { ... }

> x %myBinaryOperator% y

Binary operations can then be placed directly into algebraic expressions:

> ’%max%’ = function(x,y) {max(x,y)}

> 5 %max% 4

[1] 5

C.5 Vectorized Calculations

It is generally recommended in R that loops be avoided, and vectorized calculations used instead.
For example, to evaluate

∑10
i=1(x2 + 1) we used a loop, but we also used a type of vectorized

calculation to achieve the same effect:

> sum((1:10)^2 + 1)

[1] 395

Suppose we are given a numeric vector x and a second vector y of the same length which
identifies groups:

> x = c(1,2,3,2,3,4)

> y = c(1,1,1,1,2,2)

We wish to calculate a mean for each group defined by y. We could write a general function to do
this:

> group.means = function(x,y) {

+

+ group.names = unique(y)

+ n.group = length(group.names)

+ gmeans = rep(NA, n.group)

+ for (i in 1:n.group) gmeans[i] = mean(x[y==group.names[i]])

+ ans = list(group.names, gmeans)

+ names(ans) = c(’group.names’, ’group.means’)

+ return(ans)

+

+ }

>

> group.means(x,y)

C.6. FILE INPUT AND OUTPUT 569

$group.names

[1] 1 2

$group.means

[1] 2.0 3.5

A much simpler method is to apply the function tapply():

> tapply(x,y,mean)

1 2

2.0 3.5

In this function, the first and second arguments are the data and the group labels (these can be of
any type). The third argument is any function which can be applied to a vector of the same type
as x. There are several types of similar vectorized calculation functions. For example, apply() will
apply a specified function to either the rows or columns of a matrix. See also lapply(), sapply(),
mapply() and so on.

C.6 File Input and Output

There are a number of methods for reading and writing data. R objects can be conveniently saved
are restored using the save() and load() commands (see help). Tabular data is typically input
using the read.table() command. A command such as

> new.data = read.table("myData.txt")

is usually intended to store a data frame in the variable new.data using data from the file
myData.txt. There are many options, so documentation should be consulted. A data frame is
save in a file using the write.table() command.

C.7 Packages

All R functions are part of packages. The R distribution comes with the base package of standard
R functions. All other packages are add-on packages and become a permanent part of the local
installation (a number of add-on packages are already installed in the R distribution). An installed
add-on package must be loaded into the R environment to be used during a session (even if it
has already been installed). It is possible to define default packages, which can be listed with the
following command:

> options("defaultPackages")

$defaultPackages

[1] "datasets" "utils" "grDevices" "graphics"

"stats" "methods"

This can be changed, but to do so will require a more in depth understanding of the R startup
procedure. See An Introduction to R.

To see packages which are installed use the command:

570 APPENDIX C. AN R TUTORIAL

> library()

to obtain a display such as

Packages in library ‘/Library/Frameworks/R.framework/Versions

/3.0/Resources/library’:

AnnotationDbi Annotation Database Interface

base The R Base Package

Biobase Biobase: Base functions for Bioconductor

BiocGenerics Generic functions for Bioconductor

BiocInstaller Install/Update Bioconductor and CRAN Packages

bnlearn Bayesian network structure learning, parameter

learning and inference

boot Bootstrap Functions (originally by Angelo

Canty for S)

class Functions for Classification

cluster Cluster Analysis Extended Rousseeuw et al.

.

.

.

To see packages which are loaded use the command

> search()

[1] ".GlobalEnv" "package:linprog" "package:lpSolve"

"package:Matrix" "tools:RGUI" "package:stats"

"package:graphics"

[8] "package:grDevices" "package:utils" "package:datasets"

"package:methods" "Autoloads" "package:base"

A default package is loaded automatically during the R startup. Otherwise a package may be
loaded from the command line using the library() function. Sometimes a function will make
use of another function belonging to a package which is generally not a default package. In this
case a require() function may be included which will load the required function if it is installed,
or otherwise issue a warning. Because R relies heavily on contributed packages, this feature is
commonly encountered.

It is worth looking at the help() command in some more detail. A string argument not enclosed
with quotes is assumed to be the name of an object (usually a function), while a string enclosed in
quotes is a reserved word, such as if, for or TRUE. For example, the following commands:

> help(solve)

> help("for")

will provide detailed documentation on the function solve() and on the reserved word for, used
in constructing for loops. If we want documentation on a specific package, we can use the option
package:

> help(package = stats)

C.7. PACKAGES 571

A list of packages available for installation is given using the command

> install.packages()

If the package to be installed is known, it becomes the argument to the function, enclosed in quotes:

> install.packages("bnlearn")

There are other ways of finding and installing packages, so see the documentation for more detail.

To take an example, suppose we are interesting in linear programming. This is not a standard
R function, but is available in an R repository (as are many numerical algorithms in fields other
than statistics). If we don’t know where to find an appropriate library we can use a command
suitable for vague searches of documentation:

> help.search("linear programming")

This will yield documentation on packages including ”linear programming” in specific features of
the documentation (this can be specified by the user; see help(help.search) for more detail). In
this case the packages boot, linprog and lpSolve are listed. We may then install, say, linprog
using the command:

> install.packages("linprog")

trying URL ’http://lib.stat.cmu.edu/R/CRAN/bin/macosx/contrib

/3.0/linprog_0.9-2.tgz’

Content type ’application/x-gzip’ length 33655 bytes (32 Kb)

opened URL

==

downloaded 32 Kb

The downloaded binary packages are in

/var/folders/vs/v6dm307j09jfynfmgtrpfplr0000gn/T

//RtmpWJwRiz/downloaded_packages

>

We can obtain documentation for the package, then load it, using command:

> library(help = linprog)

> library(linprog)

Because R has extensive repositories of contributed packages there will often be several alternatives,
so it is usually advisable to do some comparisons.

Note that ‘?’ and ‘??’ are shortcuts for help() and help.search(). For example:

> ?quantile

> ??’linear programming’

> ??eigenvalues

572 APPENDIX C. AN R TUTORIAL

Packages are sometimes updated. The function update.packages() will compare the local
library with the appropriate repositories to determine packages for which updates are available. By
default, the user is asked if the library should be updated. Many options are available, so consult
help(update.packages):

> update.packages()

cluster :

Version 1.14.4 installed in /Library/Frameworks/R.framework

/Versions/3.0/Resources/library

Version 1.15.1 available at http://lib.stat.cmu.edu/R/CRAN

Update (y/N/c)? n

lattice :

Version 0.20-24 installed in /Library/Frameworks/R.framework

/Versions/3.0/Resources/library

Version 0.20-27 available at http://lib.stat.cmu.edu/R/CRAN

Update (y/N/c)? n

lme4 :

Version 1.0-6 installed in /Library/Frameworks/R.framework

/Versions/3.0/Resources/library

Version 1.1-5 available at http://lib.stat.cmu.edu/R/CRAN

Update (y/N/c)? c

cancelled by user

>

C.8 Objects and Classes in R

We’ve so far used the term object to informally describe different forms of data structure in R
(vectors, lists and so on). We note that R is a type of object oriented programming language,
meaning that R objects possess specific forms of data structure, and are associated with various
methods, or procedures which act on some or all of the the objects’ data.

C.8.1 Object modes

An object can be characterized by their mode. An object is of atomic structure if all data elements
are of the same type. The mode (identified by function mode()) is then that type of data:

> mode(c(1,2,3))

[1] "numeric"

> mode(c(T,F,F))

[1] "logical"

> mode(c(’a’,’b’,’c’))

[1] "character"

A list is of mode list:

> list(’a’,c(2,3,2),TRUE)

[[1]]

C.8. OBJECTS AND CLASSES IN R 573

[1] "a"

[[2]]

[1] 2 3 2

[[3]]

[1] TRUE

> mode(list(’a’,c(2,3,2),TRUE))

[1] "list"

and a function is of mode function

> mode(sum)

[1] "function"

C.8.2 Object classes

It is important to understand that there are several generations of object types in R. What they
have in common is that their properties are defined by attributes, which are represented by a list,
which can be accesses by the attributes() function:

> m = array(1:12,12)

> dimnames(m) = list(paste(’c’,1:12,sep=’’))

> m

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

1 2 3 4 5 6 7 8 9 10 11 12

> attributes(m)

$dim

[1] 12

$dimnames

$dimnames[[1]]

[1] "c1" "c2" "c3" "c4" "c5" "c6" "c7" "c8"

"c9" "c10" "c11" "c12"

Of most concern here are the S3 and S4 objects. The notion of R objects most familiar today
are the S3 objects introduced around 1988. An S3 object has a class attribute, consisting (at least)
of a character string which identifies a class. In effect, an object is an instance of a class (in the
sense that x = 2.55 is an instance of a real number). The object of the preceding example is of
class array. Objects need only one class, but it may have several, in which case the class attribute
would be a vector of class identifiers. When multiple classes are present, the order they are listed
in the vector is important. The object can be considered a type of the first class listed, but it
inherits from the subsequent classes in the order given. The class() function identifies the class
of an object:

> class(m)

[1] "array"

574 APPENDIX C. AN R TUTORIAL

C.8.3 Generic functions

Identifying classes permits the use of generic functions. These are functions which accept objects of
varying classes, and whose functionality depends on that class. General purpose functions such as
print(), plot() or summary() are typical generic functions. This is quite important in statistical
modeling. For example, a fitted model may be a linear model, a logistic model or a Cox proportional
hazards model, but each of these types share a common output and summary structure (ANOVA
table, residual plot, and so on). In addition, model selection procedures (stepwise regression, cross
validation) may be applied in much the same way to each. The functions which fit these models
(in this case lm(), glm(), coxph()) typically output an object of a specific class (in this case lm,
glm, coxph) but these may be input to one of several generic functions. Consider a simple example
of a linear linear model, which regresses vector y onto vector x:

> x = c(1:10)

> y = c(2,4,3,4,5,6,1,2,3,5)

> fit = lm(y ~ x)

> class(fit)

[1] "lm"

> mode(fit)

[1] "list"

> fit

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

3.26667 0.04242

the function lm() writes an lm class object into fit. To examine fit we can simply enter it into
the command line, as though it were a variable. We get the formula used in the fit, as well as the
regression coefficients. However, an lm object contains much more information than this. We can
input fit into the generic function summary():

> summary(fit)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-2.56364 -1.14394 0.08485 1.14394 2.47879

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.26667 1.14186 2.861 0.0211 *

x 0.04242 0.18403 0.231 0.8235

C.8. OBJECTS AND CLASSES IN R 575

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.672 on 8 degrees of freedom

Multiple R-squared: 0.006599,Adjusted R-squared: -0.1176

F-statistic: 0.05315 on 1 and 8 DF, p-value: 0.8235

We now get a much more complete summary of the model fit. In fact, we can get more information.
The object attributes can be displayed using either the names() or the attributes() function (the
attributes() functions gives the class):

> attributes(fit)

$names

[1] "coefficients" "residuals" "effects" "rank"

"fitted.values" "assign"

[7] "qr" "df.residual" "xlevels" "call"

"terms" "model"

$class

[1] "lm"

> names(fit)

[1] "coefficients" "residuals" "effects" "rank"

"fitted.values" "assign"

[7] "qr" "df.residual" "xlevels" "call"

"terms" "model"

For example, the model residuals can be accessed using the residuals attribute

fit$residuals

1 2 3 4 5

6 7 8 9 10

-1.3090909 0.6484848 -0.3939394 0.5636364 1.5212121

2.4787879 -2.5636364 -1.6060606 -0.6484848 1.3090909

>

For more description of the attributes use help(lm)

There exists a non-generic function summary.lm() which produces the same summary for
an lm class. This is the standard nomenclature. If myFunction() is a generic function, then
myFunction.myClass() is equivalent to myFunction() applied to an object of class myClass. Sup-
pose an object obj has multiple classes class1, class2, class3, listed in that order. If obj in
input to a generic function fun(), R will first search for function fun.class1(), then, if this is not
found, fun.class2(), and so on. A generic function may have a default fun.default() which is
used if no function for any of the objects classes is found.

