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Section 1 Association Versus Causality

Association and Causality The difference between association and
causality is readily understood in an intuitive way, but can be difficult to
define precisely. Two events A and B are associated if the occurrence of one is
predictive of the occurrence of the other. This relationship is symmetric.

A causal relationship implies association, but claims more. The sequential
nature of causality is readily apparent. If A causes B, we expect A to precede
B. The street is wet because it rained. But a wet street does not cause rain.
The latter hypothesis can be ruled out by the many observations of the
sequence in which these two events occur.

Example 1 Of course, sequence does not by itself imply causality. Consider
the following sequence of events:

A: It rains.
B: The street is wet.
C: A rainbow appears.

We can usually expect B to precede C, but B does not cause C. Their
relationship is associative, but not causal. On the other hand, B and C are
both caused by A.
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Section 1 Association Versus Causality

Towards a Definition of Causality The exact definition and meaning of
causality is, of course, a profound question which is not easily resolved. In the
context of empirical investigation, however, we can at least develop a notion of
causality which

(a) Is precise enough to resolve competing hypotheses;

(b) Is observable through statistical inference.

Causality in the Service of Empirical Science As we will see, there
are more than one meanings of causality which satisfy these requirements. So
the approach taken here is not the development of foundational
characterizations of causality, but rather the development of statistical
techniques able to impose additional explanatory structure onto models of
association, in the service of hypothesis driven investigation.
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Section 2 Experimental versus Observational Data

Experimental Observation of Causality The phrase “A causes B”
implies the existence of some mechanism by which B necessarily occurs when
A does, or by which B cannot occur unless A does (the possibility that A
interacts with other causes to this effect must ultimately be acknowledged). If
we treat “A causes B” as a hypothesis, this might be resolvable using a
suitably defined experiment.
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Section 2 Experimental versus Observational Data

Example 2 [Chemical Reaction - Version 1] To clarify this idea,
consider the following scientific problem. Suppose we observe some system in
which two random variables X1 and X2 are observed. To fix ideas, suppose
the system is a chemical process, with Xi = 1 if agent Ai, i ∈ {1, 2} is
detected, and Xi = 0 otherwise. Then suppose after some number of
experimental trials we observe

P (X1 = X2 = 1) ≈ 0.75,

P (X1 = X2 = 0) ≈ 0.25.

We observe statistical variation of the outcome, but also some structure. A
reasonable inference would be that the two agents are associated in some way,
as though both are part of a common reaction, which occurred in
approximately 75% of the trials.
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Section 2 Experimental versus Observational Data

However, this says nothing about any causal relationship between the two
agents. It may be important to know if one agent “causes” the other, in an
asymmetric relationship. Put another way, it is possible that the presence of,
for example, A2 depends on the prior presence of A1, but that the presence of
A1 does not depend on the prior presence of A2.

The data we have described so far consists of replications from a fixed set of
experimental conditions. This data can detect association, but can not resolve
a causal hypothesis. Suppose, however, that experimental techniques exists
which can either force or suppress the presence of either agent, irrespective of
other system variables. It is helpful to adopt a distinct notation for
experimentally determined states. We will write Xi = + if the presence of
agent Ai is experimentally forced, and Xi = − if the presence of agent Ai is
experimentally suppressed.
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Section 2 Experimental versus Observational Data

We may then conduct further experimental replications, under the four
experimental conditions:

X1 = −
X1 = +

X2 = −
X2 = +.

Possibly, the following probabilities are estimated from the experimental data:

P (X2 = 1 | X1 = −) ≈ 0,

P (X2 = 1 | X1 = +) ≈ 1.

P (X1 = 1 | X2 = −) ≈ 0.75,

P (X1 = 1 | X2 = +) ≈ 0.75.
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Section 2 Experimental versus Observational Data

What does this tell us? From the observation data the marginal probability
P (X1 = 1) ≈ 0.75 was observed. When A2 is experimentally controlled the
marginal probabilities remain

P (X1 = 1 | X2 = −) = P (X1 = 1 | X2 = +) ≈ 0.75,

no matter what the experimental controlled value of X2 is. This means the
presence of absence of A1 was not dependent on the presence or absence of A2.

On the other hand, whenever the presence of A1 was experimentally forced,
A2 was also detected (since P (X2 = 1 | X1 = +) ≈ 1), and whenever the
presence of A1 was experimentally suppressed A2 was not detected (since
P (X2 = 1 | X1 = −) ≈ 0).

We can therefore infer that A1 causes A2, a claim which is stronger than mere
association.
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Section 2 Experimental versus Observational Data

Definition 1 Suppose we are able to sample replications of a random vector
X = (X1, . . . , Xn). Observational data consists of sampled replications of X
from a single joint distribution. Experimental data consists of multiple
sampled replications of X from distinct joint distributions, each induced by
experimentally constraining the values of one or more variables in X.

Can Causality be Inferred with Observational Data? It is an
important fact that the causal hypothesis of the preceding example cannot be
resolved by observational data. And this follows from the theory of Bayesian
networks. So it’s worth asking what types of causal hypotheses, if any, can be
resolved using observational data. In fact, the motivation of most of the
theory introduced here is the resolution of this question.

OR:

How Much Causality Can be Inferred with Observational Data?
It might be said that what makes a careful study of the theory essential is the
fact that observational data is able to partially, but rarely completely, resolve
the causal structure of a process. And it might be the case that auxiliary
information of some kind can be used to complete the causal model. Consider
a second example.
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Section 2 Experimental versus Observational Data

Example 3 [Chemical Reaction - Version 2] We consider an
experimental environment similar to that of the previous example, but we now
have three agents, A,B and C. It is known that they occur in a common
reaction. The sequence is unknown, and its resolution would solve an
important scientific question. Essentially, we have six hypotheses:

A→ B → C

A→ C → B

B → A→ C

B → C → A

C → A→ B

C → B → A
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Section 2 Experimental versus Observational Data

What a Bayesian Network Can Do The Bayesian network model is a
method of representing in a compact and intuitive way the dependencies
which exist among a set of random variables X1, . . . , Xn. As we will see, using
observational data, a Bayesian network model could be used to rule out some,
but not all, of these six hypothesis. In particular, a Bayesian network model
could consistently identify the middle agent. Here, the term consistent is used
precisely, in the sense that the probability that the middle agent is identified
correctly approaches 1 as the sample size n approaches ∞.

What a Bayesian Network Can’t Do Identifying the middle agent
reduced the number of hypotheses from six to two. For example, if we knew
that C was the middle agent, we would know that one of the following two
hypotheses was correct:

A→ C → B

B → C → A

However, a Bayesian network model estimated using observational data would
not be able to distinguish between the remaining two models.

12/80



Section 3 Graphical Representations of Processes - Introductory Example

Example 4 Suppose a certain individual visits a hospital. It is conceivable
that this affects the probability that the individual will miss work the
following day. We may isolate a relevant set of events or states-of-nature
which have some bearing on the matter, and represent them by the variables:

X1 = V isitsHospital

X2 = Exposure toBacteria

X3 = Immunity toBacteria

X4 = Acquires Infection

X5 = Resistance toAntibiotics

X6 = MissesWork

For the moment, leave open the properties of X1, . . . , X6. They may be
categorical, binary (TRUE/FALSE), or quantitative. For example, X1 could
simply be TRUE if the individual visits the hospital. However, in a more refined
model it might be a quantitative variable equal to the length of the visit, and
X6 might be a probability of missing work. As will be seen, graphical modeling
admits considerable flexibility on this question.
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Section 3 Graphical Representations of Processes - Introductory Example

• However, the first step in understanding graphical models and causality is
in understanding the forms of dependence between X1, . . . , X6.

• In the present example, this dependence is induced by a natural cause
and effect sequence. For example, Visits Hospital precedes Exposure

to Bacteria, since in this model we are interested in exposures which are
caused by the hospital visit (and which could not have taken place
otherwise).

• Similarly, Acquires Infection precedes Misses Work, since it is the
cause of missing work.
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Section 3 Graphical Representations of Processes - Introductory Example

It seems a simple matter, then, to represent our model graphically by
assigning a node to each variable, and to draw a directed edge (or an arrow)
between nodes with a causal relationship, with the arrow orientation signifying
the causal relationship directionally. See Figure 1.

Visits 
Hospital

[X1]

Exposure to 
Bacteria

[X2]

Immunity to 
Bacteria

[X3]

Acquires 
Infection

[X4]

Resistance to 
Antibiotics

[X5]

Misses 
Work
[X6]

Figure 1: Introductory example.
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Section 3 Graphical Representations of Processes - Introductory Example

Definition 2 Formally, a graph is a pair G = (V,E), where V is a set of
nodes or vertices, and E is a set of edges, or pairs of nodes. The pairs may be
ordered (resulting in a directed edge) or unordered (resulting in an undirected
edge). Nodes may be labeled, in which case they are considered to be
distinguishable. A directed (undirected) graph contains only directed
(undirected) edges. The theory of Bayesian networks is sometimes concerned
with graphs that contain both kinds of edges. The graph of Figure 1 is a
directed graph.

We then introduce the following terminology:

• An directed edge points from a parent to a child.

• A directed graph contains directed paths, which are sequences of nodes in
which consecutive nodes (left-to-right) form parent/child pairs. An
example from Figure 1 is X3 → X4 → X6. In contrast, X4 → X6 ← X5 is
not a directed path, since X6 is not a parent of X5.

• A directed path joins an ancestor to a descendent.
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Section 3 Graphical Representations of Processes - Introductory Example

• A node with no parent is a founder or source. A node with no children is
a terminal node or sink. The in-degree of a node is the number of
parents, and the out-degree of a node is the number of children.

• Then let Pj be the set of random variables associated with the parents of
node j. If node j is a founder, it has no parents. In this case we write
Pj = {} = ∅. Similarly, let Cj be the set of random variables associated
with the children of node j. If node j has no children we may write
Cj = {} = ∅ (∅ is the conventional symbol for an empty set).

• A directed path is a cycle if the first and last node are the same, with all
other nodes appearing at most once. A directed acyclic graph (DAG) is a
directed graph that contains no cycle. A DAG must contain at least one
source and one sink. Figure 1 is a DAG.

• An arc is a sequence of nodes in which consecutive nodes are connected
by edges of any kind.
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Section 3 Graphical Representations of Processes - Introductory Example

The following is a partial list of the relationships given in Figure 1.

• Nodes X1, X3, X5 are founders.

• X5 is a parent of X6; X6 is a child of X5.

• X1 is an ancestor of X4; X6 is a descendent X3.

In addition we have the parent sets

P1 = {}, P2 = {X1}, P3 = {}, P4 = {X2, X3}, P5 = {} and P6 = {X4, X5},

and child sets

C1 = {X2}, C2 = {X4}, C3 = {X4}, C4 = {X6}, C5 = {X6} and C6 = {}.

Note that the theory of Bayesian networks is primarily concerned with graphs
consisting of nodes labeled with random variables. It will be convenient,
therefore, to refer to the nodes by their random variable labels. Any indices can
refer to both a node and to its labeling random variable. For example, random
variable X3 will label a node with index 3. We might then refer to “node X3”.
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Section 4 Sequential Structure and Causality - The Directed Acyclic Graph (DAG)

Question If an arrow denotes causality, as it seems to do, and a visit to a
hospital may cause one to miss work, why is there no arrow from node Visits

Hospital [X1] to node Misses Work [X6]?

Answer Put another way, why is node X6 not a child of node X1, if a causal
relationship clearly exists? This is because a parent-child relationship is not
the only means of expressing causality. Note that X6 is a descendant of X1,
which also implies causality. However, the dependence of node X6 on node X1

relies on at least one other intervening node. This is known as transitive
causality .

Distinguishing between transitive and direct causality is a crucial part of causal
modeling and inference.
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Section 4 Sequential Structure and Causality - The Directed Acyclic Graph (DAG)

A DAG represents not just a single sequential process, but several parallel
sequential processes, which are only partially synchronized.Visits 

Hospital
[X1]

Exposure to 
Bacteria

[X2]

Immunity to 
Bacteria

[X3]

Acquires 
Infection

[X4]

Resistance to 
Antibiotics

[X5]

Misses 
Work
[X6]

Figure 2: Section of Figure 1.

• We can, at least conceptually, assign a time Ti to each node Xi,
representing the first time the variable label is observable. Even without
knowing their exact values, they can, to some degree, be ordered.

• In particular, we can say the following:

T1 < T2 < T4 < T6 and T3 < T4 and T5 < T6.
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Section 4 Sequential Structure and Causality - The Directed Acyclic Graph (DAG)

• However, the times Ti are only partially ordered. Informally this means:
(1) we cannot have both Ti < Tj and Ti > Tj ; and (2) the orderings are
transitive, so that if Ti < Tj and Tj < Tk, we must also have Ti < Tk.