> #

> # simulate a logistic regression model

576 APPENDIX C. AN R TUTORIAL

> #

> x = c(1:10)

> y = rbinom(10, size = 1, prob = 0.5)

> fit.glm = glm(y ~ x, family = ’binomial’)

> class(fit.glm)

[1] "glm" "lm"

The function methods() can be used either to display all generic functions available to a class,
or all classes which may be input to a generic function:

> methods(summary)

[1] summary.aareg* summary.aov summary.aovlist

[4] summary.aspell* summary.cch* summary.connection

[7] summary.coxph* summary.coxph.penal* summary.data.frame

[10] summary.Date summary.default summary.ecdf*

[13] summary.factor summary.glm summary.infl

[16] summary.lm summary.loess* summary.loglm*

[19] summary.manova summary.matrix summary.mlm

[22] summary.negbin* summary.nls* summary.packageStatus*

[25] summary.PDF_Dictionary* summary.PDF_Stream* summary.polr*

[28] summary.POSIXct summary.POSIXlt summary.ppr*

[31] summary.prcomp* summary.princomp* summary.proc_time

[34] summary.pyears* summary.ratetable* summary.rlm*

[37] summary.srcfile summary.srcref summary.stepfun

[40] summary.stl* summary.survexp* summary.survfit*

[43] summary.survfitms* summary.survreg* summary.table

[46] summary.tukeysmooth* summary.XMLInternalDocument*

Non-visible functions are asterisked

> methods(class=’lm’)

[1] add1.lm* alias.lm* anova.lm case.names.lm* confint.lm*

[6] cooks.distance.lm* deviance.lm* dfbeta.lm* dfbetas.lm* drop1.lm*

[11] dummy.coef.lm* effects.lm* extractAIC.lm* family.lm* formula.lm*

[16] hatvalues.lm influence.lm* kappa.lm labels.lm* logLik.lm*

[21] model.frame.lm model.matrix.lm nobs.lm* plot.lm predict.lm

[26] print.lm proj.lm* qr.lm* residuals.lm rstandard.lm

[31] rstudent.lm simulate.lm* summary.lm variable.names.lm* vcov.lm*

Non-visible functions are asterisked

>

A non-visible function produces output, but this will not be displayed (it can be copied into an
object).

C.8.4 User defined methods

A simple example of the construction of a method for a class based on an existing generic function
follows:

> x = 2

> class(x) = "myClass"

> class(x)

[1] "myClass"

C.8. OBJECTS AND CLASSES IN R 577

>

> # For some reason, we would like objects of this class

> # to be displayed 7 times.

>

> print.myClass = function(x) {rep(x,7)}

> print(x)

[1] 2 2 2 2 2 2 2

> y = unclass(x)

> print(y)

[1] 2

> methods(class=’myClass’)

[1] print.myClass

New generic functions can be constructed using the UseMethod() function.

C.8.5 S4 (formal) classes

One problem with S3 classes is the rather informal nature of the identification of a class, which only
requires setting a class attribute. In other words, classes are never really formally defined, which
creates a problem when the same class of object is to be used by extensive collections of contributed
packages. To address this problem S4 classes were introduced later in the 1990s. These require
formal class definitions, which standardizes the attributes of an objects. This allows contributed
applications to accept well defined standardized input. For this reason S4 classes are also refered
to as formal classes.

The setClass() function is used to define a class (S3 classes have no correpsonding functions):

> xyClass = setClass("xyClass", slots = c(x="numeric", y="numeric"))

>

> xy.obj1 = xyClass(x = c(1,2,3,4), y = c(8,7,6,5))

> xy.obj2 = new("xyClass", x = c(1,2,3,4), y = c(8,7,6,5))

>

> class(xy.obj1)

[1] "xyClass"

attr(,"package")

[1] ".GlobalEnv"

> class(xy.obj2)

[1] "xyClass"

attr(,"package")

[1] ".GlobalEnv"

The command new() can be used to create an instance of an S4 class. Also, because the identifier
xyClass was used in the assignment xyClass = setClass("xyClass", slots = c(x="numeric",

y="numeric")) a function xyClass() is created which can be used to create a class instance as
shown above (the name need not be the same as the class).

The function setMethod() is used to create formal (S4) methods, however, the procedure for
S3 classes may also be used:

578 APPENDIX C. AN R TUTORIAL

> print.xyClass = function(obj) {rep(c(obj@x,obj@y),3)}

> print(xy.obj1)

See http://cran.r-project.org/doc/contrib/Genolini-S4tutorialV0-5en.pdf

or http://www.bioconductor.org/help/course-materials/2013/CSAMA2013/friday/

afternoon/S4-tutorial.pdf for more detail.

C.8.6 Testing and coercion of object types

It is important in an object oriented environment to be able to determine the type of an object,
and to change it if necessary (this is generally referred to as coercion). These types of functions
generally have names resembling is.thing or as.thing. For example:

> is.vector(c(2,3,3,4))

[1] TRUE

> is.matrix(c(2,3,3,4))

[1] FALSE

> as.matrix(c(2,3,3,4))

[,1]

[1,] 2

[2,] 3

[3,] 3

[4,] 4

> is.na(NA)

[1] TRUE

> is.na(3)

[1] FALSE

> is.null(34)

[1] FALSE

> is.null(NULL)

[1] TRUE

> #

> # Is it an S4 class object?

> #

> xyClass = setClass("xyClass", slots = c(x="numeric", y="numeric"))

> xy.obj1 = xyClass(x = c(1,2,3,4), y = c(8,7,6,5))

> isS4(xy.obj1)

[1] TRUE

> isS4(c(2,3,3,4))

[1] FALSE

C.9 Random Variables in R

R contains functions associated with a wide class of random variables. There exists a standard
naming convention. For example, the normal distribution has R name norm, and the binomial
distribution has R name binom. For each such name there are four functions with prefix ‘d’ for

C.9. RANDOM VARIABLES IN R 579

density, ‘p’ for CDF, ‘q’ for quantile and ‘r’ for simulated random variate. As needed, each R
name has additional arguments needed to completely specify the distribution. For the binomial
those are size and prob corresponding to n,p in the convention X ∼ bin(n, p). For example, for
X ∼ bin(10, 0.25) the commands

> pbinom(3, size=10, prob=0.25)

[1] 0.7758751

> dbinom(3, size=10, prob=0.25)

[1] 0.2502823

> qbinom(0.5, size=10, prob=0.25)

[1] 2

>

tell us that P (X ≤ 3) = 0.7758751, P (X = 3) = 0.2502823 and that 2 is (approximately) the
median. We can simulate a random sample of size n in the following way:

> n = 5

> x = rbinom(n, size=10, prob=0.25)

> x

[1] 2 4 0 2 5

The following list is part of the R documentation.

For the beta distribution see dbeta.

For the binomial (including Bernoulli) distribution see dbinom.

For the Cauchy distribution see dcauchy.

For the chi-squared distribution see dchisq.

For the exponential distribution see dexp.

For the F distribution see df.

For the gamma distribution see dgamma.

For the geometric distribution see dgeom. (This is also a special case of the negative binomial.)

For the hypergeometric distribution see dhyper.

For the log-normal distribution see dlnorm.

For the multinomial distribution see dmultinom.

For the negative binomial distribution see dnbinom.

For the normal distribution see dnorm.

For the Poisson distribution see dpois.

For the Student’s t distribution see dt.

For the uniform distribution see dunif.

For the Weibull distribution see dweibull.

For less common distributions of test statistics see pbirthday, dsignrank, ptukey and dwilcox.

See Also

RNG about random number generation in R.

Appendix D

Distribution Tables

580

581

Table 1: Standard Normal Curve Areas I. The table entry is the probability that a standard
normal random variable is less than or equal to z.
z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.001 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.001 0.001

-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.002 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.003 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.004 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.006 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.008 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.011
-2.1 0.0179 0.0174 0.017 0.0166 0.0162 0.0158 0.0154 0.015 0.0146 0.0143
-2 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.025 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.063 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.102 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.123 0.121 0.119 0.117
-1 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.166 0.1635 0.1611
-0.8 0.2119 0.209 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.242 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.305 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.281 0.2776
-0.4 0.3446 0.3409 0.3372 0.3336 0.33 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.352 0.3483
-0.2 0.4207 0.4168 0.4129 0.409 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0 0.5 0.496 0.492 0.488 0.484 0.4801 0.4761 0.4721 0.4681 0.4641

582 APPENDIX D. DISTRIBUTION TABLES

Table 2: Standard Normal Curve Areas II. The table entry is the probability that a standard
normal random variable is less than or equal to z.
z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5 0.504 0.508 0.512 0.516 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.591 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.648 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.67 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.695 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.719 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.758 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.791 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.834 0.8365 0.8389
1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.877 0.879 0.881 0.883
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.898 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767
2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.983 0.9834 0.9838 0.9842 0.9846 0.985 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.989
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.992 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.994 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.996 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.997 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.998 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.999 0.999

3.1 0.999 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

583

Table 3: Critical values for t-distribution. Table entry is the α critical value tdf,α for a t-
distribution with df degrees of freedom.