• For example, we can say that the statements T4 < T6 and T5 < T6 are
true, but we cannot say whether T4 < T5 or T5 < T4 is true.

The role played by founders Note that T6 is the time at which it can be
established that “work is missed”. This time can, at least in principle, be
precisely identified. On the other hand, the presence, or absence, of a
resistance to antibiotics (node X5) is more of a fixed state-of-nature. What is
important to the model is the identity of this state prior to T6. So T5 can be
interpreted as any point of time before which the state might be relevant to
the outcome. In particular, T5 < T6. In this case, T5 cannot be precisely
identified, but it is still subject to ordering, which is all that is needed to
ensure that this component of the model is coherent. Such nodes, which
represent states-of-nature, tend to appear in graphical models as founders.
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Section 4 Sequential Structure and Causality - The Directed Acyclic Graph (DAG)

It is useful to see a graph formed by a pedigree as an example of a DAG
(Figure 3).

• The conventional terms parent, child, ancestor and descendant used for
DAGs conform to their intuitive meanings with respect to a pedigree.

Figure 3: A pedigree graph is a DAG.

Definition 3 A topological ordering of a DAG is an ordering of the nodes
with the following property: If node a is a parent of node b, then a precedes b
in the topological ordering. (In some definitions of a topological ordering the
ordering may be reversed.)
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Section 4 Sequential Structure and Causality - The Directed Acyclic Graph (DAG)

Example 5 For the DAG of Figure 1, the following is a topological ordering:

X1, X2, X3, X4, X5, X6.

However,
X3, X5, X1, X2, X4, X6

is also a topological ordering of the same DAG. In general, topological
orderings are not unique.

Exercise Describe the type of DAG for which (a) the topological ordering is
unique; (b) all node orderings are topological orderings.

Example 6 For a pedigree, a topological ordering is easily created by ordering
the nodes in decreasing order of the age of the individuals represented by the
nodes.
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Section 5 An Extension of the Markov Chains Model

The probabilistic structure of the Bayesian network can perhaps be made clear
by comparison to a Markov chain (which, as will will see, is actually a special
case of a Bayesian network). Recall that a Markov chain is sequence of
random variables Z1, Z2, Z3, . . . possessing the memoryless property :

P (Zi+1 = ai+1 | Zi = ai, Zi 1 = ai 1, . . . , Z1 = a1) = P (Zi+1 = ai+1 | Zi = ai). (1)

The process Z1, Z2, Z3, . . . unfolds in time, so that Z3 cannot be observed until
Z2 is observed, which cannot be observed until Z1 is observed.

Prediction Problem Suppose we wanted to predict the value of Zn,
assuming that all previous history Hn 1 = (Z1, . . . , Zn 1) is available. The
prediction will be statistical, and therefore include stochastic error. The best
we can do is to make use of the distribution of our target Zn conditional on all
available information, which is in this case Hn 1. This distribution is
P (Zn | Hn 1), which is equivalent to the left side of Equation (1).
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Section 5 An Extension of the Markov Chains Model

The Memoryless Property

However, because of the memoryless property, expressed mathematically as
Equation (1), all information in the history Hn 1 which can be used to predict
Zn is contained in the observation Zn 1 alone. So the prediction can be based
on the simpler distribution P (Zn | Zn 1) = P (Zn | Hn 1).

Question Does this mean that Zn is dependent on Zn 1, but independent of
all other observations Zn 2, Zn 3, . . . , Z1?

Answer No. It means that Zn is conditionally independent of observations
Zn 2, Zn 3, . . . , Z1, given Zn 1.

This will be clarified in the next definition.
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Section 6 Conditional Independence

Definition 4 Random events A and B are conditionally independent, given
event C, if

P (A ∩B | C) = P (A | C)P (B | C).

This may be written (A ⊥⊥ B) | C.

Random variable X and Y are conditionally independent, given Z, if

FX,Y |Z(x, y | z) = FX|Z(x | z)FY |Z(y | z),

where FX,Y |Z , FX|Z , FY |Z and the joint and marginal cumulative distribution
functions (CDF) of X,Y conditional on Z = z.
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Section 6 Conditional Independence

Examples of Conditional Independence

Example 7 Suppose N is a positive random integer. Once N is observed, it is
considered fixed, then X,Y are sampled independently from a binomial
distribution with probability parameter p and sample size N .

When we say X,Y are independent, once N is considered fixed, we mean
(X ⊥⊥ Y ) | N . But if we do not condition on N , X and Y are not
independent. Suppose we do not know the value of N . Then an observation of
X gives us some information about N . At the very least, we would know that
N ≥ X. This in turn gives us information about Y . So X and Y and not
independent, unless we condition on N .
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Section 6 Conditional Independence

Example 8 A dice is tossed independently three times. Let S1, S2, S3 be the
cumulative totals. Clearly, S1 and S3 are not independent. For example, the
reader may verify the counter-example:

P (S3 = 18 | S1 = 6) = 1/36, but

P (S3 = 18 | S1 = 5) = 0.

On the other hand (S1 ⊥⊥ S3) | S2. Once S2 is known, the distribution of S3

will not depend on the outcome of S1.
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Section 7 Towards a Definition of the Bayesian Network Model

What exactly is a Bayesian Network? Despite the term graphical
model, the graph need not be the most important object defining the Bayesian
network (BN) model. It is sometimes helpful to think of a BN as nothing more
than a type of joint distribution g = g(x1, x2, . . . , xn) of random variables
X1, X2, . . . , Xn.

Then what role is played by the graph? A joint distribution g does not
define a BN unless it satisfies certain constraints. Those constraints are
imposed by the graph (the DAG, to be precise). Moreover, these constraints
take the form of conditional independency statements. A DAG, therefore may
be equivalently thought of as a list of conditional independency statements.
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Section 7 Towards a Definition of the Bayesian Network Model

Example 9 The following DAG (Figure 4) imposes the indicated list of
conditional independence statements. Note that conditional independence
statements can apply to sets of variables, grouped by brackets, for example,
{X2, X4, X5}.

X2 X3

X1

X5

X4

Figure 4: Example of DAG.
Conditional independence
statements generated by the DAG
are shown to the right.

=⇒

X1 ⊥⊥ X5 | {X2, X3, X4}
X2 ⊥⊥ {X3, X4, X5} | X1

X3 ⊥⊥ {X2, X4} | {X1, X5}
X4 ⊥⊥ {X2, X3, X5} | X1

X5 ⊥⊥ {X1, X2, X4} | X3
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Section 7 Towards a Definition of the Bayesian Network Model

So far, are discussion has been purely descriptive, and the following questions
come to mind.