α
df 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.00025
1 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619 1273.239
2 1.886 2.92 4.303 6.965 9.925 14.089 22.327 31.599 44.705
3 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924 16.326
4 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.61 10.306
5 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 7.976
6 1.44 1.943 2.447 3.143 3.707 4.317 5.208 5.959 6.788
7 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 6.082
8 1.397 1.86 2.306 2.896 3.355 3.833 4.501 5.041 5.617
9 1.383 1.833 2.262 2.821 3.25 3.69 4.297 4.781 5.291
10 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 5.049
11 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 4.863
12 1.356 1.782 2.179 2.681 3.055 3.428 3.93 4.318 4.716
13 1.35 1.771 2.16 2.65 3.012 3.372 3.852 4.221 4.597
14 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.14 4.499
15 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 4.417
16 1.337 1.746 2.12 2.583 2.921 3.252 3.686 4.015 4.346
17 1.333 1.74 2.11 2.567 2.898 3.222 3.646 3.965 4.286
18 1.33 1.734 2.101 2.552 2.878 3.197 3.61 3.922 4.233
19 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 4.187
20 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.85 4.146
21 1.323 1.721 2.08 2.518 2.831 3.135 3.527 3.819 4.11
22 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 4.077
23 1.319 1.714 2.069 2.5 2.807 3.104 3.485 3.768 4.047
24 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 4.021
25 1.316 1.708 2.06 2.485 2.787 3.078 3.45 3.725 3.996
26 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 3.974
27 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.69 3.954
28 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 3.935
29 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 3.918
30 1.31 1.697 2.042 2.457 2.75 3.03 3.385 3.646 3.902
40 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 3.788
50 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496 3.723
60 1.296 1.671 2 2.39 2.66 2.915 3.232 3.46 3.681
70 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435 3.651
80 1.292 1.664 1.99 2.374 2.639 2.887 3.195 3.416 3.629
90 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402 3.612
100 1.29 1.66 1.984 2.364 2.626 2.871 3.174 3.39 3.598
110 1.289 1.659 1.982 2.361 2.621 2.865 3.166 3.381 3.587
120 1.289 1.658 1.98 2.358 2.617 2.86 3.16 3.373 3.578
Inf 1.282 1.645 1.96 2.326 2.576 2.807 3.09 3.291 3.481

584 APPENDIX D. DISTRIBUTION TABLES

Table 4: Critical values for χ2-distribution. Table entry is the α critical value χ2
df,α for a

χ2-distribution with df degrees of freedom.
α

df 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01 0.005
1 0 0 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.01 0.02 0.051 0.103 0.211 4.605 5.991 7.378 9.21 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.86
5 0.412 0.554 0.831 1.145 1.61 9.236 11.07 12.833 15.086 16.75
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.69 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.18 2.733 3.49 13.362 15.507 17.535 20.09 21.955
9 1.735 2.088 2.7 3.325 4.168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.94 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.92 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.3
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.66 5.629 6.571 7.79 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.39 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.26 9.591 10.851 12.443 28.412 31.41 34.17 37.566 39.997
21 8.034 8.897 10.283 11.591 13.24 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.26 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.98 45.559
25 10.52 11.524 13.12 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.16 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.29
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
31 14.458 15.655 17.539 19.281 21.434 41.422 44.985 48.232 52.191 55.003
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.48 53.486 56.328
33 15.815 17.074 19.047 20.867 23.11 43.745 47.4 50.725 54.776 57.648
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964
35 17.192 18.509 20.569 22.465 24.797 46.059 49.802 53.203 57.342 60.275
36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581
37 18.586 19.96 22.106 24.075 26.492 48.363 52.192 55.668 59.893 62.883
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181
39 19.996 21.426 23.654 25.695 28.196 50.66 54.572 58.12 62.428 65.476
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
41 21.421 22.906 25.215 27.326 29.907 52.949 56.942 60.561 64.95 68.053
42 22.138 23.65 25.999 28.144 30.765 54.09 58.124 61.777 66.206 69.336
43 22.859 24.398 26.785 28.965 31.625 55.23 59.304 62.99 67.459 70.616
44 23.584 25.148 27.575 29.787 32.487 56.369 60.481 64.201 68.71 71.893
45 24.311 25.901 28.366 30.612 33.35 57.505 61.656 65.41 69.957 73.166
46 25.041 26.657 29.16 31.439 34.215 58.641 62.83 66.617 71.201 74.437
47 25.775 27.416 29.956 32.268 35.081 59.774 64.001 67.821 72.443 75.704
48 26.511 28.177 30.755 33.098 35.949 60.907 65.171 69.023 73.683 76.969
49 27.249 28.941 31.555 33.93 36.818 62.038 66.339 70.222 74.919 78.231
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.42 76.154 79.49
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.54 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299
100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
150 109.142 112.668 117.985 122.692 128.275 172.581 179.581 185.8 193.208 198.36
200 152.241 156.432 162.728 168.279 174.835 226.021 233.994 241.058 249.445 255.264
250 196.161 200.939 208.098 214.392 221.806 279.05 287.882 295.689 304.94 311.346
300 240.663 245.972 253.912 260.878 269.068 331.789 341.395 349.874 359.906 366.844
350 285.608 291.406 300.064 307.648 316.55 384.306 394.626 403.723 414.474 421.9
400 330.903 337.155 346.482 354.641 364.207 436.649 447.632 457.305 468.724 476.606
450 376.483 383.163 393.118 401.817 412.007 488.849 500.456 510.67 522.717 531.026
500 422.303 429.388 439.936 449.147 459.926 540.93 553.127 563.852 576.493 585.207

585

Table 5: Critical values for F -distribution I. Table entry is the α critical value χ2
df1,df2,α

for an
F -distribution with df1 numerator degrees of freedom and df2 denominator degrees of freedom.

df1
df2 α 1 2 3 4 5 6 7 8 9
1 0.1 39.86 49.5 53.59 55.83 57.24 58.2 58.91 59.44 59.86
1 0.05 161.45 199.5 215.71 224.58 230.16 233.99 236.77 238.88 240.54
1 0.025 647.79 799.5 864.16 899.58 921.85 937.11 948.22 956.66 963.28
1 0.01 4052.18 4999.5 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47
1 0.005 16210.72 19999.5 21614.74 22499.58 23055.8 23437.11 23714.57 23925.41 24091
2 0.1 8.53 9 9.16 9.24 9.29 9.33 9.35 9.37 9.38
2 0.05 18.51 19 19.16 19.25 19.3 19.33 19.35 19.37 19.38
2 0.025 38.51 39 39.17 39.25 39.3 39.33 39.36 39.37 39.39
2 0.01 98.5 99 99.17 99.25 99.3 99.33 99.36 99.37 99.39
2 0.005 198.5 199 199.17 199.25 199.3 199.33 199.36 199.37 199.39
3 0.1 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24
3 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
3 0.025 17.44 16.04 15.44 15.1 14.88 14.73 14.62 14.54 14.47
3 0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
3 0.005 55.55 49.8 47.47 46.19 45.39 44.84 44.43 44.13 43.88
4 0.1 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94
4 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6
4 0.025 12.22 10.65 9.98 9.6 9.36 9.2 9.07 8.98 8.9
4 0.01 21.2 18 16.69 15.98 15.52 15.21 14.98 14.8 14.66
4 0.005 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14
5 0.1 4.06 3.78 3.62 3.52 3.45 3.4 3.37 3.34 3.32
5 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
5 0.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68
5 0.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
5 0.005 22.78 18.31 16.53 15.56 14.94 14.51 14.2 13.96 13.77
6 0.1 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96
6 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.1
6 0.025 8.81 7.26 6.6 6.23 5.99 5.82 5.7 5.6 5.52
6 0.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7.98
6 0.005 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.39
7 0.1 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72
7 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
7 0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.9 4.82
7 0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
7 0.005 16.24 12.4 10.88 10.05 9.52 9.16 8.89 8.68 8.51
8 0.1 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56
8 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.5 3.44 3.39
8 0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36
8 0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
8 0.005 14.69 11.04 9.6 8.81 8.3 7.95 7.69 7.5 7.34
9 0.1 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44
9 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
9 0.025 7.21 5.71 5.08 4.72 4.48 4.32 4.2 4.1 4.03
9 0.01 10.56 8.02 6.99 6.42 6.06 5.8 5.61 5.47 5.35
9 0.005 13.61 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.54

586 APPENDIX D. DISTRIBUTION TABLES

Table 6: Critical values for F -distribution II. Table entry is the α critical value χ2
df1,df2,α

for
an F -distribution with df1 numerator degrees of freedom and df2 denominator degrees of freedom.

df1
df2 α 10 12 15 20 24 30 60 120 Inf
1 0.1 60.19 60.71 61.22 61.74 62 62.26 62.79 63.06 63.33
1 0.05 241.88 243.91 245.95 248.01 249.05 250.1 252.2 253.25 254.31
1 0.025 968.63 976.71 984.87 993.1 997.25 1001.41 1009.8 1014.02 1018.26
1 0.01 6055.85 6106.32 6157.28 6208.73 6234.63 6260.65 6313.03 6339.39 6365.86
1 0.005 24224.49 24426.37 24630.21 24835.97 24939.57 25043.63 25253.14 25358.57 25464.46
2 0.1 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.48 9.49
2 0.05 19.4 19.41 19.43 19.45 19.45 19.46 19.48 19.49 19.5
2 0.025 39.4 39.41 39.43 39.45 39.46 39.46 39.48 39.49 39.5
2 0.01 99.4 99.42 99.43 99.45 99.46 99.47 99.48 99.49 99.5
2 0.005 199.4 199.42 199.43 199.45 199.46 199.47 199.48 199.49 199.5
3 0.1 5.23 5.22 5.2 5.18 5.18 5.17 5.15 5.14 5.13
3 0.05 8.79 8.74 8.7 8.66 8.64 8.62 8.57 8.55 8.53
3 0.025 14.42 14.34 14.25 14.17 14.12 14.08 13.99 13.95 13.9
3 0.01 27.23 27.05 26.87 26.69 26.6 26.5 26.32 26.22 26.13
3 0.005 43.69 43.39 43.08 42.78 42.62 42.47 42.15 41.99 41.83
4 0.1 3.92 3.9 3.87 3.84 3.83 3.82 3.79 3.78 3.76
4 0.05 5.96 5.91 5.86 5.8 5.77 5.75 5.69 5.66 5.63
4 0.025 8.84 8.75 8.66 8.56 8.51 8.46 8.36 8.31 8.26
4 0.01 14.55 14.37 14.2 14.02 13.93 13.84 13.65 13.56 13.46
4 0.005 20.97 20.7 20.44 20.17 20.03 19.89 19.61 19.47 19.32
5 0.1 3.3 3.27 3.24 3.21 3.19 3.17 3.14 3.12 3.1
5 0.05 4.74 4.68 4.62 4.56 4.53 4.5 4.43 4.4 4.36
5 0.025 6.62 6.52 6.43 6.33 6.28 6.23 6.12 6.07 6.02
5 0.01 10.05 9.89 9.72 9.55 9.47 9.38 9.2 9.11 9.02
5 0.005 13.62 13.38 13.15 12.9 12.78 12.66 12.4 12.27 12.14
6 0.1 2.94 2.9 2.87 2.84 2.82 2.8 2.76 2.74 2.72
6 0.05 4.06 4 3.94 3.87 3.84 3.81 3.74 3.7 3.67
6 0.025 5.46 5.37 5.27 5.17 5.12 5.07 4.96 4.9 4.85
6 0.01 7.87 7.72 7.56 7.4 7.31 7.23 7.06 6.97 6.88
6 0.005 10.25 10.03 9.81 9.59 9.47 9.36 9.12 9 8.88
7 0.1 2.7 2.67 2.63 2.59 2.58 2.56 2.51 2.49 2.47
7 0.05 3.64 3.57 3.51 3.44 3.41 3.38 3.3 3.27 3.23
7 0.025 4.76 4.67 4.57 4.47 4.41 4.36 4.25 4.2 4.14
7 0.01 6.62 6.47 6.31 6.16 6.07 5.99 5.82 5.74 5.65
7 0.005 8.38 8.18 7.97 7.75 7.64 7.53 7.31 7.19 7.08
8 0.1 2.54 2.5 2.46 2.42 2.4 2.38 2.34 2.32 2.29
8 0.05 3.35 3.28 3.22 3.15 3.12 3.08 3.01 2.97 2.93
8 0.025 4.3 4.2 4.1 4 3.95 3.89 3.78 3.73 3.67
8 0.01 5.81 5.67 5.52 5.36 5.28 5.2 5.03 4.95 4.86
8 0.005 7.21 7.01 6.81 6.61 6.5 6.4 6.18 6.06 5.95
9 0.1 2.42 2.38 2.34 2.3 2.28 2.25 2.21 2.18 2.16
9 0.05 3.14 3.07 3.01 2.94 2.9 2.86 2.79 2.75 2.71
9 0.025 3.96 3.87 3.77 3.67 3.61 3.56 3.45 3.39 3.33
9 0.01 5.26 5.11 4.96 4.81 4.73 4.65 4.48 4.4 4.31
9 0.005 6.42 6.23 6.03 5.83 5.73 5.62 5.41 5.3 5.19