Question According to what rules does the DAG in Figure 4 generate the
associated set of conditional independence statements?

Question How can we construct a joint distribution which is constrained to
conform to a specific set of conditional independence statements?

There is a quite deep theory able to resolve these questions, which will be
discussed in due time. We will first, however, continue with this example. It is
important to show that while the underlying mathematics can be quite
formidable, the models themselves are usually quite intuitive.
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Section 8 Markov Blankets

We now consider how conditional independence statements are imposed by a
DAG. The key is in the following definition.

Definition 5 Given a DAG, the Markov blanket of a node j is the union of

(a) The set Pj of all parents of node j;
(b) The set Cj of all children of node j;
(c) The set of all parents of children of node j, excluding node j.

Denote this set of nodes Bj . This set may also refer to the collection of
random variables associated with the nodes in Bj , as necessitated by the
context. (Note that this is the definition of a Markov blanket for DAGs. This
definition may differ for other types of graphs.)
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Section 8 Markov Blankets

The rules for generating the conditional independence statements for the DAG
of Figure 4 can now be stated. Let V be the set of all nodes. The conditional
independence statements are then

{Xj} ⊥⊥ V − {Xj} −Bj | Bj , j = 1, . . . , n

In other words, each node is conditionally independent of all nodes outside its
Markov blanket, given the Markov blanket.

Example 10 Consider node X3 of Figure 4. The parent set is P3 = {X1}.
The child set is C3 = {X5}. There are no other parent of children in C3. So
B3 = {X1, X5}. Then V = {X1, X2, X3, X4, X5}, so this leads to conditional
independence statement

{X3} ⊥⊥ V − {X3} −B3 | B3, equivalent to X3 ⊥⊥ {X2, X4} | {X1, X5}.
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Section 9 D-separation

Markov blankets provide an intuitive way of deriving conditional independence
statements from a DAG, and they make clear the connection between
Bayesian networks and Markov chains. However, we will see that they will not
exhaust all relevant conditional independence statements. A more
comprehensive method involves the idea of d-separation.

Definition 6 Suppose a and b are distinct nodes of a DAG. Let L be an arc
between a and b. Then a node c on L is a collider if two edges on L are
directed towards it (note that neither a nor b can be a collider on L). Let C
be a subset of nodes. Then L is blocked by C if either

Rule 1: L contains a node in C that is not a collider; or

Rule 2: L contains a node z that is a collider, such that neither z nor any of
its descendants is in C.

Then let A, B, C be three disjoint subsets of nodes. We say C d-separates A
and B if any arc from any node a ∈ A and b ∈ B is blocked by C (equivalently,
A and B are blocked by C).
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Section 9 D-separation

The rule for generative conditional independence statements via d-separation
is now simply:

If C d-separates A and B, then A ⊥⊥ B | C.
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Section 9 D-separation

Example 11 Consider the DAG of Figure 1.

Case 1: Let A = {X6} and B = {X1, X2, X3}. What set of nodes C
d-separates A and B?

Let C = {X4}. Every arc from a node in A to a node in B passes through X4.
Is X4 a collider? Although this node has in-degree 2 (two edges are directed to
X4), a node is defined as a collider only with respect to a specific arc. Then it
is easily verified that X4 is not a collider on any arc joining any node in A to
any node in B, so Rule 1 of Definition 6 is satisfied, so that A and B are
blocked by C, which imposes conditional independence statement

{X6} ⊥⊥ {X1, X2, X3} | {X4}.
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Section 9 D-separation

Case 2: Let A = {X5} and B = {X1, X2, X3, X4}. What set of nodes C
d-separates A and B?

Let C = {}, the empty set (this is a valid set for this type of analysis). Every
arc from a node in A to a node in B passes through X6, which will be a
collider. Then note that in order for C to d-separate A and B, at least one of
the two rules of Definition 6 must hold. Rule 1 cannot hold, since there are no
nodes in C. On the other hand, all arcs contain a collider z such that neither
z, nor any of its descendants, is in C. This is because there is a collider on all
paths, but no nodes belong to C. We therefore conclude

{X5} ⊥⊥ {X1, X2, X3, X4} | {} or {X5} ⊥⊥ {X1, X2, X3, X4}

which means that the nodes in A are independent of the nodes in B. As a
technical detail, we note that although node X4 has in-degree 2, and would be
a collider on some arc, it is not a collider on any of the arcs joining nodes from
A and B.
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Section 9 D-separation

Example 12 Consider the DAG of Figure 5.

X2X1 X3

X4 X5

Figure 5: DAG used in Example 12.
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Section 9 D-separation

Case 1: First note the child set C1 = {X4}, and the one child of node X1,
namely X4, also has parent X2. By Definition 5 the Markov blanket of X1 is
therefore B1 = {X2, X4}. This imposes conditional independence statement

(X1 ⊥⊥ X3) | {X2, X4}.

Case 2: A similar argument shows that the Markov blanket of X3 is
B3 = {X2, X5}, so the DAG also imposes conditional independence statement

(X1 ⊥⊥ X3) | {X2, X5}.

Case 3: Then set C = {X4}. Does C d-separate A = {X1} and B = {X3}?
There is only one arc joining X1 and X3. There is a collider, X5, which is not
in C, and which has no descendants. Therefore, Rule 2 of Definition 6 is
satisfied, and we conclude that C d-separates A and B. The DAG therefore
imposes conditional independence statement

(X1 ⊥⊥ X3) | {X4}
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Section 9 D-separation

Case 4: Next, set C = {X5}. Does C d-separate A = {X1} and B = {X3}?
Essentially the same argument used to show that {X4} d-separates A and B
can be used to show that {X5} also d-separates A and B. The DAG therefore
imposes conditional independence statement

(X1 ⊥⊥ X3) | {X5}.

Case 5: Next, set C = {X4, X5}. Does C d-separate A = {X1} and
B = {X3}? There are no non-colliders on the arc joining X1 and X3 which are
in C, so Rule 1 is violated. Also, any collider on the arc is in C, so that Rule 2
is violated. Thus, we conclude that C does not d-separate A and B. We will
discuss this case further in Example 15 below.