587

Table 7: Critical values for F -distribution III. Table entry is the α critical value χ2
df1,df2,α

for
an F -distribution with df1 numerator degrees of freedom and df2 denominator degrees of freedom.

df1
df2 α 1 2 3 4 5 6 7 8 9
10 0.1 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35
10 0.05 4.96 4.1 3.71 3.48 3.33 3.22 3.14 3.07 3.02
10 0.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78
10 0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.2 5.06 4.94
10 0.005 12.83 9.43 8.08 7.34 6.87 6.54 6.3 6.12 5.97
12 0.1 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21
12 0.05 4.75 3.89 3.49 3.26 3.11 3 2.91 2.85 2.8
12 0.025 6.55 5.1 4.47 4.12 3.89 3.73 3.61 3.51 3.44
12 0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5 4.39
12 0.005 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.2
15 0.1 3.07 2.7 2.49 2.36 2.27 2.21 2.16 2.12 2.09
15 0.05 4.54 3.68 3.29 3.06 2.9 2.79 2.71 2.64 2.59
15 0.025 6.2 4.77 4.15 3.8 3.58 3.41 3.29 3.2 3.12
15 0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4 3.89
15 0.005 10.8 7.7 6.48 5.8 5.37 5.07 4.85 4.67 4.54
20 0.1 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2 1.96
20 0.05 4.35 3.49 3.1 2.87 2.71 2.6 2.51 2.45 2.39
20 0.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84
20 0.01 8.1 5.85 4.94 4.43 4.1 3.87 3.7 3.56 3.46
20 0.005 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96
24 0.1 2.93 2.54 2.33 2.19 2.1 2.04 1.98 1.94 1.91
24 0.05 4.26 3.4 3.01 2.78 2.62 2.51 2.42 2.36 2.3
24 0.025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.7
24 0.01 7.82 5.61 4.72 4.22 3.9 3.67 3.5 3.36 3.26
24 0.005 9.55 6.66 5.52 4.89 4.49 4.2 3.99 3.83 3.69
30 0.1 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85
30 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
30 0.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57
30 0.01 7.56 5.39 4.51 4.02 3.7 3.47 3.3 3.17 3.07
30 0.005 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45
60 0.1 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74
60 0.05 4 3.15 2.76 2.53 2.37 2.25 2.17 2.1 2.04
60 0.025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33
60 0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
60 0.005 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01
120 0.1 2.75 2.35 2.13 1.99 1.9 1.82 1.77 1.72 1.68
120 0.05 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96
120 0.025 5.15 3.8 3.23 2.89 2.67 2.52 2.39 2.3 2.22
120 0.01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
120 0.005 8.18 5.54 4.5 3.92 3.55 3.28 3.09 2.93 2.81
Inf 0.1 2.71 2.3 2.08 1.94 1.85 1.77 1.72 1.67 1.63
Inf 0.05 3.84 3 2.6 2.37 2.21 2.1 2.01 1.94 1.88
Inf 0.025 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11
Inf 0.01 6.63 4.61 3.78 3.32 3.02 2.8 2.64 2.51 2.41
Inf 0.005 7.88 5.3 4.28 3.72 3.35 3.09 2.9 2.74 2.62

588 APPENDIX D. DISTRIBUTION TABLES

Table 8: Critical values for F -distribution IV. Table entry is the α critical value χ2
df1,df2,α

for
an F -distribution with df1 numerator degrees of freedom and df2 denominator degrees of freedom.

df1
df2 α 10 12 15 20 24 30 60 120 Inf
10 0.1 2.32 2.28 2.24 2.2 2.18 2.16 2.11 2.08 2.06
10 0.05 2.98 2.91 2.85 2.77 2.74 2.7 2.62 2.58 2.54
10 0.025 3.72 3.62 3.52 3.42 3.37 3.31 3.2 3.14 3.08
10 0.01 4.85 4.71 4.56 4.41 4.33 4.25 4.08 4 3.91
10 0.005 5.85 5.66 5.47 5.27 5.17 5.07 4.86 4.75 4.64
12 0.1 2.19 2.15 2.1 2.06 2.04 2.01 1.96 1.93 1.9
12 0.05 2.75 2.69 2.62 2.54 2.51 2.47 2.38 2.34 2.3
12 0.025 3.37 3.28 3.18 3.07 3.02 2.96 2.85 2.79 2.72
12 0.01 4.3 4.16 4.01 3.86 3.78 3.7 3.54 3.45 3.36
12 0.005 5.09 4.91 4.72 4.53 4.43 4.33 4.12 4.01 3.9
15 0.1 2.06 2.02 1.97 1.92 1.9 1.87 1.82 1.79 1.76
15 0.05 2.54 2.48 2.4 2.33 2.29 2.25 2.16 2.11 2.07
15 0.025 3.06 2.96 2.86 2.76 2.7 2.64 2.52 2.46 2.4
15 0.01 3.8 3.67 3.52 3.37 3.29 3.21 3.05 2.96 2.87
15 0.005 4.42 4.25 4.07 3.88 3.79 3.69 3.48 3.37 3.26
20 0.1 1.94 1.89 1.84 1.79 1.77 1.74 1.68 1.64 1.61
20 0.05 2.35 2.28 2.2 2.12 2.08 2.04 1.95 1.9 1.84
20 0.025 2.77 2.68 2.57 2.46 2.41 2.35 2.22 2.16 2.09
20 0.01 3.37 3.23 3.09 2.94 2.86 2.78 2.61 2.52 2.42
20 0.005 3.85 3.68 3.5 3.32 3.22 3.12 2.92 2.81 2.69
24 0.1 1.88 1.83 1.78 1.73 1.7 1.67 1.61 1.57 1.53
24 0.05 2.25 2.18 2.11 2.03 1.98 1.94 1.84 1.79 1.73
24 0.025 2.64 2.54 2.44 2.33 2.27 2.21 2.08 2.01 1.94
24 0.01 3.17 3.03 2.89 2.74 2.66 2.58 2.4 2.31 2.21
24 0.005 3.59 3.42 3.25 3.06 2.97 2.87 2.66 2.55 2.43
30 0.1 1.82 1.77 1.72 1.67 1.64 1.61 1.54 1.5 1.46
30 0.05 2.16 2.09 2.01 1.93 1.89 1.84 1.74 1.68 1.62
30 0.025 2.51 2.41 2.31 2.2 2.14 2.07 1.94 1.87 1.79
30 0.01 2.98 2.84 2.7 2.55 2.47 2.39 2.21 2.11 2.01
30 0.005 3.34 3.18 3.01 2.82 2.73 2.63 2.42 2.3 2.18
60 0.1 1.71 1.66 1.6 1.54 1.51 1.48 1.4 1.35 1.29
60 0.05 1.99 1.92 1.84 1.75 1.7 1.65 1.53 1.47 1.39
60 0.025 2.27 2.17 2.06 1.94 1.88 1.82 1.67 1.58 1.48
60 0.01 2.63 2.5 2.35 2.2 2.12 2.03 1.84 1.73 1.6
60 0.005 2.9 2.74 2.57 2.39 2.29 2.19 1.96 1.83 1.69
120 0.1 1.65 1.6 1.55 1.48 1.45 1.41 1.32 1.26 1.19
120 0.05 1.91 1.83 1.75 1.66 1.61 1.55 1.43 1.35 1.25
120 0.025 2.16 2.05 1.94 1.82 1.76 1.69 1.53 1.43 1.31
120 0.01 2.47 2.34 2.19 2.03 1.95 1.86 1.66 1.53 1.38
120 0.005 2.71 2.54 2.37 2.19 2.09 1.98 1.75 1.61 1.43
Inf 0.1 1.6 1.55 1.49 1.42 1.38 1.34 1.24 1.17 1
Inf 0.05 1.83 1.75 1.67 1.57 1.52 1.46 1.32 1.22 1
Inf 0.025 2.05 1.94 1.83 1.71 1.64 1.57 1.39 1.27 1
Inf 0.01 2.32 2.18 2.04 1.88 1.79 1.7 1.47 1.32 1
Inf 0.005 2.52 2.36 2.19 2 1.9 1.79 1.53 1.36 1

589

Table 9: Cumulative binomial probabilities I. Table entry is P (X ≤ x) where X ∼ bin(n, p).
p

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0 0.81 0.64 0.49 0.36 0.25 0.16 0.09 0.04 0.01
2 1 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19
2 2 1 1 1 1 1 1 1 1 1
3 0 0.729 0.512 0.343 0.216 0.125 0.064 0.027 0.008 0.001
3 1 0.972 0.896 0.784 0.648 0.5 0.352 0.216 0.104 0.028
3 2 0.999 0.992 0.973 0.936 0.875 0.784 0.657 0.488 0.271
3 3 1 1 1 1 1 1 1 1 1
4 0 0.6561 0.4096 0.2401 0.1296 0.0625 0.0256 0.0081 0.0016 1e-04
4 1 0.9477 0.8192 0.6517 0.4752 0.3125 0.1792 0.0837 0.0272 0.0037
4 2 0.9963 0.9728 0.9163 0.8208 0.6875 0.5248 0.3483 0.1808 0.0523
4 3 0.9999 0.9984 0.9919 0.9744 0.9375 0.8704 0.7599 0.5904 0.3439
4 4 1 1 1 1 1 1 1 1 1
5 0 0.5905 0.3277 0.1681 0.0778 0.0312 0.0102 0.0024 3e-04 0
5 1 0.9185 0.7373 0.5282 0.337 0.1875 0.087 0.0308 0.0067 5e-04
5 2 0.9914 0.9421 0.8369 0.6826 0.5 0.3174 0.1631 0.0579 0.0086
5 3 0.9995 0.9933 0.9692 0.913 0.8125 0.663 0.4718 0.2627 0.0815
5 4 1 0.9997 0.9976 0.9898 0.9688 0.9222 0.8319 0.6723 0.4095
5 5 1 1 1 1 1 1 1 1 1
6 0 0.5314 0.2621 0.1176 0.0467 0.0156 0.0041 7e-04 1e-04 0
6 1 0.8857 0.6554 0.4202 0.2333 0.1094 0.041 0.0109 0.0016 1e-04
6 2 0.9842 0.9011 0.7443 0.5443 0.3437 0.1792 0.0705 0.017 0.0013
6 3 0.9987 0.983 0.9295 0.8208 0.6562 0.4557 0.2557 0.0989 0.0158
6 4 0.9999 0.9984 0.9891 0.959 0.8906 0.7667 0.5798 0.3446 0.1143
6 5 1 0.9999 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686
6 6 1 1 1 1 1 1 1 1 1
7 0 0.4783 0.2097 0.0824 0.028 0.0078 0.0016 2e-04 0 0
7 1 0.8503 0.5767 0.3294 0.1586 0.0625 0.0188 0.0038 4e-04 0
7 2 0.9743 0.852 0.6471 0.4199 0.2266 0.0963 0.0288 0.0047 2e-04
7 3 0.9973 0.9667 0.874 0.7102 0.5 0.2898 0.126 0.0333 0.0027
7 4 0.9998 0.9953 0.9712 0.9037 0.7734 0.5801 0.3529 0.148 0.0257
7 5 1 0.9996 0.9962 0.9812 0.9375 0.8414 0.6706 0.4233 0.1497
7 6 1 1 0.9998 0.9984 0.9922 0.972 0.9176 0.7903 0.5217
7 7 1 1 1 1 1 1 1 1 1
8 0 0.4305 0.1678 0.0576 0.0168 0.0039 7e-04 1e-04 0 0
8 1 0.8131 0.5033 0.2553 0.1064 0.0352 0.0085 0.0013 1e-04 0
8 2 0.9619 0.7969 0.5518 0.3154 0.1445 0.0498 0.0113 0.0012 0
8 3 0.995 0.9437 0.8059 0.5941 0.3633 0.1737 0.058 0.0104 4e-04
8 4 0.9996 0.9896 0.942 0.8263 0.6367 0.4059 0.1941 0.0563 0.005
8 5 1 0.9988 0.9887 0.9502 0.8555 0.6846 0.4482 0.2031 0.0381
8 6 1 0.9999 0.9987 0.9915 0.9648 0.8936 0.7447 0.4967 0.1869
8 7 1 1 0.9999 0.9993 0.9961 0.9832 0.9424 0.8322 0.5695
8 8 1 1 1 1 1 1 1 1 1
9 0 0.3874 0.1342 0.0404 0.0101 0.002 3e-04 0 0 0
9 1 0.7748 0.4362 0.196 0.0705 0.0195 0.0038 4e-04 0 0
9 2 0.947 0.7382 0.4628 0.2318 0.0898 0.025 0.0043 3e-04 0
9 3 0.9917 0.9144 0.7297 0.4826 0.2539 0.0994 0.0253 0.0031 1e-04
9 4 0.9991 0.9804 0.9012 0.7334 0.5 0.2666 0.0988 0.0196 9e-04
9 5 0.9999 0.9969 0.9747 0.9006 0.7461 0.5174 0.2703 0.0856 0.0083
9 6 1 0.9997 0.9957 0.975 0.9102 0.7682 0.5372 0.2618 0.053
9 7 1 1 0.9996 0.9962 0.9805 0.9295 0.804 0.5638 0.2252
9 8 1 1 1 0.9997 0.998 0.9899 0.9596 0.8658 0.6126
9 9 1 1 1 1 1 1 1 1 1

590 APPENDIX D. DISTRIBUTION TABLES

Table 10: Cumulative binomial probabilities II. Table entry is P (X ≤ x) where X ∼ bin(n, p).
p

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 0 0.3487 0.1074 0.0282 0.006 0.001 1e-04 0 0 0
10 1 0.7361 0.3758 0.1493 0.0464 0.0107 0.0017 1e-04 0 0
10 2 0.9298 0.6778 0.3828 0.1673 0.0547 0.0123 0.0016 1e-04 0
10 3 0.9872 0.8791 0.6496 0.3823 0.1719 0.0548 0.0106 9e-04 0
10 4 0.9984 0.9672 0.8497 0.6331 0.377 0.1662 0.0473 0.0064 1e-04
10 5 0.9999 0.9936 0.9527 0.8338 0.623 0.3669 0.1503 0.0328 0.0016
10 6 1 0.9991 0.9894 0.9452 0.8281 0.6177 0.3504 0.1209 0.0128
10 7 1 0.9999 0.9984 0.9877 0.9453 0.8327 0.6172 0.3222 0.0702
10 8 1 1 0.9999 0.9983 0.9893 0.9536 0.8507 0.6242 0.2639
10 9 1 1 1 0.9999 0.999 0.994 0.9718 0.8926 0.6513
10 10 1 1 1 1 1 1 1 1 1
11 0 0.3138 0.0859 0.0198 0.0036 5e-04 0 0 0 0
11 1 0.6974 0.3221 0.113 0.0302 0.0059 7e-04 0 0 0
11 2 0.9104 0.6174 0.3127 0.1189 0.0327 0.0059 6e-04 0 0
11 3 0.9815 0.8389 0.5696 0.2963 0.1133 0.0293 0.0043 2e-04 0
11 4 0.9972 0.9496 0.7897 0.5328 0.2744 0.0994 0.0216 0.002 0
11 5 0.9997 0.9883 0.9218 0.7535 0.5 0.2465 0.0782 0.0117 3e-04
11 6 1 0.998 0.9784 0.9006 0.7256 0.4672 0.2103 0.0504 0.0028
11 7 1 0.9998 0.9957 0.9707 0.8867 0.7037 0.4304 0.1611 0.0185
11 8 1 1 0.9994 0.9941 0.9673 0.8811 0.6873 0.3826 0.0896
11 9 1 1 1 0.9993 0.9941 0.9698 0.887 0.6779 0.3026
11 10 1 1 1 1 0.9995 0.9964 0.9802 0.9141 0.6862
11 11 1 1 1 1 1 1 1 1 1
12 0 0.2824 0.0687 0.0138 0.0022 2e-04 0 0 0 0
12 1 0.659 0.2749 0.085 0.0196 0.0032 3e-04 0 0 0
12 2 0.8891 0.5583 0.2528 0.0834 0.0193 0.0028 2e-04 0 0
12 3 0.9744 0.7946 0.4925 0.2253 0.073 0.0153 0.0017 1e-04 0
12 4 0.9957 0.9274 0.7237 0.4382 0.1938 0.0573 0.0095 6e-04 0
12 5 0.9995 0.9806 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 1e-04
12 6 0.9999 0.9961 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 5e-04
12 7 1 0.9994 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043
12 8 1 0.9999 0.9983 0.9847 0.927 0.7747 0.5075 0.2054 0.0256
12 9 1 1 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109
12 10 1 1 1 0.9997 0.9968 0.9804 0.915 0.7251 0.341
12 11 1 1 1 1 0.9998 0.9978 0.9862 0.9313 0.7176
12 12 1 1 1 1 1 1 1 1 1
13 0 0.2542 0.055 0.0097 0.0013 1e-04 0 0 0 0
13 1 0.6213 0.2336 0.0637 0.0126 0.0017 1e-04 0 0 0
13 2 0.8661 0.5017 0.2025 0.0579 0.0112 0.0013 1e-04 0 0
13 3 0.9658 0.7473 0.4206 0.1686 0.0461 0.0078 7e-04 0 0
13 4 0.9935 0.9009 0.6543 0.353 0.1334 0.0321 0.004 2e-04 0
13 5 0.9991 0.97 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0
13 6 0.9999 0.993 0.9376 0.7712 0.5 0.2288 0.0624 0.007 1e-04
13 7 1 0.9988 0.9818 0.9023 0.7095 0.4256 0.1654 0.03 9e-04
13 8 1 0.9998 0.996 0.9679 0.8666 0.647 0.3457 0.0991 0.0065
13 9 1 1 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342
13 10 1 1 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339
13 11 1 1 1 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787
13 12 1 1 1 1 0.9999 0.9987 0.9903 0.945 0.7458
13 13 1 1 1 1 1 1 1 1 1

591

Table 11: Cumulative binomial probabilities III. Table entry is P (X ≤ x) where X ∼
bin(n, p).

p
n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
14 0 0.2288 0.044 0.0068 8e-04 1e-04 0 0 0 0
14 1 0.5846 0.1979 0.0475 0.0081 9e-04 1e-04 0 0 0
14 2 0.8416 0.4481 0.1608 0.0398 0.0065 6e-04 0 0 0
14 3 0.9559 0.6982 0.3552 0.1243 0.0287 0.0039 2e-04 0 0
14 4 0.9908 0.8702 0.5842 0.2793 0.0898 0.0175 0.0017 0 0
14 5 0.9985 0.9561 0.7805 0.4859 0.212 0.0583 0.0083 4e-04 0
14 6 0.9998 0.9884 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0
14 7 1 0.9976 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 2e-04
14 8 1 0.9996 0.9917 0.9417 0.788 0.5141 0.2195 0.0439 0.0015
14 9 1 1 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092
14 10 1 1 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441
14 11 1 1 1 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584
14 12 1 1 1 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154
14 13 1 1 1 1 0.9999 0.9992 0.9932 0.956 0.7712
14 14 1 1 1 1 1 1 1 1 1
15 0 0.2059 0.0352 0.0047 5e-04 0 0 0 0 0
15 1 0.549 0.1671 0.0353 0.0052 5e-04 0 0 0 0
15 2 0.8159 0.398 0.1268 0.0271 0.0037 3e-04 0 0 0
15 3 0.9444 0.6482 0.2969 0.0905 0.0176 0.0019 1e-04 0 0
15 4 0.9873 0.8358 0.5155 0.2173 0.0592 0.0093 7e-04 0 0
15 5 0.9978 0.9389 0.7216 0.4032 0.1509 0.0338 0.0037 1e-04 0
15 6 0.9997 0.9819 0.8689 0.6098 0.3036 0.095 0.0152 8e-04 0
15 7 1 0.9958 0.95 0.7869 0.5 0.2131 0.05 0.0042 0
15 8 1 0.9992 0.9848 0.905 0.6964 0.3902 0.1311 0.0181 3e-04
15 9 1 0.9999 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022
15 10 1 1 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127
15 11 1 1 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556
15 12 1 1 1 0.9997 0.9963 0.9729 0.8732 0.602 0.1841
15 13 1 1 1 1 0.9995 0.9948 0.9647 0.8329 0.451
15 14 1 1 1 1 1 0.9995 0.9953 0.9648 0.7941
15 15 1 1 1 1 1 1 1 1 1
16 0 0.1853 0.0281 0.0033 3e-04 0 0 0 0 0
16 1 0.5147 0.1407 0.0261 0.0033 3e-04 0 0 0 0
16 2 0.7892 0.3518 0.0994 0.0183 0.0021 1e-04 0 0 0
16 3 0.9316 0.5981 0.2459 0.0651 0.0106 9e-04 0 0 0
16 4 0.983 0.7982 0.4499 0.1666 0.0384 0.0049 3e-04 0 0
16 5 0.9967 0.9183 0.6598 0.3288 0.1051 0.0191 0.0016 0 0
16 6 0.9995 0.9733 0.8247 0.5272 0.2272 0.0583 0.0071 2e-04 0
16 7 0.9999 0.993 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0
16 8 1 0.9985 0.9743 0.8577 0.5982 0.2839 0.0744 0.007 1e-04
16 9 1 0.9998 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 5e-04
16 10 1 1 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033
16 11 1 1 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.017
16 12 1 1 1 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684
16 13 1 1 1 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108
16 14 1 1 1 1 0.9997 0.9967 0.9739 0.8593 0.4853
16 15 1 1 1 1 1 0.9997 0.9967 0.9719 0.8147
16 16 1 1 1 1 1 1 1 1 1