Case 6: Set C = {X2, X4, X5}. Does C d-separate A = {X1} and B = {X3}?
There is only one arc joining X1 and X3. Rule 1 is satisfied contains a
non-collider X2 which is in C, and we conclude that C d-separates A and B.
The DAG therefore imposes conditional independence statement

(X1 ⊥⊥ X3) | {X2, X4, X5}.
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Section 9 D-separation

Case 7: Set C = {}. Does C d-separate A and B? The single arc joining X1

and X3 contains a node which is a collider z such that neither z, nor any of its
descendants, is in C. Thus, Rule 2 holds, and we conclude that C d-separates
A and B. The DAG therefore imposes conditional independence statement

(X1 ⊥⊥ X3) | {} or {X1} ⊥⊥ {X3}.
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Section 10 An Intuitive Construction of a Bayesian Network Model

So far, we have seen that a DAG implies a collection of conditional
independence statements. The next problem to develop a method of
constructing joint densities for the nodes which conform to those statements.

We will first use our intuition to build a model which conforms to the DAG in
Figure 4, and to the associated set of conditional independence statements. To
do this we will attempt to mimic a Markov chain. Let ε1, . . . , ε5 be five
independent random variables, of any kind.

Rule 1. Node X1 is the “first” node in what appears to be a sequential
process. Set

X1 = ε1.

Rule 2. Each of the remaining nodes have exactly one parent. The rule is
simple. Each node inherits the values of its parents, plus an
independent noise term. That is,

Xj = Xpj + εj ,

where pj is the parent of node Xj .
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Section 10 An Intuitive Construction of a Bayesian Network Model

If we apply Rules 1 and 2 to Figure 4, we have the following system of linear
equations:

X1 = ε1 =ε1

X2 = X1 + ε2 =ε1 + ε2

X3 = X1 + ε3 =ε1 + ε3

X4 = X1 + ε4 =ε1 + ε4

X5 = X3 + ε5 =ε1 + ε3 + ε5.

Does this model satisfy the conditional independence statements?
To answer this question, remember that when we condition on a random
variable, we are regarding its value as fixed or constant. We will adopt a
notational devise to denote this, putting in square brackets any random
variable or expression on which we are conditioning, and which we therefore
which to regard as fixed. For example, if we condition on X1, we replace X1 in
any expression with [X1], or alternatively, ε1 with [ε1].
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Section 10 An Intuitive Construction of a Bayesian Network Model

Example 13 Consider the conditional independence statement:

X2 ⊥⊥ {X3, X4, X5} | X1.

We are conditioning on X1, so write, following the preceding equations:

X2 = [X1] + ε2

X3 = [X1] + ε3

X4 = [X1] + ε4

X5 = X3 + ε5 = [X1] + ε3 + ε5.

Once we condition on X1, [X1] is interpreted as a constant. Then X2 depends
only on ε2. The remaining nodes X3, X4, X5 depend exclusively on ε3, ε4, ε5,
which are independent of ε2. So the conditional independence statement holds.
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Section 10 An Intuitive Construction of a Bayesian Network Model

Example 14 Consider the conditional independence statement:

X5 ⊥⊥ {X1, X2, X4} | X3.

As in the previous example, write:

X1 = ε1

X2 = ε1 + ε2

X4 = ε1 + ε4

X5 = [X3] + ε5.

Once we condition on X3, [X3] is interpreted as a constant. Then X5 depends
only on ε5. The remaining nodes X1, X2, X4 depend exclusively on ε1, ε2, ε4,
which are independent of ε5. So the conditional independence statement holds.
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Section 10 An Intuitive Construction of a Bayesian Network Model

Example 15 We can use the approach of Examples 13 and 14 to understand
why, in Example 12 (Figure 5) the conditional independence statement
(X1 ⊥⊥ X3) | {X4} holds but (X1 ⊥⊥ X3) | {X4, X5} does not (Cases 3 and 5).

Using the two rules of Examples 13-14 would give here

X4 = X1 +X2 + ε4,

X5 = X2 +X3 + ε5, (2)

where ε4, ε5 are independent random variables associated with nodes 4 and 5.
We can express the joint distribution conditional on {X4, X5} by setting
[X4] = s and [X5] = t for two fixed constants s, t. This imposes the two linear
constraints

[X4] = [X1 +X2 + ε4] = s,

[X5] = [X2 +X3 + ε5] = t.
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Section 10 An Intuitive Construction of a Bayesian Network Model

At this point, it is instructive to subtract [X5] from [X4], noting that the term
X2 will cancel, which results in the following constraint:

(X1 + ε4)− (X3 + ε5) = s− t. (3)

How can we interpret Equation (3)? We can take s− t to be constant, and
then interpret (3) as a “noisy” linear constraint on the random variables X1

and X3, with ε4, ε5 playing the role of “noise”. We lose no generality by
making the variance of ε4, ε5 as small as we like, and so we can accept,
approximately, the linear constraint:

X1 −X3 ≈ s− t. (4)

It is easily verified that two independent random variables are no longer
independent when conditioned on a constraint such as Equation (4).
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Section 10 An Intuitive Construction of a Bayesian Network Model

On the other hand, the conditional independence statement (X1 ⊥⊥ X3) | {X4}
holds, since X3 does not appear in the constructive definition of X1 or X4:

X1 = ε1

X2 = ε2

X4 = X1 +X2 + ε4

X3 = ε3.

A simpler example makes the same point. If U1, U2 are independent random
variables, and U1 + U2 = U3, Then U1, U2 will not be independent conditional
on U3 = u. Figure 5 provides a more complex version of this effect.
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Section 11 Construction of a Bayesian Network Model

Recall that any joint density of random variables X1, . . . , Xn can be
decomposed in the following way:

g(x1, xn+2, . . . , xn) = g(xn | xn 1, . . . , x1)× g(xn 1, . . . , x1)

= g(xn | xn 1, . . . , x1)× g(xn 1 | xn 2, . . . , x1)× g(xn 2, . . . , x1)

=

(
n 1∏
j=1

g(xn j+1 | xn j , . . . , x1)

)
× g(x1).

This expression simplifies considerable for a Markov chain, since by the
memoryless property we have

g(xj | xj 1, . . . , x1) = g(xj | xj 1),

and so we have the much simpler form

g(x1, xn+2, . . . , xn) =

(
n 1∏
j=1

g(xn j+1 | xn j)

)
× g(x1). (5)

49/80



Section 11 Construction of a Bayesian Network Model

The BN is built from conditional densities of the form g(xj | Pj), interpretable
as the distribution of node Xj conditional on that node’s parents.

Example 16 For the DAG in Figure 1 the conditional distribution

g(x6 | P6) = g(x6 | x4, x5)

will play an important role. It would give, for example, the probability of
missing work for an individual who has acquired an infection, and has
resistance to antibiotics.

Example 17 Founders are an important special case. Suppose X1 is a
founder. Then

g(x1 | P1) = g(x1 | {}) = g(x1).