592 APPENDIX D. DISTRIBUTION TABLES

Table 12: Cumulative binomial probabilities IV. Table entry is P (X ≤ x) whereX ∼ bin(n, p).
p

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
17 0 0.1668 0.0225 0.0023 2e-04 0 0 0 0 0
17 1 0.4818 0.1182 0.0193 0.0021 1e-04 0 0 0 0
17 2 0.7618 0.3096 0.0774 0.0123 0.0012 1e-04 0 0 0
17 3 0.9174 0.5489 0.2019 0.0464 0.0064 5e-04 0 0 0
17 4 0.9779 0.7582 0.3887 0.126 0.0245 0.0025 1e-04 0 0
17 5 0.9953 0.8943 0.5968 0.2639 0.0717 0.0106 7e-04 0 0
17 6 0.9992 0.9623 0.7752 0.4478 0.1662 0.0348 0.0032 1e-04 0
17 7 0.9999 0.9891 0.8954 0.6405 0.3145 0.0919 0.0127 5e-04 0
17 8 1 0.9974 0.9597 0.8011 0.5 0.1989 0.0403 0.0026 0
17 9 1 0.9995 0.9873 0.9081 0.6855 0.3595 0.1046 0.0109 1e-04
17 10 1 0.9999 0.9968 0.9652 0.8338 0.5522 0.2248 0.0377 8e-04
17 11 1 1 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047
17 12 1 1 0.9999 0.9975 0.9755 0.874 0.6113 0.2418 0.0221
17 13 1 1 1 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826
17 14 1 1 1 0.9999 0.9988 0.9877 0.9226 0.6904 0.2382
17 15 1 1 1 1 0.9999 0.9979 0.9807 0.8818 0.5182
17 16 1 1 1 1 1 0.9998 0.9977 0.9775 0.8332
17 17 1 1 1 1 1 1 1 1 1
18 0 0.1501 0.018 0.0016 1e-04 0 0 0 0 0
18 1 0.4503 0.0991 0.0142 0.0013 1e-04 0 0 0 0
18 2 0.7338 0.2713 0.06 0.0082 7e-04 0 0 0 0
18 3 0.9018 0.501 0.1646 0.0328 0.0038 2e-04 0 0 0
18 4 0.9718 0.7164 0.3327 0.0942 0.0154 0.0013 0 0 0
18 5 0.9936 0.8671 0.5344 0.2088 0.0481 0.0058 3e-04 0 0
18 6 0.9988 0.9487 0.7217 0.3743 0.1189 0.0203 0.0014 0 0
18 7 0.9998 0.9837 0.8593 0.5634 0.2403 0.0576 0.0061 2e-04 0
18 8 1 0.9957 0.9404 0.7368 0.4073 0.1347 0.021 9e-04 0
18 9 1 0.9991 0.979 0.8653 0.5927 0.2632 0.0596 0.0043 0
18 10 1 0.9998 0.9939 0.9424 0.7597 0.4366 0.1407 0.0163 2e-04
18 11 1 1 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012
18 12 1 1 0.9997 0.9942 0.9519 0.7912 0.4656 0.1329 0.0064
18 13 1 1 1 0.9987 0.9846 0.9058 0.6673 0.2836 0.0282
18 14 1 1 1 0.9998 0.9962 0.9672 0.8354 0.499 0.0982
18 15 1 1 1 1 0.9993 0.9918 0.94 0.7287 0.2662
18 16 1 1 1 1 0.9999 0.9987 0.9858 0.9009 0.5497
18 17 1 1 1 1 1 0.9999 0.9984 0.982 0.8499
18 18 1 1 1 1 1 1 1 1 1
19 0 0.1351 0.0144 0.0011 1e-04 0 0 0 0 0
19 1 0.4203 0.0829 0.0104 8e-04 0 0 0 0 0
19 2 0.7054 0.2369 0.0462 0.0055 4e-04 0 0 0 0
19 3 0.885 0.4551 0.1332 0.023 0.0022 1e-04 0 0 0
19 4 0.9648 0.6733 0.2822 0.0696 0.0096 6e-04 0 0 0
19 5 0.9914 0.8369 0.4739 0.1629 0.0318 0.0031 1e-04 0 0
19 6 0.9983 0.9324 0.6655 0.3081 0.0835 0.0116 6e-04 0 0
19 7 0.9997 0.9767 0.818 0.4878 0.1796 0.0352 0.0028 0 0
19 8 1 0.9933 0.9161 0.6675 0.3238 0.0885 0.0105 3e-04 0
19 9 1 0.9984 0.9674 0.8139 0.5 0.1861 0.0326 0.0016 0
19 10 1 0.9997 0.9895 0.9115 0.6762 0.3325 0.0839 0.0067 0
19 11 1 1 0.9972 0.9648 0.8204 0.5122 0.182 0.0233 3e-04
19 12 1 1 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017
19 13 1 1 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086
19 14 1 1 1 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352
19 15 1 1 1 0.9999 0.9978 0.977 0.8668 0.5449 0.115
19 16 1 1 1 1 0.9996 0.9945 0.9538 0.7631 0.2946
19 17 1 1 1 1 1 0.9992 0.9896 0.9171 0.5797
19 18 1 1 1 1 1 0.9999 0.9989 0.9856 0.8649
19 19 1 1 1 1 1 1 1 1 1

593

Table 13: Cumulative binomial probabilities V. Table entry is P (X ≤ x) where X ∼ bin(n, p).
p

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20 0 0.1216 0.0115 8e-04 0 0 0 0 0 0
20 1 0.3917 0.0692 0.0076 5e-04 0 0 0 0 0
20 2 0.6769 0.2061 0.0355 0.0036 2e-04 0 0 0 0
20 3 0.867 0.4114 0.1071 0.016 0.0013 0 0 0 0
20 4 0.9568 0.6296 0.2375 0.051 0.0059 3e-04 0 0 0
20 5 0.9887 0.8042 0.4164 0.1256 0.0207 0.0016 0 0 0
20 6 0.9976 0.9133 0.608 0.25 0.0577 0.0065 3e-04 0 0
20 7 0.9996 0.9679 0.7723 0.4159 0.1316 0.021 0.0013 0 0
20 8 0.9999 0.99 0.8867 0.5956 0.2517 0.0565 0.0051 1e-04 0
20 9 1 0.9974 0.952 0.7553 0.4119 0.1275 0.0171 6e-04 0
20 10 1 0.9994 0.9829 0.8725 0.5881 0.2447 0.048 0.0026 0
20 11 1 0.9999 0.9949 0.9435 0.7483 0.4044 0.1133 0.01 1e-04
20 12 1 1 0.9987 0.979 0.8684 0.5841 0.2277 0.0321 4e-04
20 13 1 1 0.9997 0.9935 0.9423 0.75 0.392 0.0867 0.0024
20 14 1 1 1 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113
20 15 1 1 1 0.9997 0.9941 0.949 0.7625 0.3704 0.0432
20 16 1 1 1 1 0.9987 0.984 0.8929 0.5886 0.133
20 17 1 1 1 1 0.9998 0.9964 0.9645 0.7939 0.3231
20 18 1 1 1 1 1 0.9995 0.9924 0.9308 0.6083
20 19 1 1 1 1 1 1 0.9992 0.9885 0.8784
20 20 1 1 1 1 1 1 1 1 1
25 0 0.0718 0.0038 1e-04 0 0 0 0 0 0
25 1 0.2712 0.0274 0.0016 1e-04 0 0 0 0 0
25 2 0.5371 0.0982 0.009 4e-04 0 0 0 0 0
25 3 0.7636 0.234 0.0332 0.0024 1e-04 0 0 0 0
25 4 0.902 0.4207 0.0905 0.0095 5e-04 0 0 0 0
25 5 0.9666 0.6167 0.1935 0.0294 0.002 1e-04 0 0 0
25 6 0.9905 0.78 0.3407 0.0736 0.0073 3e-04 0 0 0
25 7 0.9977 0.8909 0.5118 0.1536 0.0216 0.0012 0 0 0
25 8 0.9995 0.9532 0.6769 0.2735 0.0539 0.0043 1e-04 0 0
25 9 0.9999 0.9827 0.8106 0.4246 0.1148 0.0132 5e-04 0 0
25 10 1 0.9944 0.9022 0.5858 0.2122 0.0344 0.0018 0 0
25 11 1 0.9985 0.9558 0.7323 0.345 0.0778 0.006 1e-04 0
25 12 1 0.9996 0.9825 0.8462 0.5 0.1538 0.0175 4e-04 0
25 13 1 0.9999 0.994 0.9222 0.655 0.2677 0.0442 0.0015 0
25 14 1 1 0.9982 0.9656 0.7878 0.4142 0.0978 0.0056 0
25 15 1 1 0.9995 0.9868 0.8852 0.5754 0.1894 0.0173 1e-04
25 16 1 1 0.9999 0.9957 0.9461 0.7265 0.3231 0.0468 5e-04
25 17 1 1 1 0.9988 0.9784 0.8464 0.4882 0.1091 0.0023
25 18 1 1 1 0.9997 0.9927 0.9264 0.6593 0.22 0.0095
25 19 1 1 1 0.9999 0.998 0.9706 0.8065 0.3833 0.0334
25 20 1 1 1 1 0.9995 0.9905 0.9095 0.5793 0.098
25 21 1 1 1 1 0.9999 0.9976 0.9668 0.766 0.2364
25 22 1 1 1 1 1 0.9996 0.991 0.9018 0.4629
25 23 1 1 1 1 1 0.9999 0.9984 0.9726 0.7288
25 24 1 1 1 1 1 1 0.9999 0.9962 0.9282
25 25 1 1 1 1 1 1 1 1 1

594 APPENDIX D. DISTRIBUTION TABLES

Table 14: Cumulative binomial probabilities VI. Table entry is P (X ≤ x) whereX ∼ bin(n, p).
p

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
30 0 0.0424 0.0012 0 0 0 0 0 0 0
30 1 0.1837 0.0105 3e-04 0 0 0 0 0 0
30 2 0.4114 0.0442 0.0021 0 0 0 0 0 0
30 3 0.6474 0.1227 0.0093 3e-04 0 0 0 0 0
30 4 0.8245 0.2552 0.0302 0.0015 0 0 0 0 0
30 5 0.9268 0.4275 0.0766 0.0057 2e-04 0 0 0 0
30 6 0.9742 0.607 0.1595 0.0172 7e-04 0 0 0 0
30 7 0.9922 0.7608 0.2814 0.0435 0.0026 0 0 0 0
30 8 0.998 0.8713 0.4315 0.094 0.0081 2e-04 0 0 0
30 9 0.9995 0.9389 0.5888 0.1763 0.0214 9e-04 0 0 0
30 10 0.9999 0.9744 0.7304 0.2915 0.0494 0.0029 0 0 0
30 11 1 0.9905 0.8407 0.4311 0.1002 0.0083 2e-04 0 0
30 12 1 0.9969 0.9155 0.5785 0.1808 0.0212 6e-04 0 0
30 13 1 0.9991 0.9599 0.7145 0.2923 0.0481 0.0021 0 0
30 14 1 0.9998 0.9831 0.8246 0.4278 0.0971 0.0064 1e-04 0
30 15 1 0.9999 0.9936 0.9029 0.5722 0.1754 0.0169 2e-04 0
30 16 1 1 0.9979 0.9519 0.7077 0.2855 0.0401 9e-04 0
30 17 1 1 0.9994 0.9788 0.8192 0.4215 0.0845 0.0031 0
30 18 1 1 0.9998 0.9917 0.8998 0.5689 0.1593 0.0095 0
30 19 1 1 1 0.9971 0.9506 0.7085 0.2696 0.0256 1e-04
30 20 1 1 1 0.9991 0.9786 0.8237 0.4112 0.0611 5e-04
30 21 1 1 1 0.9998 0.9919 0.906 0.5685 0.1287 0.002
30 22 1 1 1 1 0.9974 0.9565 0.7186 0.2392 0.0078
30 23 1 1 1 1 0.9993 0.9828 0.8405 0.393 0.0258
30 24 1 1 1 1 0.9998 0.9943 0.9234 0.5725 0.0732
30 25 1 1 1 1 1 0.9985 0.9698 0.7448 0.1755
30 26 1 1 1 1 1 0.9997 0.9907 0.8773 0.3526
30 27 1 1 1 1 1 1 0.9979 0.9558 0.5886
30 28 1 1 1 1 1 1 0.9997 0.9895 0.8163
30 29 1 1 1 1 1 1 1 0.9988 0.9576
30 30 1 1 1 1 1 1 1 1 1

595

Table 15: Cumulative Poisson probabilities I. Table entry is P (X ≤ x) where X ∼ pois(λ).
λ

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679
1 0.9953 0.9825 0.9631 0.9384 0.9098 0.8781 0.8442 0.8088 0.7725 0.7358
2 0.9998 0.9989 0.9964 0.9921 0.9856 0.9769 0.9659 0.9526 0.9371 0.9197
3 1 0.9999 0.9997 0.9992 0.9982 0.9966 0.9942 0.9909 0.9865 0.981
4 1 1 1 0.9999 0.9998 0.9996 0.9992 0.9986 0.9977 0.9963
5 1 1 1 1 1 1 0.9999 0.9998 0.9997 0.9994
6 1 1 1 1 1 1 1 1 1 0.9999
7 1 1 1 1 1 1 1 1 1 1

Table 16: Cumulative Poisson probabilities II. Table entry is P (X ≤ x) where X ∼ pois(λ).
λ

x 2 3 4 5 6 7 8 9 10 15
0 0.1353 0.0498 0.0183 0.0067 0.0025 9e-04 3e-04 1e-04 0 0
1 0.406 0.1991 0.0916 0.0404 0.0174 0.0073 0.003 0.0012 5e-04 0
2 0.6767 0.4232 0.2381 0.1247 0.062 0.0296 0.0138 0.0062 0.0028 0
3 0.8571 0.6472 0.4335 0.265 0.1512 0.0818 0.0424 0.0212 0.0103 2e-04
4 0.9473 0.8153 0.6288 0.4405 0.2851 0.173 0.0996 0.055 0.0293 9e-04
5 0.9834 0.9161 0.7851 0.616 0.4457 0.3007 0.1912 0.1157 0.0671 0.0028
6 0.9955 0.9665 0.8893 0.7622 0.6063 0.4497 0.3134 0.2068 0.1301 0.0076
7 0.9989 0.9881 0.9489 0.8666 0.744 0.5987 0.453 0.3239 0.2202 0.018
8 0.9998 0.9962 0.9786 0.9319 0.8472 0.7291 0.5925 0.4557 0.3328 0.0374
9 1 0.9989 0.9919 0.9682 0.9161 0.8305 0.7166 0.5874 0.4579 0.0699
10 1 0.9997 0.9972 0.9863 0.9574 0.9015 0.8159 0.706 0.583 0.1185
11 1 0.9999 0.9991 0.9945 0.9799 0.9467 0.8881 0.803 0.6968 0.1848
12 1 1 0.9997 0.998 0.9912 0.973 0.9362 0.8758 0.7916 0.2676
13 1 1 0.9999 0.9993 0.9964 0.9872 0.9658 0.9261 0.8645 0.3632
14 1 1 1 0.9998 0.9986 0.9943 0.9827 0.9585 0.9165 0.4657
15 1 1 1 0.9999 0.9995 0.9976 0.9918 0.978 0.9513 0.5681
16 1 1 1 1 0.9998 0.999 0.9963 0.9889 0.973 0.6641
17 1 1 1 1 0.9999 0.9996 0.9984 0.9947 0.9857 0.7489
18 1 1 1 1 1 0.9999 0.9993 0.9976 0.9928 0.8195
19 1 1 1 1 1 1 0.9997 0.9989 0.9965 0.8752
20 1 1 1 1 1 1 0.9999 0.9996 0.9984 0.917
21 1 1 1 1 1 1 1 0.9998 0.9993 0.9469
22 1 1 1 1 1 1 1 0.9999 0.9997 0.9673
23 1 1 1 1 1 1 1 1 0.9999 0.9805
24 1 1 1 1 1 1 1 1 1 0.9888
25 1 1 1 1 1 1 1 1 1 0.9938
26 1 1 1 1 1 1 1 1 1 0.9967
27 1 1 1 1 1 1 1 1 1 0.9983
28 1 1 1 1 1 1 1 1 1 0.9991
29 1 1 1 1 1 1 1 1 1 0.9996
30 1 1 1 1 1 1 1 1 1 0.9998
31 1 1 1 1 1 1 1 1 1 0.9999
32 1 1 1 1 1 1 1 1 1 1

Bibliography

Akaike, H. (1973a). Information theory and an extension of the maximum likelihood princi-
ple. In B.N.Petrov and F.Cz‘aki, editors, 2nd International Symposium in Information Theory .
Akademiai Ki‘ado, Budapest.

Akaike, H. (1973b). Information theory and the maximum likelihood principle. In B.N.Petrov and
F.Cz‘aki, editors, 2nd International Symphosium in Information Theory .

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on
Automatic Control , 19(6), 716–723.

Albert, J. (2009). Bayesian computation with R. Springer Science & Business Media.

Almudevar, A. (2006). Using artificial neural networks to predict claim duration in a work injury
compensation environment. In Proceedings 2006 IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology , pages 378–384. IEEE.

Almudevar, A. (2013). Multiple hypothesis testing: a methodological overview. In Statistical
Methods for Microarray Data Analysis, pages 37–55. Springer.

Almudevar, A. (2016). An information theoretic approach to pedigree reconstruction. Theoretical
population biology , 107, 52–64.

Ambroise, C. and McLachlan, G. J. (2002). Selection bias in gene extraction on the basis of
microarray gene-expression data. Proceedings of the National Academy of Sciences, 99(10),
6562–6566.

Ash, R. B. and Dolacutuseans-Dade, C. A. (2000). Real Analysis and Probability . Academic Press,
San Diego, second edition.

Bickel, P. J. and Doksum, K. A. (2015a). Mathematical Statistics: Basic Ideas and Selected Topics,
Volume I , volume 117. CRC Press.

Bickel, P. J. and Doksum, K. A. (2015b). Mathematical Statistics: Basic Ideas and Selected Topics,
Volume II , volume 117. CRC Press.

Billingsley, P. (1995). Probability and Measure. John Wiley and Sons, New York, NY, third edition.

Box, G. E., Hunter, W. G., and Hunter, J. S. (2018). Statistics for Experimenters: An Introduction
to Design, Data Analysis and Model Building . John Wiley & Sons.

596

BIBLIOGRAPHY 597

Canty, A. and Ripley, B. (2017). Package ‘boot’. Bootstrap functions. Ver , pages 1–3.

Casella, G. and Berger, R. L. (2002). Statistical Inference. Duxbury, Pacific Grove, CA, 2nd
edition.

Chambers, J. (1977). Computational Methods for Data Analysis. John Wiley & Sons.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with dependence
trees. Information Theory, IEEE Transactions on, 14(3), 462–467.

Cover, T. M. and Thomas, J. A. (2012). Elements of information theory . John Wiley & Sons.

Cowell, R. G., Dawid, P., Lauritzen, S. L., and Spiegelhalter, D. J. (2006). Probabilistic Networks
and Expert Systems: Exact Computational Methods for Bayesian Networks. Springer Science &
Business Media.

Cox, D. and Hinkley, D. (1979). Theoretical Statistics. Taylor & Francis.

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman & Hall.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application, volume 1.
Cambridge University Press.

Deming, W. E. (1943). Statistical Adjustment of Data. Wiley.

Devore, J. (2011). Probability and Statistics for Engineering and the Sciences. Cengage Learning,
8th edition.

Dudoit, S. and van der Laan, M. J. (2008). Multiple Testing Procedures with Applications to
Genomics. Springer, New York.

Durrett, R. (2010). Probability: Theory and Examples. Cambridge University Press, New York,
NY, fourth edition.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics,
7(1), 1–26.

Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator:
Observed versus expected fisher information. Biometrika, 65(3), 457–483.

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC Press.

Efron, B. E. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-
validation. The American Statistician, 37(1), 36–48.

Feller, W. (1968). Probability Theory and Its Applications, Volume 1 . John Wiley and Sons, New
York, NY, third edition.

Feller, W. (1971). Probability Theory and Its Applications, Volume 2 . John Wiley and Sons, New
York, NY, second edition.

Fisher, R. A. (1924). The distribution of the partial correlation coefficient. Metron, 3, 329–332.

598 BIBLIOGRAPHY

Fraley, C. and Raftery, A. (2002). Model-based clustering, discriminant analysis, and density
estimation. JASA, 97, 611–631.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical Learning . Springer
Series in Statistics, New York.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
6(6), 721–741.

Good, P. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer, 3rd
edition.

Good, P. (2013). Permutation Tests: A Practical Guide to Resampling Methods for Testing Hy-
potheses. Springer Science & Business Media.