Here we are interpreting the distribution of a random variable conditional on
an empty collection of random variables as the unconditional distribution. It
turns out that this convention may be applied generally.
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Section 11 Construction of a Bayesian Network Model

A Markov chain (of a finite number of transitions) is also a BN, representable
by the DAG shown in Figure 6.

X2 Xn-1X1 Xn

Figure 6: DAG representation of a Markov Chain.

Next, note that Equation (5), which gives the joint distribution of a Markov
chain can be rewritten using the parent sets:

g(x1, xn+2, . . . , xn) =

n∏
j=1

g(xj | Pj), (6)

noting that the term g(x1) appearing in Equation (5) is represented in
Equation (6) as

g(x1 | P1) = g(x1 | {}) = g(x1),

since X1 is a founder in the representational DAG of Figure 6.
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Section 11 Construction of a Bayesian Network Model

Theoretical basis for the Bayesian network model

At this point, we have enough to formally define a Bayesian network
supported by a rigorous mathematical foundation.

Factorization Theorem Let V = (X1, . . . , Xn) be n random variables
which label n nodes of a DAG, say G = (V,E). Suppose the joint distribution
can be factored in the following way:

g(x1, xn+2, . . . , xn) =

n∏
j=1

g(xj | Pj), (7)

where Pj is the parent set of node Xj according to the DAG G.
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Section 11 Construction of a Bayesian Network Model

Then all conditional independence statements of the form

A ⊥⊥ B | C

hold whenever C d-separates A and B.

In addition, all conditional independence statements of the form

{Xj} ⊥⊥ V − {Xj} −Bj | Bj , j = 1, . . . , n

hold, where Bj is the Markov blanket of node Xj .

This formally defines the Bayesian network model.
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Section 12 Equivalence Classes

Recall that in Example 3 there was interested in the order in which three
agents A,B,C acted in a chemical reaction. Of course, there are six possible
hypotheses:

A→ B → C

A→ C → B

B → A→ C

B → C → A

C → A→ B

C → B → A

It was claimed in that example that a Bayesian network model would be able
to reduce the number of hypotheses from 6 to 2 (by identifying the middle
agent), but would not be able to resolve those final two. For example, if C was
identified as the middle agent, we would still be left with the problem of
resolving the remaining two hypotheses:

A→ C → B

B → C → A.
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Section 12 Equivalence Classes

In Example 2, a cause A was something that was either necessary or sufficient
for the occurrence of effect B. In Example 3, we are really considering
conditional independence, which is a concept that is different from, but related
to, direct causality. Suppose the correct hypothesis of Example 3 is

A→ C → B.

We can recognize this as defining a Bayesian network model, provided the
construction specified by the Factorization Theorem holds. Furthermore, B
has parent C, no children, and shares no children with another node. The
Markov blanket of B is therefore {C}, and the following conditional
independence statement holds:

A ⊥⊥ B | C

Clearly, A and B will be dependent, but transiently so, being independent
conditionally on C. Given our understanding of chemical reactions, we might
conclude that C, and not A, is the cause of B.
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Section 12 Equivalence Classes

So far, we have seen

(1) A method of determining conditional independence statements imposed
by a DAG;

(2) A method of construct a joint distribution on the nodes of a DAG which
conforms to those conditional independence statements.

Clearly, there is a very important third step. It almost goes without saying
that the motivation for using graphical models is the insight into a process
offered by the graph. But we have claimed that the Bayesian network model
may not be able to identify a single graph as correct. It is important to
emphasis that we are not referring to the statistical error inevitable in any
inference. We are referring to something more fundamental.
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Section 12 Equivalence Classes

Definition 7 Suppose we are given a class of putative models indexed by Θ.
For each θ ∈ Θ there exists a distribution gθ for a random vector X. Let
d(θ1, θ2) ≥ 0 be a distance function on Θ, such that d(θ1, θ2) = 0 if and only if
θ1 = θ2. Suppose θ∗ is the true model, and let X1,X2, . . . be an unbounded
sample from distribution gθ∗ . We say the model is identifiable if there exists a
sequence of estimators θ̂n = θ̂n(X1, . . . , Xn), n ≥ 1, such that

P (d(θ̂n, θ
∗) < ε)→ 0 for all ε > 0 and θ∗ ∈ Θ. We then say such an estimator

is consistent.

In our case Θ would be the class of Bayesian network models on a given set of
nodes. A parameter θ ∈ Θ might specify the DAG, but also additional
parameters (which we call auxilliary parameters) defining the conditional
distributions used in the factorized distribution of Equation (7).
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Section 12 Equivalence Classes

To understand the issue of identifiability as it related to Bayesian networks,
two facts are crucial:

(1) Conditional independence statements can be consistently tested;

(2) The totality of conditional independence statements imposed by a DAG
do not uniquely determine that DAG.

So, the inference of a Bayesian network model can be decomposed into
subproblems of one of two types:

(1) Estimation of conditional independence statements;

(2) Estimation of auxilliary parameters.

Question Suppose we can consistently estimate all conditional independence
statements and auxilliary parameters. Does this imply that the Bayesian
network model is identifiable?

Answer The density of the Bayesian network given in Equation (7) can be
consistently estimated. But because multiple DAGs can impose the same set
of conditional independence statements, the underlying DAG itself is not in
general identifiable.
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Section 12 Equivalence Classes

To explore this issue, it helps to start with the simplest Bayesian network
model that still retains some interesting structure.

DAG 2

X1

DAG 1

X1X2 X2

Figure 7: Examples of DAGs (two nodes and one edge).

If we apply the Factorization Theorem, the joint density for (X1, X2) imposed
by DAG 1 of Figure 7 would be, using Equation (7),

g(x1, x2) = g(x1 | P1)g(x2 | P2)

= g(x1 | {})g(x2 | x1)

= g(x1)g(x2 | x1)

= g(x1, x2).
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Section 12 Equivalence Classes

What do we conclude from this? That any joint distribution on (X1, X2) is
compatible with DAG 1. If we repeat the exercise for DAG 2 of Figure 7, we
similarly have

g(x1, x2) = g(x1 | P1)g(x2 | P2)

= g(x1 | x2)g(x2 | {})
= g(x1 | x2)g(x2)

= g(x1, x2).

The structure is the same as for DAG 1. Either model admits any form of
dependence between X1 and X2, and are not distinguishable.
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Section 12 Equivalence Classes

Clearly, we need to examine a more complex model to discern any variety of
causal structure, and we only need to add one more node to do so.