Grünwald, P. D. (2007). The Minimum Description Length Principle. MIT Press.

Hahne, F., Huber, W., Gentleman, R., and Falcon, S. (2010). Bioconductor Case Studies. Springer
Science & Business Media.

Hastie, T. and Tibshirani, R. J. (1990). Generalized Additive Models. CRC press.

Hastie, T. J. (2017). Statistical Models in S . Routledge.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1), 97–109.

Hogg, R. V., McKean, J. M., and Craig, A. T. (2018). Introduction to Mathematical Statistics
(What’s New in Statistics). Pearson, 8th edition.

Højsgaard, S., Edwards, D., and Lauritzen, S. (2012). Graphical Models with R . Springer Science
& Business Media.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press, Cambridge,
UK.

Ibragimov, M., Ibragimov, R., and Walden, J. (2015). Heavy-tailed Distributions and Robustness
in Economics and Finance, volume 214. Springer.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learn-
ing . Springer.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations.
Journal of the American Statistical Association, 53(282), 457–481.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), 671–680.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge, MA.

BIBLIOGRAPHY 599

Lauritzen, S. L. (1996). Graphical Models. Clarendon Press.

Lehmann, E. and Casella, G. (1998). Theory of Point Estimation. Springer, New York, NY, 2nd
edition.

Lehmann, E. L. and Romano, J. P. (2006). Testing Statistical Hypotheses. Springer Science &
Business Media.

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). Winbugs - a Bayesian modelling
framework: concepts, structure, and extensibility. Statistics and Computing , 10(4), 325–337.

Marin, J.-M. and Robert, C. P. (2014). Bayesian Essentials with R, volume 48. Springer.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman & Hall.

McCulloch, C., Searle, S., and Neuhaus, J. (2008). Generalized, Linear and Mixed Models. Wiley-
Interscience.

McCulloch, W. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5(4), 115–133.

Meeker, W. Q. and Escobar, L. A. (2014). Statistical Methods for Reliability Data. John Wiley &
Sons.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation
of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–
1092.

Nagarajan, R., Scutari, M., and Lèbre, S. (2013). Bayesian Networks in R . Springer.

Nelder, J. and Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical
Society. Series A (General), 135(3), 370–384.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied Linear Statistical
Models. Irwin, Chicago, 4th edition.

Nourani, Y. and Andresen, B. (1998). A comparison of simulated annealing cooling strategies.
Journal of Physics A: Mathematical and General , 31(41), 8373.

Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential reasoning. In
Proceedings of the 7th Conference of the Cognitive Science Society, 1985 , pages 329–334.

Pearl, J. (1986a). Fusion, propagation, and structuring in belief networks. Artificial intelligence,
29(3), 241–288.

Pearl, J. (1986b). On evidential reasoning in a hierarchy of hypotheses. Artificial intelligence,
28(1), 9–15.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, San Mateo, California.

600 BIBLIOGRAPHY

Pearl, J. (2014). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Elsevier.

Pearl, J., Geiger, D., and Verma, T. (1989). Conditional independence and its representations.
Kybernetika, 25(7), 33–44.

Picard, R. R. and Cook, R. D. (1984). Cross-validation of regression models. Journal of the
American Statistical Association, 79(387), 575–583.

Pichichero, M., Morris, M., and Almudevar, A. (2018). Three innate cytokine biomarkers predict
presence of acute otitis media and relevant otopathogens. Biomarkers and Applications, pages
BMAP–118.

Ramsay, J., Hooker, G., and Graves, S. (2009). Functional Data Analysis with R and MATLAB .
Springer.

Ripley, B. (1994). Neural networks and related methods for classification (with discussion). Journal
of the Royal Statistical Society Series B , 56, 409–456.

Ripley, B. and Hjort, N. (1996). Pattern Recognition and Neural Networks. Cambridge University
Press.

Ripley, R., Harris, A., and Tarassenko, L. (1998). Neural network models for breast cancer prog-
nosis. Neural Computing & Applications, 7, 367–375.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.

Rissanen, J. (2007). Information and Complexity in Statistical Modeling . Springer Science &
Business Media.

Ross, S. (2014). Introduction to Probability Models. Elsevier Science.

Ross, S. M. (1996). Stochastic Processes. John Wiley and Sons, New York, NY, 2nd edition.

Royden, H. L. (1968). Real Analysis. MacMillan Publishing, New York, NY, 2nd edition.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),
461–464.

Scutari, M. (2010). Learning Bayesian networks with the bnlearn R package. Journal of Statistical
Software, 35(i03).

Seber, G. and Wild, C. (1989). Nonlinear Regression. Wiley, New York.

Seber, G. A. and Lee, A. J. (2012). Linear Regression Analysis, volume 329. John Wiley & Sons.

Sen, A. and Srivastava, M. (2012). Regression Analysis: Theory, Methods, and Applications.
Springer Science & Business Media.

Shonkwiler, R. W. and Mendivil, F. (2009). Explorations in Monte Carlo Methods. Springer Science
& Business Media.

BIBLIOGRAPHY 601

Spivak, M. (1967). Calculus. Publish or Perish, 4th edition.

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1), 267–288.

Tibshirani, R., Wainwright, M., and Hastie, T. (2015). Statistical Learning with Sparsity: The
LASSO and Generalizations. Chapman and Hall/CRC.

Van Belle, G., Fisher, L. D., Heagerty, P. J., and Lumley, T. (2004). Biostatistics: A Methodology
for the Health Sciences, volume 519. John Wiley & Sons.

van Laarhoven, P. and Aarts, E. (1987). Simulated Annealing: Theory and Application. Springer.

Venables, W. N. and Ripley, B. D. (2013). Modern Applied Statistics with S-PLUS . Springer
Science & Business Media.

Welsh, A. H. (2011). Aspects of Statistical Inference. John Wiley & Sons.

Whittle, P. (2000). Probability via Expectation. Springer-Verlag, New York, NY, 4th edition.

Index

AUC, 183
F distribution, 19
d-connects, 243
d-separates, 243
k-step transition probability, 137
v-structure, 258

absorbing state, 139
active, 243
adjusted R2, 51
analysis of variance, 18
ancestor, 235
ANOVA, 18
ANOVA table, 21
arc, 235
area under curve, 183
arrow, 234
artificial neural network, 185
auxiliary parameters, 254

B-spline, 229
bagging, 185
balance equation, 144
basis, 78
basis functions, 203
Baye’s theorem, 162
between, 235
big data, 10
blocked, 243
blocking, 32
boosting, 185
bootstrap procedure, 124
boundary knots, 216

categorical data, 558
censored survival times, 100
chain rule, 248
child, 235

classification/regression trees, 185
clusters, 187
coefficient of determination, 39
coefficient of multiple determination, 50
collider, 243
computational Bayesian methods, 118
conditional odds, 164
consistent, 253
Cox proportional hazards regression model, 108
cubic spline, 225
cubic splines, 215
cycle, 235

data science, 10
deep learning network, 185
Deming regression, 33
denominator degrees of freedom, 19
dependence tree, 253
dependent variable, 33
descendant, 235
dimension reduction, 190
directed (undirected) graph, 235
directed acyclic graph (DAG), 235
directed acyclic graphs, 233
directed edge, 234
directed path, 235
dot product, 82

edges, 234
effective degrees of freedom, 227
eigenvalue decomposition, 193
eigenvalues, 192
eigenvectors, 192
equivalence class, 258
equivalent, 258
error sum of squares, 18, 38

factorized, 249

602

INDEX 603

factors, 32
features, 187
first principal component, 190
fitted values, 43
floor function, 131
founder, 235
full and reduced models, 50
full rank matrix, 83

Gaussian Bayesian network, 252
Gene Expression Omnibus, 12
general additive models, 231
generalized least squares, 89
generalized linear models, 99
Gibbs sampler, 147
Givens rotations, 83
global Markov property, 250
gold standard, 170
Gram-Schmidt process, 83
graph, 234
graphical model, 233

Hastings-Metropolis algorithm, 145
heavy-tailed distribution, 112
Householder transformations, 83
hyperparameters, 114

identifiable, 253
in-degree, 235
independent, 239
independent variable, 33
interaction term, 56
intercept, 42

joins, 235

Kaplan-Meier estimator, 100
knots, 214
Kruskal-Wallis test, 24

labeled, 235
LASSO, 201
least squares estimate, 49
likelihood ratio, 165
linear congruential generator, 126
linear least squares coefficients, 34
linearly independent, 78

link function, 99
local Markov property, 249
longitudinal models, 89

machine learning, 10
main effects, 56
Markov blanket, 242
Markov chain, 135
Markovianizing, 139
matrix rank, 83
maximum likelihood estimate, 90
mean error sum of squares, 38
memoryless property, 101, 135, 238
minimum description length principle, 202
model identification, 201
model selection, 50
multiple linear regression, 33
multiple regression, 48
multivariate normal density, 533

natural cubic spline, 225
nested models, 50
new better than used (NBU), 102
new worse than used (NWU), 102
node, 234
nodes, 234
normal equations, 41
numerator degrees of freedom, 19

odds, 164
odds ratio, 172
one-way ANOVA, 32
oracle, 120
orthogonal, 82
orthogonal matrix, 82
orthonormal, 82
out-degree, 235

pairwise multiple comparisons., 23
parent, 235
Pareto density, 112
partially ordered, 237
path, 235
permutation test, 120
polynomial regression, 69
positive definite, 154, 192

604 INDEX

positive semidefinite, 192
posterior odds, 165
posterior probability, 162
power-law, 112
predicted responses, 34
predicted value, 36
prediction bounds, 44
predictor, 33
principal components analysis, 12, 190
prior odds, 165
prior probability, 162
prosecutor’s fallacy, 167

quadratic terms, 70

random forests, 185
random number seed, 132
random walk, 385
receiver operating characteristic, 183
rectangular diagonal matrix, 192
regression sum of squares, 39
repeated measures, 32, 89
residuals, 36
ridge regression, 201
risk score, 177
ROC curve, 183
rotation matrix, 194

seed, 126
simple linear regression, 33
singular-value decomposition, 192
sink, 235
skeleton, 258
slope, 42
smoothing spline, 226
source, 235
span, 75
spanning tree, 253
splines, 214
standard errors, 43
state space, 135
statistical learning, 10
statistical model, 54
steady state frequency, 144
step function, 219
stochastic matrix, 136

stochastic process, 135
subgraph, 235
sum of squares, 31
supervised learning, 187
support vector machines, 185
survival analysis, 100
survival time, 100

terminal node, 235
time to event, 100, 112
topological ordering, 238
topology, 258
total mean, 18
total sum of squares, 19
transition probability, 135
transition probability matrix, 135
transitive causality, 236
transpose the conditional, 167
travelling salesman problem, 148
treatment sum of squares, 18, 39
Tukey’s pairwise procedure, 23
Tukey-Kramer pairwise procedure, 23

unconditionally independent, 239
undirected path, 235
unit vector, 82
unsupervised learning, 187

variance matrix, 532
vector space, 78
vertices, 234

Weibull distribution, 102