X2DAG 1 DAG 2

DAG 3 DAG 4

X2

X2X2

X1 X3 X1 X3

X1 X3 X1 X3

Figure 8: Examples of DAGs (three nodes and two edges).
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Section 12 Equivalence Classes

If we apply the Factorization Theorem to DAG 1 of Figure 8 we have a joint
distribution for (X1, X2, X3) of the form

g(x1, x2, x3) = g(x1 | P1)g(x2 | P2)g(x3 | P3)

= g(x1 | x2)g(x2 | {})g(x3 | x2)

= g(x1 | x2)g(x2)g(x3 | x2).

If we divide this expression by g(x2) we may write equivalently:

g(x1, x2, x3)

g(x2)
= g(x1, x3 | x2) = g(x1 | x2)g(x3 | x2).

It is not hard to verify that when this expression is compared to Definition 4
(of conditional independence) we may claim X1 ⊥⊥ X3 | X2.

We can reach the same conclusion using Markov blankets. For DAG 1 of Figure
8 we have P1 = {X2}, C1 = {}, and node X1 shares no children with other
parents (Definition 5). The Markov blanket for node X1 is therefore
B1 = {X2}, and by the Factorization Theorem the conditional independence
statement X1 ⊥⊥ X3 | X2, which we also were able to conclude by direct
construction of the distribution function of (X1, X2, X3).
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Section 12 Equivalence Classes

The structure of DAG 2 and DAG 3 of Figure 8 is essentially the same as for
DAG 1. The reader can verify that the Markov blanket for X1 is also
B1 = {X2} for both, and a complete analysis would reveal that the conditional
independence structure is exactly the same for DAG 1, DAG 2 and DAG 3. In
other words, we could not distinguish between them using observational data.

This leaves DAG 4 (Figure 8). If we construct the joint distribution for
(X1, X2, X3) using the Factorization Theorem (Equation (7)) we obtain the
form

g(x1, x2, x3) = g(x1 | P1)g(x2 | P2)g(x3 | P3)

= g(x1 | {})g(x2 | x1, x3)g(x3 | {})
= g(x1)g(x2 | x1, x3)g(x3).
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Section 13 Equivalence Classes and v-structures

In the context of Bayesian networks, “causality” is a consequence of
conditional independence structure, and must derive its interpretation there.
Furthermore, we have seen examples, however simple, of distinct DAGs
imposing exactly the same conditional independence structure.

This point is essential to understand if we are going to use observation data to
infer the graphical structure of a Bayesian network model. To be sure, this is a
useful and viable estimation problem, provided its limitations are understood.
Fortunately, there is a very simple rule for determining when two DAGs
impose the same conditional independent statements. Furthermore, this rule is
a necessary and sufficient condition, which we now state.
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Section 13 Equivalence Classes and v-structures

Definition 8 Let G be a DAG. A v-structure is a subgraph consisting of
three nodes, say a, b and c, such that a, b are parents of c, and there is no edge
in G joining a and b (that is: a→ c← b). The skeleton or topology of G is the
undirected graph obtained by replacing all edges in G with undirected edges.

Two DAGs G and G′ are equivalent if the following two conditions hold

(a) DAGs G and G′ possess the same skeleton.

(b) DAGs G and G′ possess the same v-structures.

The set of all DAGs which are equivalent to some DAG G forms an
equivalence class. Note that equivalent DAGs are necessarily defined on the
same set of nodes V .
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Section 13 Equivalence Classes and v-structures

The consequence of equivalency of DAGs is quite profound.

Theorem [Verma & Pearl, 1990] Two DAGs G and G′ defined on nodes
V are equivalent if and only if the following condition holds:

(a) Let g be any joint density on the nodes V which factors according to G.
Then there exists a density g′ on nodes V which factors according to G′,
and which satisfies g = g′.

Essentially, two equivalent DAGs impose the same set of conditional
independence statements. Furthermore, suppose we use data to fit a density ĝ
which factors according to G, according to any optimal criteria. Then ĝ will
also factor according to any equivalent DAG G′, meaning that we will have no
basis on which to distinguish between G and G′.
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Section 14 Example: A simple gene regulatory network

Bayesian network models are often used to discern regulatory relationships in
gene regulatory networks. Suppose observational data is used to fit a Bayesian
network for 8 genes labeled a, b, . . . , g, h, resulting in the DAG shown in Figure
9. We say a gene y is downstream from gene x if x is an ancestor of y. In this
case, x regulates y, possibly transitively. We will consider the following
exercises.

a

h

g

fe

d

c

b

Figure 9: Sample DAG representing a gene regulatory network.
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Section 14 Example: A simple gene regulatory network

We first list all v-structures of the DAG, of which there are four:

b→ c← d

b→ c← h

d→ c← h

g → e← c.

Next, suppose a DAG is accepted as a true model of regulatory control. In
this context, this means that all genes y which are downstream of any given
gene x can be identified, assuming the inferred Bayesian network is correct.

However, recall that observational data can only be used to infer an
equivalence class of DAGs. This means that all DAGs in an equivalence class
are equally compatible with the data.
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Section 14 Example: A simple gene regulatory network

This being the case, any statement about regulatory order may be one of
following three types:

Type A: Implied by the Bayesian network model (true of all equivalent
DAGs).

Type B: Compatible with the Bayesian network model (true of some but not
all equivalent DAGs).

Type C: Not compatible with the Bayesian network model (not true of any
equivalent DAG).
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Section 14 Example: A simple gene regulatory network

Note that a DAG is equivalent to itself. As an exercise, we will determine the
type (A, B or C) of each the following statements:

(i) c is downstream from h.
(ii) g is downstream from c.
(iii) h has no parents.
(iv) b has no parents.
(v) c has exactly three parents.

(vi) f is downstream from a.

Technically, to solve this type of problem it is important to understand how a
DAG can be modified to produce a distinct but equivalent DAG, or to
understand whether or not this operation is possible. First note that two
equivalent DAGs must have the same skeleton. This means that the direction
of an edge can be changed, but other than this, no edges can be added or
removed. In addition, a switch in the direction of an edge cannot result in the
removal or addition of a v-structure (otherwise, the DAG would not be
equivalent). This is why it will be useful to identify all v-structures, as we
have done above.
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Section 14 Example: A simple gene regulatory network

(i) In the original DAG, c is downstream from h, so the statement is not
Type C. If there is an equivalent DAG in which c is not downstream of h,
then the statement will be Type B. However, such a DAG could only be
produced by reversing edge h→ c, which is part of a v-structure (two
v-structures, actually). Since this operation would remove a v-structure,
the resulting DAG will not be equivalent. Therefore, the statement is
Type A.

(ii) g is not downstream from c in the original DAG, so the statement cannot
be Type A. Furthermore, g can only be downstream of c if the edge e→ g
is reversed. However, this edge is part of the v-structure g → e← c, and
so cannot be reversed to produce an equivalent DAG. Therefore the
statement is Type C.

(iii) h has no parents in the original DAG. Furthermore, h shares an edge with
node c only. However, the edge h→ c is part of a v-structure, and cannot
be reversed to produce an equivalent DAG. Therefore, the statement is
Type A.
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Section 14 Example: A simple gene regulatory network

(iv) b has one parent, a, in the original DAG, so the statement cannot be Type
A. Suppose edge a→ b is reversed (so that now b has no parents). This
edge is not part of a v-structure, and so none are removed. Furthermore,
reversing edge a→ b does not create any new v-structures, since a is not
a child of another node. This means the equivalence class contains at
least one DAG for which the statement is true, and at least one DAG for
which the statement is false. Therefore the statement is Type B.

(v) All parents of c are part of v-structures pointing to c. Deletion or
addition of any other parent would add or delete a v-structure. Since c
has three parents in the original DAG, the statement is Type A.

(vi) f is downstream of a in the original DAG. In the discussion of statement
(iv) above, it was argued that edge a→ b could be reversed to produce an
equivalent DAG. However, f would no longer be downstream from a in
this DAG, so the statement is Type B.
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Section 15 Example: Mid-Atlantic wage data

We make use of the data set Wage included in the ISLR R-package
(https://cran.r-project.org/). Subtitled Mid-Atlantic Wage Data, it
contains wage and other data for 3000 male workers in the Mid-Atlantic region
(James, G. et al. Introduction to Statistical Learning, Springer).

Eight variables from this data were used to fit a Bayesian network model,
using the hc(...) function from the bnlearn R-package (Scutari, M. (2010)
Learning Bayesian networks with the bnlearn R package, Journal of Statistical
Software, 35(i03)) We will discuss methods of fitting Bayesian networks in
later chapters, but for now we will simply show the resulting DAG (Figure 10,
top plot).
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Section 15 Example: Mid-Atlantic wage data

DAG

Age

Marital_Status

Race

Education

Job_Class

Health

Health_Insurance

Log_Wage

Equivalence Class

Age

Marital_Status

Race

Education

Job_Class

Health

Health_Insurance

Log_Wage

Figure 10: Bayesian network model fit with Mid-Atlantic Wage Data. The original
DAG is shown, as well as a schematic representation of the equivalence class
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Section 15 Example: Mid-Atlantic wage data

The log-transformed wage is given in the node labeled Log Wage. The
remaining nodes are of various types. Age is the worker’s age in years.
Marital Status is a categorical variable with levels Never Married, Married,
Widowed, Divorced and Separated. Education is a categorical variable with
levels < HS Grad, HS Grad, Some College, College Grad and Advanced

Degree. Race is a categorical variable with levels White, Black, Asian and
Other. Job Class is a categorical variable with levels Industrial and
Information.

We note that Bayesian network models are flexible with regard to data type,
and a single model often contains multiple types. This does not greatly affect
their structure or interpretation.

We have already seen that the interpretation of a Bayesian network must take
into account the entire equivalence class of a DAG. In Figure 10 a schematic
representation of this equivalence class is shown in the bottom plot. This is
constructed by replacing any edge of the original DAG with an undirected
edge if there exists an equivalent DAG in which that edge is reversed. This is
obtainable by converting any edge to an undirected edge if it is not part of a
v-structure.
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Section 15 Example: Mid-Atlantic wage data

Thus, the undirected edges of the equivalence class representation are those
edges which can be reversed in the original DAG to produce an equivalent
DAG, following the technique used in the prevous example. It must be
stressed, however, that the choices of which edges to reverse cannot be made
independently. For example, the original DAG contains edges

Race→ Education and Education→ Job Class.

Both of these edges are converted to undirected edges in the equivalent class
representation, so each are represented in the equivalence class in both the
original and reversed directions. However, suppose we reverse the edge
Education→ Job Class. We will have then created a new v-structure:

Race→ Education← Job Class,

and the resulting DAG will not be equivalent to the original DAG. Of course,
if we also reverse the edge Race→ Education we now have path

Race← Education→ Job Class,

which is not a v-structure, and the resulting DAG will be equivalent to the
original.
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Section 15 Example: Mid-Atlantic wage data

Interpreting Causality We now consider what the DAG tells us about the
causal relationships among the nodes.

(a) First consider the node Race. From Figure 10 we can see it has child
Education, no parents, and no other parents of its child. Its Markov
blanket is therefore:

BRace = {Education}.

This means that conditional on Education, Race is independent of all
remaining nodes. In particular, we have conditional independence
statement:

(Race ⊥⊥ Log Wage) | Education.

In other words, Log Wage depends on Race, but that dependence
disappears once Education is taken into account. This means that wages
are determined not by race but by education level.
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Section 15 Example: Mid-Atlantic wage data

(b) We can reach a similar conclusion about the node Job Class. It has one
parent, Education, no children, and therefore no other parents of
children. The Markov blanket is therefore

BJob Class = {Education},

and, as for Race, we have the conditional independence statement

(Job Class ⊥⊥ Log Wage) | Education.

(c) When we examine the DAG, it appears as though the node Education is
very influential. It has child and parent sets

CEducation = {Health Insurance, Log Wage, Health, Job Class},
PEducation = {Race}.

In addition, the node Log Wage is a child of Education, and has parents
Health Insurance and Age. While Health Insurance is already included

78/80



Section 15 Example: Mid-Atlantic wage data

in CEducation, Age is included in neither CEducation or PEducation, but is
included in the Markov blanket. This gives Markov blanket:

BEducation

= {Health Insurance, Log Wage, Health, Job Class, Race, Age},

which includes all nodes except for Marital Status and Education itself.
This suggests that Education is in some sense a highly influential node.

(d) The node Marital Status has no parents; one child, Age; and one parent
of a child, Health. The Markov blanket of Marital Status is therefore

BMarital Status = {Age, Health}.

This imposes the conditional independence statement

(Marital Status ⊥⊥ Log Wage) | {Age, Health}. (8)

This has an interesting interpretation. It has been observed that higher
wages tend to be positively associated with marriage. However,
conditional independence statement (8) suggests that this is simply
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because married people tend to be older than single people, and wages
almost universally increase with age.
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